1
|
Wilkin T, Baoutina A, Hamilton N. Equine performance genes and the future of doping in horseracing. Drug Test Anal 2017; 9:1456-1471. [DOI: 10.1002/dta.2198] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 01/20/2023]
Affiliation(s)
- Tessa Wilkin
- Vet Faculty; University of Sydney; Gunn Building, Sydney University, Camperdown NSW Australia
- Bioanalysis; The National Measurement Institute; 36 Bradfield Rd, Lindfield Sydney New South Wales Australia
| | - Anna Baoutina
- School of Life and Environmental Sciences, Faculty of Science; The University of Sydney; Bradfield Rd West Lindfield New South Wales Australia
| | - Natasha Hamilton
- Faculty of Veterinary Science; University of Sydney; Sydney New South Wales Australia
| |
Collapse
|
2
|
Goins WF, Cohen JB, Glorioso JC. Gene therapy for the treatment of chronic peripheral nervous system pain. Neurobiol Dis 2012; 48:255-70. [PMID: 22668775 DOI: 10.1016/j.nbd.2012.05.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 05/11/2012] [Accepted: 05/24/2012] [Indexed: 11/30/2022] Open
Abstract
Chronic pain is a major health concern affecting 80 million Americans at some time in their lives with significant associated morbidity and effects on individual quality of life. Chronic pain can result from a variety of inflammatory and nerve damaging events that include cancer, infectious diseases, autoimmune-related syndromes and surgery. Current pharmacotherapies have not provided an effective long-term solution as they are limited by drug tolerance and potential abuse. These concerns have led to the development and testing of gene therapy approaches to treat chronic pain. The potential efficacy of gene therapy for pain has been reported in numerous pre-clinical studies that demonstrate pain control at the level of the spinal cord. This promise has been recently supported by a Phase-I human trial in which a replication-defective herpes simplex virus (HSV) vector was used to deliver the human pre-proenkephalin (hPPE) gene, encoding the natural opioid peptides met- and leu-enkephalin (ENK), to cancer patients with intractable pain resulting from bone metastases (Fink et al., 2011). The study showed that the therapy was well tolerated and that patients receiving the higher doses of therapeutic vector experienced a substantial reduction in their overall pain scores for up to a month post vector injection. These exciting early clinical results await further patient testing to demonstrate treatment efficacy and will likely pave the way for other gene therapies to treat chronic pain.
Collapse
Affiliation(s)
- William F Goins
- Dept of Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA 15219, USA.
| | | | | |
Collapse
|
3
|
Oliveira R, Collares T, Smith K, Collares T, Seixas F. The use of genes for performance enhancement: doping or therapy? Braz J Med Biol Res 2011; 44:1194-201. [DOI: 10.1590/s0100-879x2011007500145] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 10/13/2011] [Indexed: 01/18/2023] Open
Affiliation(s)
| | | | - K.R. Smith
- University of Abertay Dundee, United Kingdom
| | | | | |
Collapse
|
4
|
Ando T, Sato S, Toyooka T, Uozumi Y, Nawashiro H, Ashida H, Obara M. Site-specific gene transfer into the rat spinal cord by photomechanical waves. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:108002. [PMID: 22029370 DOI: 10.1117/1.3642014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Nonviral, site-specific gene delivery to deep tissue is required for gene therapy of a spinal cord injury. However, an efficient method satisfying these requirements has not been established. This study demonstrates efficient and targeted gene transfer into the spinal cord by using photomechanical waves (PMWs), which were generated by irradiating a black laser absorbing rubber with 532-nm nanosecond Nd:YAG laser pulses. After a solution of plasmid DNA coding for enhanced green fluorescent protein (EGFP) or luciferase was intraparenchymally injected into the spinal cord, PMWs were applied to the target site. In the PMW application group, we observed significant EGFP gene expression in the white matter and remarkably high luciferase activity only in the spinal cord segment exposed to the PMWs. We also assessed hind limb movements 24 h after the application of PMWs based on the Basso-Beattie-Bresnahan (BBB) score to evaluate the noninvasiveness of this method. Locomotor evaluation showed no significant decrease in BBB score under optimum laser irradiation conditions. These findings demonstrated that exogenous genes can be efficiently and site-selectively delivered into the spinal cord by applying PMWs without significant locomotive damage.
Collapse
Affiliation(s)
- Takahiro Ando
- Keio University, Department of Electronics and Electrical Engineering, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | | | | | | | | | | | | |
Collapse
|
5
|
Ayuni EL, Gazdhar A, Giraud MN, Kadner A, Gugger M, Cecchini M, Caus T, Carrel TP, Schmid RA, Tevaearai HT. In vivo electroporation mediated gene delivery to the beating heart. PLoS One 2010; 5:e14467. [PMID: 21209934 PMCID: PMC3012686 DOI: 10.1371/journal.pone.0014467] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 11/10/2010] [Indexed: 11/18/2022] Open
Abstract
Gene therapy may represent a promising alternative strategy for cardiac muscle regeneration. In vivo electroporation, a physical method of gene transfer, has recently evolved as an efficient method for gene transfer. In the current study, we investigated the efficiency and safety of a protocol involving in vivo electroporation for gene transfer to the beating heart. Adult male rats were anesthetised and the heart exposed through a left thoracotomy. Naked plasmid DNA was injected retrograde into the transiently occluded coronary sinus before the electric pulses were applied. Animals were sacrificed at specific time points and gene expression was detected. Results were compared to the group of animals where no electric pulses were applied. No post-procedure arrhythmia was observed. Left ventricular function was temporarily altered only in the group were high pulses were applied; CK-MB (Creatine kinase) and TNT (Troponin T) were also altered only in this group. Histology showed no signs of toxicity. Gene expression was highest at day one. Our results provide evidence that in vivo electroporation with an optimized protocol is a safe and effective tool for nonviral gene delivery to the beating heart. This method may be promising for clinical settings especially for perioperative gene delivery.
Collapse
Affiliation(s)
- Erick L. Ayuni
- Department of Cardiovascular Surgery, University Hospital of Berne, Berne, Switzerland
| | - Amiq Gazdhar
- Division of General Thoracic Surgery, University Hospital of Berne, Berne, Switzerland
| | - Marie Noelle Giraud
- Department of Cardiovascular Surgery, University Hospital of Berne, Berne, Switzerland
| | - Alexander Kadner
- Department of Cardiovascular Surgery, University Hospital of Berne, Berne, Switzerland
| | - Mathias Gugger
- Department of Pathology, University of Berne, Berne, Switzerland
| | - Marco Cecchini
- Department of Urology, University Hospital of Berne, Berne, Switzerland
| | - Thierry Caus
- Department of Cardiovascular Surgery, University Hospital of Berne, Berne, Switzerland
| | - Thierry P. Carrel
- Department of Cardiovascular Surgery, University Hospital of Berne, Berne, Switzerland
| | - Ralph A. Schmid
- Division of General Thoracic Surgery, University Hospital of Berne, Berne, Switzerland
- * E-mail:
| | - Hendrik T. Tevaearai
- Department of Cardiovascular Surgery, University Hospital of Berne, Berne, Switzerland
| |
Collapse
|
6
|
Abstract
Chronic pathological pain is characterized by extensive plasticity of the systems involved in pain signal transmission and modulation and tissue remodeling in several CNS structures. These long-lasting alterations are mediated by, or associated with, changes in the production of key molecules of nociceptive processing. Gene-based approaches offer the unique possibility of using local or even cell-type specific interventions to correct the abnormal production of some of these proteins, modulate the activity of signal transduction pathways, or overproduce various therapeutic secreted proteins. We showed that certain viral-derived vectors are particularly suitable for mediating gene transfer highly preferential for instance into the primary sensory neurons or into the spinal cord glial cells that represent particularly pertinent targets in the search for new therapeutic strategies of pathological pain.
Collapse
|
7
|
Peripheral non-viral MIDGE vector-driven delivery of beta-endorphin in inflammatory pain. Mol Pain 2009; 5:72. [PMID: 20003437 PMCID: PMC2797781 DOI: 10.1186/1744-8069-5-72] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 12/14/2009] [Indexed: 01/13/2023] Open
Abstract
Background Leukocytes infiltrating inflamed tissue produce and release opioid peptides such as β-endorphin, which activate opioid receptors on peripheral terminals of sensory nerves resulting in analgesia. Gene therapy is an attractive strategy to enhance continuous production of endogenous opioids. However, classical viral and plasmid vectors for gene delivery are hampered by immunogenicity, recombination, oncogene activation, anti-bacterial antibody production or changes in physiological gene expression. Non-viral, non-plasmid minimalistic, immunologically defined gene expression (MIDGE) vectors may overcome these problems as they carry only elements needed for gene transfer. Here, we investigated the effects of a nuclear localization sequence (NLS)-coupled MIDGE encoding the β-endorphin precursor proopiomelanocortin (POMC) on complete Freund's adjuvant-induced inflammatory pain in rats. Results POMC-MIDGE-NLS injected into inflamed paws appeared to be taken up by leukocytes resulting in higher concentrations of β-endorphin in these cells. POMC-MIDGE-NLS treatment reversed enhanced mechanical sensitivity compared with control MIDGE-NLS. However, both effects were moderate, not always statistically significant or directly correlated with each other. Also, the anti-hyperalgesic actions could not be increased by enhancing β-endorphin secretion or by modifying POMC-MIDGE-NLS to code for multiple copies of β-endorphin. Conclusion Although MIDGE vectors circumvent side-effects associated with classical viral and plasmid vectors, the current POMC-MIDGE-NLS did not result in reliable analgesic effectiveness in our pain model. This was possibly associated with insufficient and variable efficacy in transfection and/or β-endorphin production. Our data point at the importance of the reproducibility of gene therapy strategies for the control of chronic pain.
Collapse
|
8
|
Transfection of rat cells with proopiomeranocortin gene, precursor of endogenous endorphin, using radial shock waves suppresses inflammatory pain. Spine (Phila Pa 1976) 2009; 34:2270-7. [PMID: 19934807 DOI: 10.1097/brs.0b013e3181af77b4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN The effect of proopiomelanocortin (POMC) gene transfer with radial shock waves (RSW) was investigated in vitro and in vivo rat pain models. OBJECTIVE To examine the efficacy of POMC gene transfer with RSW, efficiency of beta-endorphin production in transfected cells, and its effects and side effects in pain models. SUMMARY OF BACKGROUND DATA Opioids have been used to treat chronic pain originating from knee osteoarthritis and the lower back; however, several side effects have been reported. Endogenous opioids are safe, but they are not used for clinical treatment because their metabolism is very fast. METHODS POMC plasmid was produced from pretransformed rat brain cDNA. POMC gene was added to the muscle of rat in vitro and in vivo with RSWs. We assessed beta-endorphin activity using immunohistochemistry. For assessment of pain behavior, we evaluated change in pain score and the level of the inflammatory neuropeptide, calcitonin gene-related peptide (CGRP), after transfection of the POMC gene in an adjuvant induced pain model for 28 days after treatment. RESULTS POMC transfected using RSW expressed beta-endorphin at a significantly increased level in muscle cells compared with non-RSW transfection and controls in vitro and in vivo (P < 0.05).Animals showed significant pain sensitivity and increased CGRP expression in dorsal root ganglia neurons in this model; however, these findings decreased for 14 days after transfection of POMC into muscle. There was no significant difference in side effects, such as a change in the level of food pellet intake or constipation, between POMC-treated animals and untreated animals. CONCLUSION POMC transfection with RSW increased beta-endorphin expression in muscle for 14 days, and suppressed pain behavior and CGRP expression in dorsal root ganglia neurons without side effects. This suggested that transfer of POMC by RSW is an effective treatment for inflammatory pain.
Collapse
|
9
|
Hughes TS, Langer SJ, Johnson KW, Chavez RA, Watkins LR, Milligan ED, Leinwand LA. Intrathecal injection of naked plasmid DNA provides long-term expression of secreted proteins. Mol Ther 2008; 17:88-94. [PMID: 18941439 DOI: 10.1038/mt.2008.230] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Therapeutic benefit has been reported to result from intrathecal (i.t.) injection of transgene vectors, including naked DNA. However, most studies using naked DNA have measured only the transgene expression of intracellular proteins. Here we demonstrate that i.t. injection of naked DNA can result in long-term expression of secreted proteins. Plasmids expressing either secreted alkaline phosphatase (SEAP) or human interleukin-10 (hIL-10) were injected into the i.t. space in rats, and transgene products were repeatedly measured in the cerebrospinal fluid (CSF). Both SEAP and hIL-10 were maximal at 1 and 2 days after the injection and still detectable at 4 months. The utilization of a plasmid having two features that are hypothesized to increase gene expression (matrix attachment regions (MARs) and lack of CpG dinucleotides) resulted in a significant increase in gene expression. Reinjection of SEAP or hIL-10 plasmids after 4 months significantly increased protein levels at 1 and 14 days after the reinjection. SEAP was uniformly distributed between the DNA delivery site (approximately vertebral level T13) and the lumbar puncture site (L5/L6 inter-vertebral space), was reduced at the cisterna magna, and was detectable, though at much lower levels, in serum. These data suggest that naked DNA has the potential to be used as a therapeutic tool for applications that require long-term release of transgenes into the CSF.
Collapse
Affiliation(s)
- Travis S Hughes
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Storn V, Kirschbaum M, Schlosshauer B, Mack AF, Fricke C. Electrical Stimulation-Induced Release of β-Endorphin from Genetically Modified Neuro-2a Cells. Cell Transplant 2008; 17:543-8. [DOI: 10.3727/096368908785095999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The quantity of therapeutic gene products released from genetically engineered cells can be controlled externally at different levels. The widely used approach of controlling expression, however, generally has the disadvantage that chemical substances must be applied for stimulation. An alternative strategy aims at controlling gene products at posttranslational levels such as secretion. The secretion of a therapeutic agent can be regulated if the agent is targeted to the regulated secretory pathway and stored in the secretory granules until its release. In this article we address the question of whether the release of β-endorphin, an opioid with a potent analgesic effect, could be induced by electrically stimulating stably transfected Neuro-2a cells. Throughout this study we used the human proopiomelanocortin (POMC) gene, which is the precursor molecule for human β-endorphin. We analyzed its subcellular localization and found it in the regulated secretory pathway in Neuro-2a cells. Using electrical field stimulation we were able to identify a stimulation pattern that significantly increased the release of β-endorphin-immunoreactive material, although to a limited extent. This result indicates that electrical stimulation of secretion could be used to manipulate the amount of a therapeutic agent released from transplanted cells.
Collapse
Affiliation(s)
- Volker Storn
- NMI Natural and Medical Sciences Institute, University of Tuebingen, 72770 Reutlingen, Germany
| | - Michael Kirschbaum
- NMI Natural and Medical Sciences Institute, University of Tuebingen, 72770 Reutlingen, Germany
| | - Burkhard Schlosshauer
- NMI Natural and Medical Sciences Institute, University of Tuebingen, 72770 Reutlingen, Germany
| | - Andreas F. Mack
- Anatomisches Institut, University of Tuebingen, 72074 Tuebingen, Germany
| | - Cornelia Fricke
- NMI Natural and Medical Sciences Institute, University of Tuebingen, 72770 Reutlingen, Germany
| |
Collapse
|
11
|
Sensory neuron targeting by self-complementary AAV8 via lumbar puncture for chronic pain. Proc Natl Acad Sci U S A 2008; 105:1055-60. [PMID: 18215993 DOI: 10.1073/pnas.0708003105] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lumbar puncture (LP) is an attractive route to deliver drugs to the nervous system because it is a safe bedside procedure. Its use for gene therapy has been complicated by poor vector performance and failure to target neurons. Here we report highly effective gene transfer to the primary sensory neurons of the dorsal root ganglia (DRGs) with self-complementary recombinant adeno-associated virus serotype 8 (sc-rAAV8) modeling an LP. Transgene expression was selective for these neurons outlining their cell bodies in the DRGs and their axons projecting into the spinal cord. Immunohistochemical studies demonstrated transduction of cells positive for the nociceptive neuron marker vanilloid receptor subtype 1, the small peptidergic neuron markers substance P and calcitonin gene-related peptide, and the nonpeptidergic neuron marker griffonia simplicifolia isolectin B4. We tested the efficacy of the approach in a rat model of chronic neuropathic pain. A single administration of sc-rAAV8 expressing the analgesic gene prepro-beta-endorphin (ppbetaEP) led to significant (P < 0.0001) reversal of mechanical allodynia for >/=3 months. The antiallodynic effect could be reversed by the mu-opioid antagonist naloxone 4 months after gene transfer (P < 0.001). Testing of an alternative nonopioid analgesic gene, IL-10, alone or in combination with ppbetaEP was equally effective (P < 0.0001). All aspects of the procedure, such as the use of an atraumatic injection technique, isotonic diluent, a low-infusion pressure, and a small injection volume, are consistent with clinical practice of intrathecal drug use. Therefore, gene transfer by LP may be suitable for developing gene therapy-based treatments for chronic pain.
Collapse
|
12
|
Intrathecal coelectrotransfer of a tetracycline-inducible, three-plasmid-based system to achieve tightly regulated antinociceptive gene therapy for mononeuropathic rats. J Gene Med 2008; 10:208-16. [DOI: 10.1002/jgm.1132] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
13
|
Artioli GG, Hirata RDC, Lancha Junior AH. Terapia gênica, doping genético e esporte: fundamentação e implicações para o futuro. REV BRAS MED ESPORTE 2007. [DOI: 10.1590/s1517-86922007000500013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A busca pelo desempenho ótimo tem sido uma constante no esporte de alto rendimento. Para tanto, muitos atletas acabam utilizando drogas e métodos ilícitos, os quais podem ter importantes efeitos adversos. A terapia gênica é uma modalidade terapêutica bastante recente na medicina, cujos resultados têm, até o momento, indicado sua eficácia no tratamento de diversas doenças graves. O princípio da terapia gênica consiste na transferência vetorial de materiais genéticos para células-alvo, com o objetivo de suprir os produtos de um gene estruturalmente anormal no genoma do paciente. Recentemente, o potencial para uso indevido da terapia gênica entre atletas tem despertado a atenção de cientistas e de órgãos reguladores de esporte. A transferência de genes que poderiam melhorar o desempenho esportivo por atletas saudáveis, método proibido em 2003, foi denominado de doping genético. Os genes candidatos mais importantes para doping genético são os que codificam para GH, IGF-1, bloqueadores da miostatina, VEGF, endorfinas e encefalinas, eritropoetina, leptina e PPAR-delta. Uma vez inserido no genoma do atleta, o gene se expressaria gerando um produto endógeno capaz de melhorar o desempenho atlético. Assim, os métodos atuais de detecção de doping não são sensíveis a esse tipo de manipulação, o que poderia estimular seu uso indevido entre atletas. Além disso, a terapia gênica ainda apresenta problemas conhecidos de aplicação, como resposta inflamatória e falta de controle da ativação do gene. Em pessoas saudáveis, é provável que tais problemas sejam ainda mais importantes, já que haveria excesso do produto do gene transferido. Há também outros riscos ainda não conhecidos, específicos para cada tipo de gene. Em vista disso, debates sobre o doping genético devem ser iniciados no meio acadêmico e esportivo, para que sejam estudadas medidas de prevenção, controle e detecção do doping genético, evitando assim futuros problemas de uso indevido dessa promissora modalidade terapêutica.
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW During the past few years novel gene-based approaches emerged attempting to treat chronic pain experimentally in animal models. This review will discuss some of the most recent developments in this area with special emphasis on vector-mediated targeted transfer of DNA at the spinal level. RECENT FINDINGS Local overexpression of precursors of opioid peptides, mainly at the spinal level, induces antihyperalgesic effects in various animal models of persistent pain. Different techniques enabling the in vivo transfer of these precursors have been described. Virus-derived vectors appear as potent systems, providing targeted and sustained overproduction of opioid peptides. Interestingly, overexpression of proenkephalin A in primary sensory neurones induced antinociceptive effects in persistent pain of inflammatory, neuropathic and cancerous origins. Targeted overproduction of many other proteins may be relevant to the relief of ongoing pain. For instance, local overproduction of brain derived neurotrophic factor in the spinal cord has been reported to treat neuropathic pain induced by chronic constrictive injury of the sciatic nerve. SUMMARY Gene-based techniques may contribute to the search for a better management of chronic pain. In this respect, tempting data were obtained in animal models of persistent pain using viral vector-mediated overproduction of opioid peptides and neurotrophins. Gene-based protocols targeting some molecules involved in pain induction and perpetuation also raise the interesting possibility of blocking the development of chronic pain, rather than relieving it. Apart from the 'gene therapy' of chronic pain, the clinical application of which still remains to be established, these techniques might help in evaluating the potential interest of some recently identified molecules involved in pain transduction mechanisms or sensory nerve sensitization. They might finally lead to the development of new classical pharmacological tools.
Collapse
Affiliation(s)
- Michel Pohl
- Pitié-Salpêtrière Faculty of Medicine, INSERM E 0331, Paris, France.
| | | |
Collapse
|
15
|
Goss JR, Goins WF, Glorioso JC. Gene therapy applications for the treatment of neuropathic pain. Expert Rev Neurother 2007; 7:487-506. [PMID: 17492900 DOI: 10.1586/14737175.7.5.487] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neuropathic pain is notoriously difficult to treat; currently available pharmaceutical drugs result in moderate analgesia in approximately a third of patients. As our understanding of the biological processes involved in the establishment and maintenance of neuropathic pain increases, so does the development of novel treatment options. Significant advancements have been made in the past few years in gene transfer, a very powerful potential therapy that can be used to directly target affected areas of the neuraxis or body tissues involved in neuropathic pain. Candidate gene products include directly analgesic proteins as well as proteins that interfere with pain-associated biochemical changes in nerve or other tissues underlying the disease process.
Collapse
Affiliation(s)
- James R Goss
- University of Pittsburgh, Molecular Genetics & Biochemistry, Pittsburgh, PA 15219, USA.
| | | | | |
Collapse
|
16
|
Storek B, Harder NM, Banck MS, Wang C, McCarty DM, Janssen WGM, Morrison JH, Walsh CE, Beutler AS. Intrathecal long-term gene expression by self-complementary adeno-associated virus type 1 suitable for chronic pain studies in rats. Mol Pain 2006; 2:4. [PMID: 16445862 PMCID: PMC1373607 DOI: 10.1186/1744-8069-2-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Accepted: 01/30/2006] [Indexed: 11/20/2022] Open
Abstract
Background Intrathecal (IT) gene transfer is an attractive approach for targeting spinal mechanisms of nociception but the duration of gene expression achieved by reported methods is short (up to two weeks) impairing their utility in the chronic pain setting. The overall goal of this study was to develop IT gene transfer yielding true long-term transgene expression defined as ≥ 3 mo following a single vector administration. We defined "IT" administration as atraumatic injection into the lumbar cerebrospinal fluid (CSF) modeling a lumbar puncture. Our studies focused on recombinant adeno-associated virus (rAAV), one of the most promising vector types for clinical use. Results Conventional single stranded rAAV2 vectors performed poorly after IT delivery in rats. Pseudotyping of rAAV with capsids of serotypes 1, 3, and 5 was tested alone or in combination with a modification of the inverted terminal repeat. The former alters vector tropism and the latter allows packaging of self-complementary rAAV (sc-rAAV) vectors. Combining both types of modification led to the identification of sc-rAAV2/l as a vector that performed superiorly in the IT space. IT delivery of 3 × 10e9 sc-rAAV2/l particles per animal led to stable expression of enhanced green fluorescent protein (EGFP) for ≥ 3 mo detectable by Western blotting, quantitative PCR, and in a blinded study by confocal microscopy. Expression was strongest in the cauda equina and the lower sections of the spinal cord and only minimal in the forebrain. Microscopic examination of the SC fixed in situ with intact nerve roots and meninges revealed strong EGFP fluorescence in the nerve roots. Conclusion sc-rAAVl mediates stable IT transgene expression for ≥ 3 mo. Our findings support the underlying hypothesis that IT target cells for gene transfer lack the machinery for efficient conversion of the single-stranded rAAV genome into double-stranded DNA and favor uptake of serotype 1 vectors over 2. Experiments presented here will provide a rational basis for utilizing IT rAAV gene transfer in basic and translational studies on chronic pain.
Collapse
Affiliation(s)
- Benjamin Storek
- Department of Medicine (Hematology/Oncology), Mount Sinai School of Medicine, New York, NY, USA
- Department of Neurosciences, Mount Sinai School of Medicine, New York, NY, USA
| | - Nina M Harder
- Department of Medicine (Hematology/Oncology), Mount Sinai School of Medicine, New York, NY, USA
| | - Michaela S Banck
- Department of Medicine (Hematology/Oncology), Mount Sinai School of Medicine, New York, NY, USA
| | - Cheng Wang
- Department of Medicine (Hematology/Oncology), Mount Sinai School of Medicine, New York, NY, USA
| | - Douglas M McCarty
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC, USA
| | - William GM Janssen
- Department of Neurosciences, Mount Sinai School of Medicine, New York, NY, USA
| | - John H Morrison
- Department of Neurosciences, Mount Sinai School of Medicine, New York, NY, USA
| | - Christopher E Walsh
- Department of Medicine (Hematology/Oncology), Mount Sinai School of Medicine, New York, NY, USA
| | - Andreas S Beutler
- Department of Medicine (Hematology/Oncology), Mount Sinai School of Medicine, New York, NY, USA
| |
Collapse
|
17
|
Liu GS, Liu LF, Lin CJ, Tseng JC, Chuang MJ, Lam HC, Lee JK, Yang LC, Chan JHY, Howng SL, Tai MH. Gene transfer of pro-opiomelanocortin prohormone suppressed the growth and metastasis of melanoma: involvement of alpha-melanocyte-stimulating hormone-mediated inhibition of the nuclear factor kappaB/cyclooxygenase-2 pathway. Mol Pharmacol 2005; 69:440-51. [PMID: 16269535 DOI: 10.1124/mol.105.015404] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Pro-opiomelanocortin (POMC) is a prohormone of various neuropeptides, including corticotropin, alpha-melanocyte-stimulating hormone (alpha-MSH), and beta-endorphin (beta-EP). POMC neuropeptides are potent inflammation inhibitors and immunosuppressants and may exert opposite influences during tumorigenesis. However, the role of POMC expression in carcinogenesis remains elusive. We evaluated the antineoplastic potential of POMC gene delivery in a syngenic B16-F10 melanoma model. Adenovirus-mediated POMC gene delivery in B16-F10 cells increased the release of POMC neuropeptides in cultured media, which differentially regulated the secretion of pro- and anti-inflammatory cytokines in lymphocytes. POMC gene transfer significantly reduced the anchorage-independent growth of melanoma cells. Moreover, pre- or post-treatment with POMC gene delivery effectively retarded the melanoma growth in mice. Intravenous injection of POMC-transduced B16-F10 cells resulted in reduced foci formation in lung by 60 to 70% of control. The reduced metastasis of POMC-transduced B16-F10 cells could be attributed to their attenuated migratory and adhesive capabilities. POMC gene delivery reduced the cyclooxygenase-2 (COX-2) expression and prostaglandin (PG) E(2) synthesis in melanoma cells and tumor tissues. In addition, application of NS-398, a selective COX-2 inhibitor, mimicked the antineoplastic functions of POMC gene transfer in melanoma. The POMC-mediated COX-2 down-regulation was correlated with its inhibition of nuclear factor kappaB (NFkappaB) activities. Exogenous supply of alpha-MSH inhibited NFkappaB activities, whereas application of the alpha-MSH antagonist growth hormone-releasing peptide-6 (GHRP-6) abolished the POMC-induced inhibition of NFkappaB activities and melanoma growth in mice. In summary, POMC gene delivery suppresses melanoma via alpha-MSH-induced inhibition of NFkappaB/COX-2 pathway, thereby constituting a novel therapy for melanoma.
Collapse
Affiliation(s)
- Guei-Sheung Liu
- Graduate Institute of Medicine, Kaohsiung Medical University, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Mir LM, Moller PH, André F, Gehl J. Electric pulse-mediated gene delivery to various animal tissues. ADVANCES IN GENETICS 2005; 54:83-114. [PMID: 16096009 DOI: 10.1016/s0065-2660(05)54005-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Electroporation designates the use of electric pulses to transiently permeabilize the cell membrane. It has been shown that DNA can be transferred to cells through a combined effect of electric pulses causing (1) permeabilization of the cell membrane and (2) an electrophoretic effect on DNA, leading the polyanionic molecule to move toward or across the destabilized membrane. This process is now referred to as DNA electrotransfer or electro gene transfer (EGT). Several studies have shown that EGT can be highly efficient, with low variability both in vitro and in vivo. Furthermore, the area transfected is restricted by the placement of the electrodes, and is thus highly controllable. This has led to an increasing use of the technology to transfer reporter or therapeutic genes to various tissues, as evidenced from the large amount of data accumulated on this new approach for non-viral gene therapy, termed electrogenetherapy (EGT as well). By transfecting cells with a long lifetime, such as muscle fibers, a very long-term expression of genes can be obtained. A great variety of tissues have been transfected successfully, from muscle as the most extensively used, to both soft (e.g., spleen) and hard tissue (e.g., cartilage). It has been shown that therapeutic levels of systemically circulating proteins can be obtained, opening possibilities for using EGT therapeutically. This chapter describes the various aspects of in vivo gene delivery by means of electric pulses, from important issues in methodology to updated results concerning the electrotransfer of reporter and therapeutic genes to different tissues.
Collapse
Affiliation(s)
- Lluis M Mir
- Laboratory of Vectorology and Gene Transfer, UMR 8121 CNRS Institut Gustave-Roussy, F-94805 Villejuif Cédex, France
| | | | | | | |
Collapse
|
19
|
André F, Mir LM. DNA electrotransfer: its principles and an updated review of its therapeutic applications. Gene Ther 2004; 11 Suppl 1:S33-42. [PMID: 15454955 DOI: 10.1038/sj.gt.3302367] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The use of electric pulses to transfect all types of cells is well known and regularly used in vitro for bacteria and eukaryotic cells transformation. Electric pulses can also be delivered in vivo either transcutaneously or with electrodes in direct contact with the tissues. After injection of naked DNA in a tissue, appropriate local electric pulses can result in a very high expression of the transferred genes. This manuscript describes the evolution in the concepts and the various optimization steps that have led to the use of combinations of pulses that fit with the known roles of the electric pulses in DNA electrotransfer, namely cell electropermeabilization and DNA electrophoresis. A summary of the main applications published until now is also reported, restricted to the in vivo preclinical trials using therapeutic genes.
Collapse
Affiliation(s)
- F André
- Laboratory of Vectorology and Gene Transfer, UMR 8121 CNRS - Institut Gustave-Roussy, Villejuif Cedex, France
| | | |
Collapse
|
20
|
Otani M, Yoshida M, Iwashita H, Kawano Y, Miyamae K, Inadome A, Nishi T, Ueda S. THIS ARTICLE HAS BEEN RETRACTED Electroporation-mediated muscarinic M3 receptor gene transfer into rat urinary bladder. Int J Urol 2004; 11:1001-8. [PMID: 15509205 DOI: 10.1111/j.1442-2042.2004.00924.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Muscarinic M3 (M3) receptor has been recognized as a major muscarinic receptor for smooth muscle contractions of the urinary bladder. Under the hypothesis that overexpression of M3 receptor in the urinary bladder would enhance urinary bladder contractions, we have transferred the M3 receptor gene into rat bladders using electroporation (EP) and evaluated the functional expression of the transferred gene. METHODS Plasmids expressing luciferase, a green fluorescence protein and M3 receptor were injected into the rat bladder and square-wave electric pulses were immediately applied. Two days after gene transfer, we analyzed gene expression. Immunohistochemical staining was performed and the contractile responses from isolated bladder strips, which were induced KCl, carbachol and electrical field stimulation (EFS), were evaluated. RESULTS The optimal conditions of electroporation were 8 pulses, 45 voltages, 50 milliseconds/pulses and 1 Hz. Under these conditions, luciferase gene expression was enhanced approximately 300-fold, compared to an injection of DNA only. Regarding immunohistochemistry with an anti-M3 receptor, an increase in immunoactivity was observed in the M3 receptor gene transferred rat bladder, compared to the bladder of the control rat. In rats with the transferred M3 receptor gene, carbachol- and EFS-induced maximum contractile responses of bladder smooth muscle strips significantly increased. CONCLUSIONS These findings suggest that an in vivo EP procedure is an useful method for gene transfer into the bladder and that an overexpression of M3 receptor in the rat bladder enhances bladder contractility. This technique may become a new treatment modality for detrusor underactivity.
Collapse
Affiliation(s)
- Masayuki Otani
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Wu CM, Lin MW, Cheng JT, Wang YM, Huang YW, Sun WZ, Lin CR. Regulated, electroporation-mediated delivery of pro-opiomelanocortin gene suppresses chronic constriction injury-induced neuropathic pain in rats. Gene Ther 2004; 11:933-40. [PMID: 15116065 DOI: 10.1038/sj.gt.3302244] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We previously reported that intrathecal pro-opiomelanocortin gene electroporation could reduce pain sensitivity induced by chronic constriction injury (CCI) of the sciatic nerve. For optimal use of antinociceptive gene therapy, it might be important to control the expression of the transfected gene extrinsically. For this purpose, a doxycycline-controlled transrepressor system composed of two plasmids coding, respectively, for pro-opiomelanocortin gene (pTRE2-POMC) and the silencer (pTel-off) was employed. The regulation of beta-endorphin expression was first assessed in spinal neuronal culture, then we electrotranfected this plasmid into the spinal cord of mononeuropathic rats and evaluated the analgesic potential of this therapy in vivo by thermal and mechanical withdrawal latency. Intraperitoneal injections of various doses of doxycycline were made to elucidate the possible exogenous downregulation of transfected beta-endorphin gene expression in vivo. The levels of beta-endorphin were analyzed by intrathecal microdialysis and radioimmunoassay. Intrathecal pTRE2-POMC/pTel-off electroporation elevated spinal beta-endorphin levels, as manifested in a significantly elevated pain threshold for chronic constriction injury limbs. Intraperitoneal doxycycline decreased the antinociceptive effect and spinal beta-endorphin levels in a dose-dependent manner. We concluded that intrathecal pTRE2-POMC/pTel-off electroporation alleviates CCI-induced limb pain, and can be controlled by intraperitoneal doxycycline administration.
Collapse
Affiliation(s)
- C-M Wu
- Department of Biological Sciences, National Sun Yat-Sen University, Taiwan
| | | | | | | | | | | | | |
Collapse
|
22
|
Meunier A, Braz J, Cesselin F, Hamon M, Pohl M. Inflammation et douleur : thérapie génique expérimentale. Med Sci (Paris) 2004; 20:325-30. [PMID: 15067578 DOI: 10.1051/medsci/2004203325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Chronic pain is frequently associated with profound alterations of neuronal systems involved in pain processing and should be considered as a real disease state of the nervous system. Unfortunately, some forms of chronic pain remain difficult to be satisfactorily treated. In the search for new therapeutic strategies, the gene-based approaches are of potential interest as they offer the possibility to introduce a therapeutic protein into some relevant structures and to drive its continuous production in the near vicinity of targeted cells. Recently, these techniques have been experimented in several animal models of chronic pain, showing that transfer at the spinal level of some genes, in particular those of opioid precursors proopiomelanocortin or proenkephalin A, leading to the overproduction of products that they encode, attenuated persistent pain of both inflammatory and neuropathic origin. Thus, in polyarthritic rat, a model of chronic inflammatory pain, we demonstrated that herpes simplex virus vector mediated overexpression of proenkephalin A in primary sensory neurons at the lumbar level elicited both antihyperalgesic and anti-inflammatory activities. Apart from opioids, numerous other molecules involved in pain processing are of potential therapeutic interest for gene-based protocols. For instance, targeting some molecules involved in pain induction and perpetuation, such as proinflammatory cytokines, raises an interesting possibility to block the "development" of pain. The clinical application of these approaches remains to be established, and, presently, one of the main problems to be solved is the innocuity of virus-derived vectors. However, the experimental use of gene-based techniques might be particularly useful for the evaluation of the therapeutic interest of some recently identified molecules involved in pain processing and might finally lead to the development of new "classical" pharmacological tools.
Collapse
Affiliation(s)
- Alice Meunier
- Inserm E0331, Inserm U.288, Douleurs et stress, Faculté de Médecine Pitié-Salpêtrière, 91, boulevard de l'Hôpital, 75634 Paris Cedex 13, France
| | | | | | | | | |
Collapse
|
23
|
|
24
|
Chuang IC, Jhao CM, Yang CH, Chang HC, Wang CW, Lu CY, Chang YJ, Lin SH, Huang PL, Yang LC. Intramuscular electroporation with the pro-opiomelanocortin gene in rat adjuvant arthritis. Arthritis Res Ther 2003; 6:R7-R14. [PMID: 14979933 PMCID: PMC400409 DOI: 10.1186/ar1014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Revised: 09/18/2003] [Accepted: 09/30/2003] [Indexed: 11/10/2022] Open
Abstract
Endogenous opioid peptides have an essential role in the intrinsic modulation and control of inflammatory pain, which could be therapeutically useful. In this study, we established a muscular electroporation method for the gene transfer of pro-opiomelanocortin (POMC) in vivo and investigated its effect on inflammatory pain in a rat model of rheumatoid arthritis. The gene encoding human POMC was inserted into a modified pCMV plasmid, and 0-200 microg of the plasmid-POMC DNA construct was transferred into the tibialis anterior muscle of rats treated with complete Freund's adjuvant (CFA) with or without POMC gene transfer by the electroporation method. The safety and efficiency of the gene transfer was assessed with the following parameters: thermal hyperalgesia, serum adrenocorticotropic hormone (ACTH) and endorphin levels, paw swelling and muscle endorphin levels at 1, 2 and 3 weeks after electroporation. Serum ACTH and endorphin levels of the group into which the gene encoding POMC had been transferred were increased to about 13-14-fold those of the normal control. These levels peaked 1 week after electroporation and significantly decreased 2 weeks after electroporation. Rats that had received the gene encoding POMC had less thermal hypersensitivity and paw swelling than the non-gene-transferred group at days 3, 5 and 7 after injection with CFA. Our promising results showed that transfer of the gene encoding POMC by electroporation is a new and effective method for its expression in vivo, and the analgesic effects of POMC cDNA with electroporation in a rat model of rheumatoid arthritis are reversed by naloxone.
Collapse
Affiliation(s)
- I-Chuan Chuang
- Gene Therapy Laboratory, Tajen Institute of Technology, Pingtung, 907, Taiwan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Stoykov NS, Kuiken TA, Lowery MM, Taflove A. Finite-element time-domain algorithms for modeling linear Debye and Lorentz dielectric dispersions at low frequencies. IEEE Trans Biomed Eng 2003; 50:1100-7. [PMID: 12943277 DOI: 10.1109/tbme.2003.816083] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We present what we believe to be the first algorithms that use a simple scalar-potential formulation to model linear Debye and Lorentz dielectric dispersions at low frequencies in the context of finite-element time-domain (FETD) numerical solutions of electric potential. The new algorithms, which permit treatment of multiple-pole dielectric relaxations, are based on the auxiliary differential equation method and are unconditionally stable. We validate the algorithms by comparison with the results of a previously reported method based on the Fourier transform. The new algorithms should be useful in calculating the transient response of biological materials subject to impulsive excitation. Potential applications include FETD modeling of electromyography, functional electrical stimulation, defibrillation, and effects of lightning and impulsive electric shock.
Collapse
|
26
|
Garrity-Moses ME, Liu JK, Boulis NM. Molecular biology and gene therapy in the treatment of chronic pain. Neurosurg Clin N Am 2003; 14:419-35. [PMID: 14567143 DOI: 10.1016/s1042-3680(03)00008-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Technologic advancements have made cell type-specific targeting, expression control, and safe and stable gene transfer possible. Animal research has provided increasing experience with gene transfer to the nervous system and sensory neurons in particular. Gene-based neuromodultion can be achieved through neuronal delivery of transgenes capable of altering synaptic function. Alternatively, ex vivo gene transfer can be used to create cell lines capable of secreting analgesic neurepeptides. Translatation of these grafts and direct gene-based neuromoduation can be applied to the control of pain and the root causes of pain. These approaches combine anatomic and pharmacologic specificity. As the technology continues to improve, clinical application of cellular and molecular pain control is likely.
Collapse
Affiliation(s)
- Mary E Garrity-Moses
- Department of Neurosurgery, Room S31, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | |
Collapse
|
27
|
Lin CR, Yang LC, You HL, Lee CT, Tai MH, Tan PH, Lin MW, Cheng JT. Antinociceptive potentiation and attenuation of tolerance by intrathecal electric stimulation in rats. Anesth Analg 2003; 96:1711-1716. [PMID: 12761002 DOI: 10.1213/01.ane.0000061471.11925.73] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
UNLABELLED We tested whether intrathecal electric stimulation would reduce the tolerance to chronic morphine use and the severity of precipitated morphine withdrawal. Rats received intrathecal electrode catheter implantation and a continuous intrathecal infusion of morphine (2 nmol/h) or saline for 7 days. Intrathecal electric stimulations (0, 20, or 200 V) were performed once daily during the same period. Daily tail-flick and intrathecal morphine challenge tests were performed to assess the effect of intrathecal electric stimulation on antinociception and tolerance to morphine. Naloxone withdrawal (2 mg/kg) was performed to assess morphine dependence, and changes in spinal neurotransmitters were monitored by microdialysis. The antinociceptive effect of intrathecal morphine was increased by 200 V of electric stimulation. The magnitude of tolerance was decreased in the rats receiving the 2 nmol/h infusion with 200 V of intrathecal electric stimulation compared with the control group (morphine 2 nmol/h alone) (AD(50), 13.6 vs 124.7 nmol). The severity of naloxone-induced withdrawal was less in the rats receiving 200 V of stimulation. Intrathecal stimulation thus enhances analgesia and attenuates naloxone-induced withdrawal symptoms in rats receiving chronic intrathecal morphine infusion. Increases in spinal glycine release may be the underlying mechanism. This method may merit further investigation in the context of the long-term use of intrathecal opioids for controlling chronic pain. IMPLICATIONS Control of chronic pain is a major health problem. We show here that direct electrical stimulation of the spinal cord in rats enhances analgesia and attenuates naloxone-induced withdrawal symptoms. This may warrant further investigation in the context of long-term use of intrathecal opioids for controlling chronic pain.
Collapse
Affiliation(s)
- Chung-Ren Lin
- *Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan; Departments of †Anesthesiology and ‡Nephrology, Kaohsiung Chung Gang Memorial Hospital, Kaohsiung, Taiwan; and §Department of Medical Research, Kaohsiung Veteran General Hospital, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Gene therapy has been applied in a variety of experimental models of autoimmunity with some success. In this article, we outline recent developments in gene therapy vectors, discuss advantages and disadvantages of each, and highlight their recent applications in autoimmune models. We also consider progress in vector targeting and components for regulating transgene expression, which will both improve gene therapy safety and empower gene therapy to fullfil its potential as a therapeutic modality. In conclusion, we consider candidate vectors that satisfy requirements for application in the principal therapeutic strategies in which gene therapy will be applied to autoimmune conditions.
Collapse
Affiliation(s)
- D J Gould
- 1Bone & Joint Research Unit, Barts & The London, Queen Mary's Medical School, University of London, London, UK
| | | |
Collapse
|
29
|
Cheng HYM, Penninger JM. When the DREAM is gone: from basic science to future prospectives in pain management and beyond. Expert Opin Ther Targets 2003; 7:249-63. [PMID: 12667101 DOI: 10.1517/14728222.7.2.249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
DREAM (downstream regulatory element antagonistic modulator) was identified as a novel calcium-binding protein with pleiotropic functions in vitro that are as varied as that of a transcription factor, a binding partner for presenilins, and a modulator of potassium channels. This review will discuss the findings that have implicated DREAM in its various roles. As a transcriptional repressor, DREAM may control the expression of the endogenous opioid gene prodynorphin amongst others, and itself is exquisitely regulated by second messenger molecules, protein kinases and other transcription factors. Recent genetic evidence has revealed a physiological role for DREAM in pain modulation. The interplay between DREAM and prodynorphin is discussed in light of our current understanding of this Janus-like opioid gene. The potential for the involvement of DREAM in other processes beyond pain modulation is considered at the end of this review.
Collapse
Affiliation(s)
- Hai-Ying M Cheng
- University Health Network/Ontario Cancer Institute, Department of Medical Biophysics, University of Toronto, Ontario, Canada.
| | | |
Collapse
|