1
|
Katona RL. De novo formed satellite DNA-based mammalian artificial chromosomes and their possible applications. Chromosome Res 2015; 23:143-57. [DOI: 10.1007/s10577-014-9458-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
2
|
Tóth A, Fodor K, Praznovszky T, Tubak V, Udvardy A, Hadlaczky G, Katona RL. Novel method to load multiple genes onto a mammalian artificial chromosome. PLoS One 2014; 9:e85565. [PMID: 24454889 PMCID: PMC3893256 DOI: 10.1371/journal.pone.0085565] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/03/2013] [Indexed: 01/05/2023] Open
Abstract
Mammalian artificial chromosomes are natural chromosome-based vectors that may carry a vast amount of genetic material in terms of both size and number. They are reasonably stable and segregate well in both mitosis and meiosis. A platform artificial chromosome expression system (ACEs) was earlier described with multiple loading sites for a modified lambda-integrase enzyme. It has been shown that this ACEs is suitable for high-level industrial protein production and the treatment of a mouse model for a devastating human disorder, Krabbe's disease. ACEs-treated mutant mice carrying a therapeutic gene lived more than four times longer than untreated counterparts. This novel gene therapy method is called combined mammalian artificial chromosome-stem cell therapy. At present, this method suffers from the limitation that a new selection marker gene should be present for each therapeutic gene loaded onto the ACEs. Complex diseases require the cooperative action of several genes for treatment, but only a limited number of selection marker genes are available and there is also a risk of serious side-effects caused by the unwanted expression of these marker genes in mammalian cells, organs and organisms. We describe here a novel method to load multiple genes onto the ACEs by using only two selectable marker genes. These markers may be removed from the ACEs before therapeutic application. This novel technology could revolutionize gene therapeutic applications targeting the treatment of complex disorders and cancers. It could also speed up cell therapy by allowing researchers to engineer a chromosome with a predetermined set of genetic factors to differentiate adult stem cells, embryonic stem cells and induced pluripotent stem (iPS) cells into cell types of therapeutic value. It is also a suitable tool for the investigation of complex biochemical pathways in basic science by producing an ACEs with several genes from a signal transduction pathway of interest.
Collapse
Affiliation(s)
- Anna Tóth
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Katalin Fodor
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Tünde Praznovszky
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Vilmos Tubak
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Andor Udvardy
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Gyula Hadlaczky
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Robert L. Katona
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
3
|
Kim JH, Kononenko A, Erliandri I, Kim TA, Nakano M, Iida Y, Barrett JC, Oshimura M, Masumoto H, Earnshaw WC, Larionov V, Kouprina N. Human artificial chromosome (HAC) vector with a conditional centromere for correction of genetic deficiencies in human cells. Proc Natl Acad Sci U S A 2011; 108:20048-53. [PMID: 22123967 PMCID: PMC3250132 DOI: 10.1073/pnas.1114483108] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Human artificial chromosome (HAC)-based vectors offer a promising system for delivery and expression of full-length human genes of any size. HACs avoid the limited cloning capacity, lack of copy number control, and insertional mutagenesis caused by integration into host chromosomes that plague viral vectors. We previously described a synthetic HAC that can be easily eliminated from cell populations by inactivation of its conditional kinetochore. Here, we demonstrate the utility of this HAC, which has a unique gene acceptor site, for delivery of full-length genes and correction of genetic deficiencies in human cells. A battery of functional tests was performed to demonstrate expression of NBS1 and VHL genes from the HAC at physiological levels. We also show that phenotypes arising from stable gene expression can be reversed when cells are "cured" of the HAC by inactivating its kinetochore in proliferating cell populations, a feature that provides a control for phenotypic changes attributed to expression of HAC-encoded genes. This generation of human artificial chromosomes should be suitable for studies of gene function and therapeutic applications.
Collapse
MESH Headings
- Animals
- Autoantigens/metabolism
- CHO Cells
- Cell Cycle Proteins/genetics
- Centromere/genetics
- Centromere Protein A
- Chromosomal Proteins, Non-Histone/metabolism
- Chromosomes, Artificial, Human/genetics
- Chromosomes, Artificial, Yeast/genetics
- Cloning, Molecular
- Cricetinae
- Cricetulus
- Gene Expression
- Genetic Complementation Test
- Genetic Therapy/methods
- Genetic Vectors/genetics
- Genome, Human/genetics
- Humans
- In Situ Hybridization, Fluorescence
- Integrases/metabolism
- Mutagenesis, Insertional/genetics
- Nuclear Proteins/genetics
- Recombination, Genetic/genetics
- Von Hippel-Lindau Tumor Suppressor Protein/genetics
Collapse
Affiliation(s)
| | | | | | - Tae-Aug Kim
- Tumor and Stem Cell Biology, National Cancer Institute, Bethesda, MD 20892
| | - Megumi Nakano
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Yuichi Iida
- Institute of Regenerative Medicine and Biofunction, Tottori University, Tottori 683-8503, Japan
| | - J. Carl Barrett
- Translational Sciences for Oncology Innovative Medicine, AstraZeneca, Boston, MA 02451; and
| | - Mitsuo Oshimura
- Institute of Regenerative Medicine and Biofunction, Tottori University, Tottori 683-8503, Japan
| | | | - William C. Earnshaw
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH14 4AS, Scotland
| | | | | |
Collapse
|
4
|
Katona RL, Vanderbyl SL, Perez CF. Mammalian artificial chromosomes and clinical applications for genetic modification of stem cells: an overview. Methods Mol Biol 2011; 738:199-216. [PMID: 21431729 DOI: 10.1007/978-1-61779-099-7_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Modifying multipotent, self-renewing human stem cells with mammalian artificial chromosomes (MACs), present a promising clinical strategy for numerous diseases, especially ex vivo cell therapies that can benefit from constitutive or overexpression of therapeutic gene(s). MACs are nonintegrating, autonomously replicating, with the capacity to carry large cDNA or genomic sequences, which in turn enable potentially prolonged, safe, and regulated therapeutic transgene expression, and render MACs as attractive genetic vectors for "gene replacement" or for controlling differentiation pathways in progenitor cells. The status quo is that the most versatile target cell would be one that was pluripotent and self-renewing to address multiple disease target cell types, thus making multilineage stem cells, such as adult derived early progenitor cells and embryonic stem cells, as attractive universal host cells. We will describe the progress of MAC technologies, the subsequent modifications of stem cells, and discuss the establishment of MAC platform stem cell lines to facilitate proof-of-principle studies and preclinical development.
Collapse
Affiliation(s)
- Robert L Katona
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary.
| | | | | |
Collapse
|
5
|
Oshimura M, Katoh M. Transfer of human artificial chromosome vectors into stem cells. Reprod Biomed Online 2008; 16:57-69. [PMID: 18252049 DOI: 10.1016/s1472-6483(10)60557-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human chromosome fragments and human artificial chromosomes (HAC) represent feasible gene delivery vectors via microcell-mediated chromosome transfer. Strategies to construct HAC involve either 'build up' or 'top-down' approaches. For each approach, techniques for manipulating HAC in donor cells in order to deliver HAC to recipient cells are required. The combination of chromosome fragments or HAC with microcell-mediated chromosome transfer has facilitated human gene mapping and various genetic studies. The recent emergence of stem cell-based tissue engineering has opened up new avenues for gene and cell therapies. The task now is to develop safe and effective vectors that can deliver therapeutic genes into specific stem cells and maintain long-term regulated expression of these genes. Although the transfer-efficiency needs to be improved, HAC possess several characteristics that are required for gene therapy vectors, including stable episomal maintenance and the capacity for large gene insets. HAC can also carry genomic loci with regulatory elements, which allow for the expression of transgenes in a genetic environment similar to the natural chromosome. This review describes the lessons and prospects learned, mainly from recent studies in developing HAC and HAC-mediated gene expression in embryonic and adult stem cells, and in transgenic animals.
Collapse
Affiliation(s)
- Mitsuo Oshimura
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, 86 Nishicho, Yonago, Tottori 683-8503, Japan.
| | | |
Collapse
|
6
|
Marshall OJ, Chueh AC, Wong LH, Choo KA. Neocentromeres: new insights into centromere structure, disease development, and karyotype evolution. Am J Hum Genet 2008; 82:261-82. [PMID: 18252209 PMCID: PMC2427194 DOI: 10.1016/j.ajhg.2007.11.009] [Citation(s) in RCA: 287] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 10/26/2007] [Accepted: 11/05/2007] [Indexed: 11/30/2022] Open
Abstract
Since the discovery of the first human neocentromere in 1993, these spontaneous, ectopic centromeres have been shown to be an astonishing example of epigenetic change within the genome. Recent research has focused on the role of neocentromeres in evolution and speciation, as well as in disease development and the understanding of the organization and epigenetic maintenance of the centromere. Here, we review recent progress in these areas of research and the significant insights gained.
Collapse
Affiliation(s)
- Owen J. Marshall
- Chromosome and Chromatin Research, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Anderly C. Chueh
- Chromosome and Chromatin Research, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Lee H. Wong
- Chromosome and Chromatin Research, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - K.H. Andy Choo
- Chromosome and Chromatin Research, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
7
|
Basu J, Willard HF. Human artificial chromosomes: potential applications and clinical considerations. Pediatr Clin North Am 2006; 53:843-53, viii. [PMID: 17027613 DOI: 10.1016/j.pcl.2006.08.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Human artificial chromosomes demonstrate promise as a novel class of nonintegrative gene therapy vectors. The authors outline current developments in human artificial chromosome technology and examine their potential for clinical application.
Collapse
Affiliation(s)
- Joydeep Basu
- Institute for Genome Sciences & Policy, Duke University, 101 Science Drive, Durham, NC 27708, USA.
| | | |
Collapse
|
8
|
Jackson DA, Juranek S, Lipps HJ. Designing nonviral vectors for efficient gene transfer and long-term gene expression. Mol Ther 2006; 14:613-26. [PMID: 16784894 DOI: 10.1016/j.ymthe.2006.03.026] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 03/20/2006] [Accepted: 03/20/2006] [Indexed: 01/20/2023] Open
Abstract
Although the genetic therapy of human diseases has been conceptually possible for many years we still lack a vector system that allows safe and reproducible genetic modification of eukaryotic cells and ensures faithful long-term expression of transgenes. There is increasing agreement that vectors that are based exclusively on chromosomal elements, which replicate autonomously in human cells, could fulfill these criteria. The rational construction of such vectors is still hindered by our limited knowledge of the factors that regulate chromatin function in eukaryotic cells. This review sets out to summarize how our current knowledge of nuclear organization can be applied to the design of extrachromosomal gene expression vectors that can be used for human gene therapy. Within the past years a number of episomal nonviral constructs have been designed and their replication strategies, expression of transgenes, mitotic stability, and delivery strategies and the mechanisms required for their stable establishment will be discussed. To date, these nonviral vectors have not been used in clinical trials. Even so, many compelling arguments can be developed to support the view that nonviral vector systems will play a major role in future gene therapy protocols.
Collapse
Affiliation(s)
- Dean A Jackson
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PL, UK
| | | | | |
Collapse
|
9
|
Irvine DV, Shaw ML, Choo KHA, Saffery R. Engineering chromosomes for delivery of therapeutic genes. Trends Biotechnol 2005; 23:575-83. [PMID: 16242803 DOI: 10.1016/j.tibtech.2005.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 06/03/2005] [Accepted: 10/06/2005] [Indexed: 02/02/2023]
Abstract
The ability to create fully functional human chromosome vectors represents a potentially exciting gene-delivery system for the correction of human genetic disorders with several advantages over viral delivery systems. However, for the full potential of chromosome-based gene-delivery vectors to be realized, several key obstacles must be overcome. Methods must be developed to insert therapeutic genes reliably and efficiently and to enable the stable transfer of the resulting chromosomal vectors to different therapeutic cell types. Research to achieve these outcomes continues to encounter major challenges; however recent developments have reiterated the potential of chromosome-based vectors for therapeutic gene delivery. Here we review the different strategies under development and discuss the advantages and problems associated with each.
Collapse
Affiliation(s)
- Danielle V Irvine
- Chromosome Research Group, Murdoch Childrens Research Institute, Royal Children's Hospital, Department of Paediatrics, University of Melbourne, Flemington Road, Parkville 3052, Australia
| | | | | | | |
Collapse
|
10
|
Basu J, Willard HF. Artificial and engineered chromosomes: non-integrating vectors for gene therapy. Trends Mol Med 2005; 11:251-8. [PMID: 15882613 DOI: 10.1016/j.molmed.2005.03.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Non-integrating gene-delivery platforms demonstrate promise as potentially ideal gene-therapy vector systems. Although several approaches are under development, there is little consensus as to what constitutes a true 'artificial' versus an 'engineered' human chromosome. Recent progress must be evaluated in light of significant technical challenges that remain before such vectors achieve clinical utility. Here, we examine the principal classes of non-integrating vectors, ranging from episomes to engineered mini-chromosomes to true human artificial chromosomes. We compare their potential as practical gene-transfer platforms and summarize recent advances towards eventual applications in gene therapy. Although chromosome-engineering technology has advanced considerably within recent years, difficulties in establishing composition of matter and effective vector delivery currently prevent artificial or engineered chromosomes being accepted as viable gene-delivery platforms.
Collapse
Affiliation(s)
- Joydeep Basu
- Institute for Genome Sciences and Policy, Duke University, Durham, NC 27708, USA.
| | | |
Collapse
|
11
|
Bunnell BA, Izadpanah R, Ledebur HC, Perez CF. Development of mammalian artificial chromosomes for the treatment of genetic diseases: Sandhoff and Krabbe diseases. Expert Opin Biol Ther 2005; 5:195-206. [PMID: 15757381 DOI: 10.1517/14712598.5.2.195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mammalian artificial chromosomes (MACs) are being developed as alternatives to viral vectors for gene therapy applications, as they allow for the introduction of large payloads of genetic information in a non-integrating, autonomously replicating format. One class of MACs, the satellite DNA-based artificial chromosome expression vehicle (ACE), is uniquely suited for gene therapy applications, in that it can be generated denovo in cells, along with being easily purified and readily transferred into a variety of recipient cell lines and primary cells. To facilitate the rapid engineering of ACEs, the ACE System was developed, permitting the efficient and reproducible loading of pre-existing ACEs with DNA sequences and/or target gene(s). As a result, the ACE System and ACEs are unique and versatile platforms for ex vivo gene therapy strategies that circumvent and alleviate existing safety and delivery limitations surrounding conventional gene therapy vectors. This review will focus on the status of MAC technologies and, in particular, the application of the ACE System towards an ex vivo gene therapy treatment of lysosomal storage diseases, specifically Sandhoff (MIM #268800) and Krabbe (MIM #245200) diseases.
Collapse
Affiliation(s)
- Bruce A Bunnell
- Tulane University Health Sciences Center, Center for Gene Therapy, Department of Pharmacology, Division of Gene Therapy, Tulane National Primate Research Center, 18703 Three Rivers Road, Covington, LA 70433, USA.
| | | | | | | |
Collapse
|
12
|
Glover DJ, Lipps HJ, Jans DA. Towards safe, non-viral therapeutic gene expression in humans. Nat Rev Genet 2005; 6:299-310. [PMID: 15761468 DOI: 10.1038/nrg1577] [Citation(s) in RCA: 413] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The potential dangers of using viruses to deliver and integrate DNA into host cells in gene therapy have been poignantly highlighted in recent clinical trials. Safer, non-viral gene delivery approaches have been largely ignored in the past because of their inefficient delivery and the resulting transient transgene expression. However, recent advances indicate that efficient, long-term gene expression can be achieved by non-viral means. In particular, integration of DNA can be targeted to specific genomic sites without deleterious consequences and it is possible to maintain transgenes as small episomal plasmids or artificial chromosomes. The application of these approaches to human gene therapy is gradually becoming a reality.
Collapse
Affiliation(s)
- Dominic J Glover
- Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | | | | |
Collapse
|
13
|
Abstract
Currently used vectors in human gene therapy suffer from a number of limitations with respect to safety and reproducibility. There is increasing agreement that the ideal vector for gene therapy should be completely based on chromosomal elements and behave as an independent functional unit after integration into the genome or when retained as an episome. In this review we will first discuss the chromosomal elements, such as enhancers, locus control regions, boundary elements, insulators and scaffold- or matrix-attachment regions, involved in the hierarchic regulation of mammalian gene expression and replication. These elements have been used to design vectors that behave as artificial domains when integrating into the genome. We then discuss recent progress in the use of mammalian artificial chromosomes and small circular non-viral vectors for their use as expression systems in mammalian cells.
Collapse
Affiliation(s)
- H J Lipps
- Institut für Zellbiologie, Universität Witten/Herdecke, Stockumer Strasse 10, D-58448, Witten, Germany.
| | | | | | | | | | | |
Collapse
|