1
|
Graveline R, Haida M, Dumont C, Poulin D, Poitout-Belissent F, Samadfam R, Kronenberg S, Regenass-Lechner F, Prell R, Piche MS. Development of a nonhuman primate challenge model to evaluate CD8 + T cell responses to an adenovirus-based vaccine expressing SIV proteins upon repeat-dose treatment with checkpoint inhibitors. MAbs 2021; 14:1979447. [PMID: 34923919 PMCID: PMC8726661 DOI: 10.1080/19420862.2021.1979447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Targeting immune checkpoint receptors expressed in the T cell synapse induces active and long-lasting antitumor immunity in preclinical tumor models and oncology patients. However, traditional nonhuman primate (NHP) studies in healthy animals have thus far demonstrated little to no pharmacological activity or toxicity for checkpoint inhibitors (CPIs), likely due to a quiescent immune system. We developed a NHP vaccine challenge model in Mauritius cynomolgus monkey (MCMs) that elicits a strong CD8+ T cell response to assess both pharmacology and safety within the same animal. MHC I-genotyped MCMs were immunized with three replication incompetent adenovirus serotype 5 (Adv5) encoding Gag, Nef and Pol simian immunodeficiency virus (SIV) proteins administered 4 weeks apart. Immunized animals received the anti-PD-L1 atezolizumab or an immune checkpoint-targeting bispecific antibody (mAbX) in early development. After a single immunization, Adv5-SIVs induced T-cell activation as assessed by the expression of several co-stimulatory and co-inhibitory molecules, proliferation, and antigen-specific T-cell response as measured by a Nef-dependent interferon-γ ELIspot and tetramer analysis. Administration of atezolizumab increased the number of Ki67+ CD8+ T cells, CD8+ T cells co-expressing TIM3 and LAG3 and the number of CD4+ T cells co-expressing 4–1BB, BTLA, and TIM3 two weeks after vaccination. Both atezolizumab and mAbX extended the cytolytic activity of the SIV antigen-specific CD8+ T cell up to 8 weeks. Taken together, this vaccine challenge model allowed the combined study of pharmacology and safety parameters for a new immunomodulatory protein-based therapeutic targeting CD8+ T cells in an NHP model.
Collapse
Affiliation(s)
| | - Morad Haida
- Immunology, Charles River Laboratories, Senneville, Canada
| | | | - Dominic Poulin
- Immunology, Charles River Laboratories, Senneville, Canada
| | | | - Rana Samadfam
- Immunology, Charles River Laboratories, Senneville, Canada
| | - Sven Kronenberg
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center, Basel, Switzerland
| | - Franziska Regenass-Lechner
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center, Basel, Switzerland
| | - Rodney Prell
- Safety Assessment, Development Sciences, Genentech, South San Francisco, CA, USA
| | | |
Collapse
|
2
|
McIntosh A, Sverdlov O, Yu L, Kaufmann P. Clinical Design and Analysis Strategies for the Development of Gene Therapies: Considerations for Quantitative Drug Development in the Age of Genetic Medicine. Clin Pharmacol Ther 2021; 110:1207-1215. [PMID: 33666225 DOI: 10.1002/cpt.2224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/01/2021] [Indexed: 12/19/2022]
Abstract
Cell and gene therapies have shown enormous promise across a range of diseases in recent years. Numerous adoptive cell therapy modalities as well as systemic and direct-to-target tissue gene transfer administrations are currently in clinical development. The clinical trial design, development, reporting, and analysis of novel cell and gene therapies can differ significantly from established practices for small molecule drugs and biologics. Here, we discuss important quantitative considerations and key competencies for drug developers in preclinical requirements, trial design, and lifecycle planning for gene therapies. We argue that the unique development path of gene therapies requires practicing quantitative drug developers-statisticians, pharmacometricians, pharmacokineticists, epidemiologists, and medical and translational science leads-to exercise active collaboration and cross-functional learning across development stages.
Collapse
Affiliation(s)
| | | | - Li Yu
- Novartis Gene Therapies, Bannockburn, Illinois, USA
| | | |
Collapse
|
3
|
Li M, Song K, Huang X, Fu S, Zeng Q. GDF‑15 prevents LPS and D‑galactosamine‑induced inflammation and acute liver injury in mice. Int J Mol Med 2018; 42:1756-1764. [PMID: 29956733 DOI: 10.3892/ijmm.2018.3747] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 06/22/2018] [Indexed: 11/06/2022] Open
Abstract
Growth differentiation factor‑15 (GDF‑15) is a transforming growth factor (TGF)‑β superfamily member with a poorly characterized biological activity, speculated to be implicated in several diseases. The present study aimed to determine whether GDF‑15 participates in sepsis‑induced acute liver injury in mice. Lipopolysaccharide (LPS) and D‑galactosamine (D‑GalN) were administered to mice to induce acute liver injury. Survival of mice, histological changes in liver tissue, and levels of inflammatory biomarkers in serum and liver tissue were evaluated following treatment with GDF‑15. The underlying mechanism was investigated by western blotting, ELISA, flow cytometry, and reverse transcription‑quantitative polymerase chain reaction using Kupffer cells. The results demonstrated that GDF‑15 prevented LPS/D‑GalN‑induced death, increase in inflammatory cell infiltration and serum alanine aminotransferase and aspartate aminotransferase activities. In addition, GDF‑15 treatment reduced the production of hepatic malondialdehyde and myeloperoxidase, and attenuated the increase of interleukin (IL)‑6, tumor necrosis factor (TNF)‑α, and IL‑1β expression in serum and liver tissue, accompanied by inducible nitric oxide synthase (iNOS) inactivation in the liver. Similar changes in the expression of inflammatory cytokines, IL‑6, TNF‑α and IL‑1β, and iNOS activation were observed in the Kupffer cells. Further mechanistic experiments revealed that GDF‑15 effectively protected against LPS‑induced nuclear factor (NF)‑κB pathway activation by regulating TGFβ‑activated kinase 1 (TAK1) phosphorylation in Kupffer cells. In conclusion, GDF‑15 reduced the activation of pro‑inflammatory factors, and prevented LPS‑induced liver injury, most likely by disrupting TAK1 phosphorylation, and consequently inhibiting the activation of the NF‑κB pathway in the liver.
Collapse
Affiliation(s)
- Min Li
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Kui Song
- Department of Hematology, The First Affiliated Hospital of Jishou University, Jishou, Hunan 416000, P.R. China
| | - Xiaowen Huang
- Department of Pediatrics, Boai Hospital of Zhongshan City, Zhongshan, Guangdong 528400, P.R. China
| | - Simao Fu
- Department of Pediatrics, Boai Hospital of Zhongshan City, Zhongshan, Guangdong 528400, P.R. China
| | - Qiyi Zeng
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
4
|
Neuroscience Research Using Non-human Primate Models and Genome Editing. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-3-319-60192-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
5
|
Hwa CZR, Tsai SP, Yee JL, Van Rompay KK, Roberts JA. Evidence of simian retrovirus type D by polymerase chain reaction. J Med Primatol 2017; 46:79-86. [PMID: 28370081 DOI: 10.1111/jmp.12266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2017] [Indexed: 11/30/2022]
Abstract
BACKGROUND Over the past few years, there have been reports of finding Simian retrovirus type D (SRV) in macaque colonies where some animals were characterized as antibody positive but virus negative raising questions about how SRV was transmitted or whether there is a variant strain detected by antibody but not polymerase chain reaction (PCR) in current use. METHODS We developed a three-round nested PCR assay using degenerate primers targeting the pol gene to detect for SRV serotypes 1-5 and applied this newly validated PCR assay to test macaque DNA samples collected in China from 2010 to 2015. RESULTS Using the nested PCR assay validated in this study, we found 0.15% of the samples archived on FTA® cards were positive. CONCLUSIONS The source of SRV infection identified within domestic colonies might have originated from imported macaques. The multiplex nested PCR assay developed here may supplement the current assays for SRV.
Collapse
Affiliation(s)
- Christian Z R Hwa
- Pathogen Detection Laboratory (PDL), California National Primate Research Center (CNPRC), University of California, Davis, CA, USA
| | - Sheung Pun Tsai
- Pathogen Detection Laboratory (PDL), California National Primate Research Center (CNPRC), University of California, Davis, CA, USA
| | - JoAnn L Yee
- Pathogen Detection Laboratory (PDL), California National Primate Research Center (CNPRC), University of California, Davis, CA, USA
| | - Koen K Van Rompay
- Pathogen Detection Laboratory (PDL), California National Primate Research Center (CNPRC), University of California, Davis, CA, USA
| | - Jeffrey A Roberts
- Pathogen Detection Laboratory (PDL), California National Primate Research Center (CNPRC), University of California, Davis, CA, USA
| |
Collapse
|
6
|
Lu Q, Ganjawala TH, Ivanova E, Cheng JG, Troilo D, Pan ZH. AAV-mediated transduction and targeting of retinal bipolar cells with improved mGluR6 promoters in rodents and primates. Gene Ther 2016; 23:680-9. [PMID: 27115727 PMCID: PMC4863234 DOI: 10.1038/gt.2016.42] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/14/2016] [Accepted: 04/18/2016] [Indexed: 12/20/2022]
Abstract
Adeno-associated virus (AAV) vectors have been a powerful gene delivery vehicle to the retina for basic research and gene therapy. For many of these applications, achieving cell type-specific targeting and high transduction efficiency is desired. Recently, there has been increasing interest in AAV-mediated gene targeting to specific retinal bipolar cell types. A 200-bp enhancer in combination with a basal SV40 promoter has been commonly used to target transgenes into ON-type bipolar cells. In the current study, we searched for additional cis-regulatory elements in the mGluR6 gene for improving AAV-mediated transduction efficiency into retinal bipolar cells. Our results showed that the combination of the endogenous mGluR6 promoter with additional enhancers in the introns of the mGluR6 gene markedly enhanced AAV transduction efficiency as well as made the targeting more selective for rod bipolar cells in mice. Furthermore, the AAV vectors with the improved promoter could target to ON bipolar cells with robust transduction efficiency in the parafovea and the far peripheral retina of marmoset monkeys. The improved mGluR6 promoter constructs could provide a valuable tool for genetic manipulation in rod bipolar cells in mice and facilitate clinical applications for ON bipolar cell-based gene therapies.
Collapse
Affiliation(s)
- Q Lu
- Dept. of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI
| | - TH Ganjawala
- Dept. of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI
| | - E Ivanova
- Burke Medical Research Institute, Weill Medical College of Cornell University, White Plains, NY
| | - JG Cheng
- Neuroscience Center, University of North Carolina, Chapel Hill, NC
| | - D Troilo
- State University of New York, College of Optometry, New York, NY
| | - Z-H Pan
- Dept. of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI
- Dept. of Ophthalmology, Kresge Eye Institute, Wayne State University School of Medicine, Detroit, MI
| |
Collapse
|
7
|
Lyons J, Herring CA, Banerjee A, Simmons AJ, Lau KS. Multiscale analysis of the murine intestine for modeling human diseases. Integr Biol (Camb) 2016; 7:740-57. [PMID: 26040649 DOI: 10.1039/c5ib00030k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
When functioning properly, the intestine is one of the key interfaces between the human body and its environment. It is responsible for extracting nutrients from our food and excreting our waste products. It provides an environment for a host of healthful microbes and serves as a first defense against pathogenic ones. These processes require tight homeostatic controls, which are provided by the interactions of a complex mix of epithelial, stromal, neural and immune cells, as well as the resident microflora. This homeostasis can be disrupted by invasive microbes, genetic lesions, and carcinogens, resulting in diseases such Clostridium difficile infection, inflammatory bowel disease (IBD) and cancer. Enormous strides have been made in understanding how this important organ functions in health and disease using everything from cell culture systems to animal models to human tissue samples. This has resulted in better therapies for all of these diseases, but there is still significant room for improvement. In the United States alone, 14,000 people per year die of C. difficile, up to 1.6 million people suffer from IBD, and more than 50,000 people die every year from colon cancer. Because these and other intestinal diseases arise from complex interactions between the different components of the gut ecosystem, we propose that systems approaches that address this complexity in an integrative manner may eventually lead to improved therapeutics that deliver lasting cures. This review will discuss the use of systems biology for studying intestinal diseases in vivo with particular emphasis on mouse models. Additionally, it will focus on established experimental techniques that have been used to drive this systems-level analysis, and emerging techniques that will push this field forward in the future.
Collapse
Affiliation(s)
- Jesse Lyons
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
8
|
Long-term multilineage engraftment of autologous genome-edited hematopoietic stem cells in nonhuman primates. Blood 2016; 127:2416-26. [PMID: 26980728 DOI: 10.1182/blood-2015-09-672337] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 02/26/2016] [Indexed: 12/27/2022] Open
Abstract
Genome editing in hematopoietic stem and progenitor cells (HSPCs) is a promising novel technology for the treatment of many human diseases. Here, we evaluated whether the disruption of the C-C chemokine receptor 5 (CCR5) locus in pigtailed macaque HSPCs by zinc finger nucleases (ZFNs) was feasible. We show that macaque-specific CCR5 ZFNs efficiently induce CCR5 disruption at levels of up to 64% ex vivo, 40% in vivo early posttransplant, and 3% to 5% in long-term repopulating cells over 6 months following HSPC transplant. These genome-edited HSPCs support multilineage engraftment and generate progeny capable of trafficking to secondary tissues including the gut. Using deep sequencing technology, we show that these ZFNs are highly specific for the CCR5 locus in primary cells. Further, we have adapted our clonal tracking methodology to follow individual CCR5 mutant cells over time in vivo, reinforcing that CCR5 gene-edited HSPCs are capable of long-term engraftment. Together, these data demonstrate that genome-edited HSPCs engraft, and contribute to multilineage repopulation after autologous transplantation in a clinically relevant large animal model, an important step toward the development of stem cell-based genome-editing therapies for HIV and potentially other diseases as well.
Collapse
|
9
|
Kishi N, Sato K, Sasaki E, Okano H. Common marmoset as a new model animal for neuroscience research and genome editing technology. Dev Growth Differ 2014; 56:53-62. [PMID: 24387631 DOI: 10.1111/dgd.12109] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/13/2013] [Accepted: 11/14/2013] [Indexed: 12/11/2022]
Abstract
The common marmoset (Callithrix jacchus) is a small New World primate; it originally comes from the Atlantic coastal forests in northeastern Brazil. It has been attracting much attention in the biomedical research field because of its size, availability, and unique biological characteristics. Its endocrinological and behavioral similarity to humans, comparative ease in handling, and high reproductive efficiency are very advantageous for neuroscience research. Recently, we developed transgenic common marmosets with germline transmission, and this technological breakthrough provides a potential paradigm shift by enabling researchers to investigate complex biological phenomena using genetically-modified non-human primates. In this review, we summarize recent progress in marmoset research, and also discuss a potential application of genome editing tools that should be useful toward the generation of knock-out/knock-in marmoset models.
Collapse
Affiliation(s)
- Noriyuki Kishi
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan; RIKEN-Keio University Joint Research Laboratory, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | | | | | | |
Collapse
|
10
|
Plentz RR, Palagani V, Wiedemann A, Diekmann U, Glage S, Naujok O, Jörns A, Müller T. Islet microarchitecture and glucose transporter expression of the pancreas of the marmoset monkey display similarities to the human. Islets 2012; 4:123-9. [PMID: 22627676 DOI: 10.4161/isl.19254] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The common marmoset New World monkey (Callithrix jacchus), is a primate model with great potential for scientific research, including research on diabetes. However, in opposite to Rhesus and Java monkeys (Macaca mulatta and Macaca fascicularis) little is known about the marmosets islet microarchitecture, glucose transporter and pancreatic marker gene expression. In this work we analyze differences and similarities in size, shape, cellular composition and intra-islet topography between the common marmoset and the human endocrine pancreas. Different sized, circular and a-circular shaped islets of the common marmoset and human display α-cells in the whole islet organ leading to a ribbon-like islet type. The number of islets was significantly higher in the common marmoset compared with humans. However, the area of insulin-producing cells was significantly higher in the human pancreas. Intra-islet distribution pattern of δ- and β-cells was similar in both species. The morphology of the exocrine pancreas regarding acinar and ductal cells was quite similar as confirmed by ultrastructural analysis. Additionally the ultrastructure of secretory granules from α-, δ- and β-cells of human and non-human primate pancreas showed the same characteristics. Molecular analysis showed the presence of endocrine pancreatic marker genes like PMCA2, NCX1, SUR1, KIR6.2, MAFA, NGN3 and PDX1 also expressed in the human. For the first time we could show presence of Glut 5 and 9 transporters in addition to the low abundance transporter Glut2 and the highly expressed Glut1 glucose transporter. We propose that Callithrix jacchus displays a new animal model for diabetes research and regenerative medicine.
Collapse
Affiliation(s)
- Ruben R Plentz
- Department of Gastroenterology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The development of therapeutics is costly, time-consuming and has high attrition rates. Biopharmaceutical medications differ from traditional agents in their discovery, design, structure and formulation. Prior to marketing a drug must show efficacy and acceptable toxicity in both preclinical and clinical trials. Regulatory bodies have a pivotal role in the licensing, naming and marketing of an agent.
Collapse
Affiliation(s)
- M K Mundae
- Addenbrookes Hospital, Cambridge, CB2 2QQ, UK.
| | | |
Collapse
|
12
|
Hohjoh H, Akari H, Fujiwara Y, Tamura Y, Hirai H, Wada K. Molecular cloning and characterization of the common marmoset huntingtin gene. Gene 2008; 432:60-6. [PMID: 19073238 DOI: 10.1016/j.gene.2008.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 11/04/2008] [Accepted: 11/05/2008] [Indexed: 10/21/2022]
Abstract
We report here for the first time the isolation and identification of the common marmoset (Callithrix jacchus) huntingtin (Htt) gene, whose ortholog in humans is known to be related to Huntington's disease (HD). A 9396 nucleotide complementary DNA (cDNA) carrying the putative full-length open reading frame of the marmoset Htt gene was identified, and highly conserved nucleotide and amino acid sequences among primates were observed. Based on this data and using tools evaluated for the detection of the marmoset Htt gene, we have demonstrated gene silencing against the expression of endogenous Htt gene in immortalized common marmoset mononuclear cells by means of RNA interference (RNAi). Taken together, the data presented here may assist us in realizing a non-human primate HD model with the common marmoset.
Collapse
Affiliation(s)
- Hirohiko Hohjoh
- Department of Molecular Genetics, National Institute of Neuroscience, NCNP, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan.
| | | | | | | | | | | |
Collapse
|
13
|
Blagbrough IS, Zara C. Animal models for target diseases in gene therapy--using DNA and siRNA delivery strategies. Pharm Res 2008; 26:1-18. [PMID: 18841450 PMCID: PMC7088656 DOI: 10.1007/s11095-008-9646-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 05/29/2008] [Indexed: 11/29/2022]
Abstract
Nanoparticles, including lipopolyamines leading to lipoplexes, liposomes, and polyplexes are targeted drug carrier systems in the current search for a successful delivery system for polynucleic acids. This review is focused on the impact of gene and siRNA delivery for studies of efficacy, pharmacodynamics, and pharmacokinetics within the setting of the wide variety of in vivo animal models now used. This critical appraisal of the recent literature sets out the different models that are currently being investigated to bridge from studies in cell lines through towards clinical reality. Whilst many scientists will be familiar with rodent (murine, fecine, cricetine, and musteline) models, few probably think of fish as a clinically relevant animal model, but zebrafish, madake, and rainbow trout are all being used. Larger animal models include rabbit, cat, dog, and cow. Pig is used both for the prevention of foot-and-mouth disease and human diseases, sheep is a model for corneal transplantation, and the horse naturally develops arthritis. Non-human primate models (macaque, common marmoset, owl monkey) are used for preclinical gene vector safety and efficacy trials to bridge the gap prior to clinical studies. We aim for the safe development of clinically effective delivery systems for DNA and RNAi technologies.
Collapse
Affiliation(s)
- Ian S Blagbrough
- Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY, UK.
| | | |
Collapse
|
14
|
Ohta S, Ueda Y, Yaguchi M, Matsuzaki Y, Nakamura M, Toyama Y, Tanioka Y, Tamaoki N, Nomura T, Okano H, Kawakami Y, Toda M. Isolation and characterization of dendritic cells from common marmosets for preclinical cell therapy studies. Immunology 2007; 123:566-74. [PMID: 18005037 DOI: 10.1111/j.1365-2567.2007.02727.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Dendritic cells (DCs) have important functions as modulators of immune responses, and their ability to activate T cells is of great value in cancer immunotherapy. The isolation of DCs from the peripheral blood of rhesus and African green monkeys has been reported, but the immune system in the common marmoset remains poorly characterized, although it offers many potential advantages for preclinical studies. In the present study, we devised methods, based on techniques developed for mouse and human DC preparation, for isolating DCs from three major tissue sources in the common marmoset: bone marrow (BM), spleen and peripheral blood. Each set of separated cells was analysed using the cell surface DC-associated markers CD11c, CD80, CD83, CD86 and human leucocyte antigen (HLA)-DR, all of which are antibodies against human antigens, and the cells were further characterized both functionally and morphologically as antigen-presenting cells. BM proved to be an excellent cell source for the isolation of DCs intended for preclinical studies on cell therapy, for which large quantities of cells are required. In the BM-derived CD11c(+) cell population, cells exhibiting the characteristic features of DCs were enriched, with the typical DC morphology and the abilities to undergo endocytosis, to secrete interleukin (IL)-12, and to stimulate Xenogenic T cells. Moreover, BM-derived DCs produced the neurotrophic factor NT-3, which is also found in murine splenic DCs. These results suggest that BM-derived DCs from the common marmoset may be useful for biological analysis and for preclinical studies on cell therapy for central nervous system diseases and cancer.
Collapse
Affiliation(s)
- Shigeki Ohta
- Neuroimmunology Research Group, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Bessis N, Lemeiter D, Laroche L, Fournier C, Huizinga T, Brok H, 't Hart B, Boissier MC. Engraftment of cutaneous fibroblasts within synovial membrane in a nonhuman primate: Short-term results. Joint Bone Spine 2007; 74:48-51. [PMID: 17224293 DOI: 10.1016/j.jbspin.2006.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Accepted: 09/17/2006] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Gene therapy using cells as vectors to achieve secretion of therapeutic proteins may hold promise in the treatment of chronic diseases. Cell-based gene therapy with xenogeneic cells secreting antiinflammatory cytokines (IL-4, IL-13, or IL-1 receptor type II) has been found effective in mice with collagen-induced arthritis (CIA), a model for human rheumatoid arthritis. Autologous cells engineered to produce antiinflammatory cytokines were also effective in the mouse CIA model. In all these experiments, the cells were grafted into the subcutaneous tissue of the back, resulting in systemic treatment. To evaluate the feasibility of cell-based gene therapy confined to the joints, we performed intraarticular injections of autologous cells in a rhesus monkey with CIA, a model more similar to human RA. METHODS We prepared ex vivo cultures of skin fibroblasts from the animal then transfected the cells with a plasmid carrying the lacZ gene. We injected these marker cells into metacarpophalangeal, metatarsophalangeal, and interphalangeal joints. RESULTS Kinetic evaluation of synovial tissue X-gal labeling, which reflected reported gene expression by skin fibroblasts present within the synovium, showed significant labeling by transfected cells up to 6 days after intraarticular injection. Xenogeneic fibroblasts (Chinese hamster ovary cells) injected intraarticularly were also detected within synovial specimens; however, labeling intensity was less marked than with autologous cells. Our findings establish the feasibility of skin fibroblast grafting into the synovium. CONCLUSION This preliminary study opens the door to studies of heterotopic autologous transfected cells for the treatment of CIA in monkeys by direct gene transfer within joints.
Collapse
|
16
|
Adriaansen J, Vervoordeldonk MJ, Vanderbyl S, de Jong G, Tak PP. A novel approach for gene therapy: engraftment of fibroblasts containing the artificial chromosome expression system at the site of inflammation. J Gene Med 2006; 8:63-71. [PMID: 16038012 DOI: 10.1002/jgm.810] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis is characterized by inflammation of the synovial tissue. High systemic doses are necessary to achieve therapeutic levels of anti-rheumatic drugs in the joints. Gene transfer might provide a more efficient delivery system for genes encoding therapeutic proteins. METHODS The artificial chromosome expression system (ACE System) is a new non-integrating, non-viral gene expression system which functions like a natural chromosome. This technology offers advantages over current expression systems because it allows stable and predictable expression of proteins encoded by single or multiple genes over long periods of time. We are developing ex vivo gene therapy using murine artificial chromosomes containing a reporter gene (LacZ and red fluorescent protein (RFP)) for local delivery of genes in rats with adjuvant arthritis (AA). RESULTS The delivery of the intact ACE System into rat fibroblast-like synoviocytes (FLS) and rat skin fibroblasts (RSF) was detected within 24 to 48 h post-transfection. After growing cells under selection, clones expressing LacZ and RFP were identified. Furthermore, we investigated the feasibility of local delivery of a reporter gene to the joints of rats with AA by ex vivo gene therapy. This resulted in engraftment of the injected cells in the synovial tissue microarchitecture and expression of the reporter gene. CONCLUSIONS This work demonstrates the potential feasibility of treating arthritis and other inflammatory diseases using fibroblasts containing the ACE System as a non-viral vector for gene therapy.
Collapse
Affiliation(s)
- Janik Adriaansen
- Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
17
|
Adriaansen J, Vervoordeldonk MJBM, Tak PP. Gene therapy as a therapeutic approach for the treatment of rheumatoid arthritis: innovative vectors and therapeutic genes. Rheumatology (Oxford) 2006; 45:656-68. [PMID: 16510530 DOI: 10.1093/rheumatology/kel047] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In recent years, significant progress has been made in the treatment of rheumatoid arthritis (RA). In addition to conventional therapy, novel biologicals targeting tumour necrosis factor-alpha have successfully entered the clinic. However, the majority of the patients still has some actively inflamed joints and some patients suffer from side-effects associated with the high systemic dosages needed to achieve therapeutic levels in the joints. In addition, due to of the short half-life of these proteins there is a need for continuous, multiple injections of the recombinant protein. An alternative approach might be the use of gene transfer to deliver therapeutic genes locally at the site of inflammation. Several viral and non-viral vectors are being used in animal models of RA. The first gene therapy trials for RA have already entered the clinic. New vectors inducing long-term and regulated gene expression in specific tissue are under development, resulting in more efficient gene transfer, for example by using distinct serotypes of viral vectors such as adeno-associated virus. This review gives an overview of some promising vectors used in RA research. Furthermore, several therapeutic genes are discussed that could be used for gene therapy in RA patients.
Collapse
Affiliation(s)
- J Adriaansen
- Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
18
|
't Hart BA, Bauer J, Brok HPM, Amor S. Non-human primate models of experimental autoimmune encephalomyelitis: Variations on a theme. J Neuroimmunol 2005; 168:1-12. [PMID: 16023737 DOI: 10.1016/j.jneuroim.2005.05.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 05/26/2005] [Accepted: 05/27/2005] [Indexed: 12/31/2022]
Abstract
Despite years of intensive research into multiple sclerosis (MS) scientists have not yet succeeded in developing an absolute therapy for the treatment of this disabling disease of the human central nervous system. The wide immunological gap between inbred rodent strains and the heterogeneous human population is probably the single most important factor that hampers the translation of scientific principles developed in rodents into effective therapies for MS. Because of the closer immunological proximity to humans, non-human primates provide useful experimental models that may help to bridge this gap. Here we review the models of experimental autoimmune encephalomyelitis in rhesus macaques and common marmosets. We will discuss the salient points of the models and suggest how these may represent the spectrum of inflammatory demyelinating diseases of the central nervous system in humans.
Collapse
Affiliation(s)
- Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands.
| | | | | | | |
Collapse
|
19
|
Vierboom MPM, Jonker M, Bontrop RE, 't Hart B. Modeling human arthritic diseases in nonhuman primates. Arthritis Res Ther 2005; 7:145-54. [PMID: 15987497 PMCID: PMC1175046 DOI: 10.1186/ar1773] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Models of rheumatoid arthritis (RA) in laboratory animals are important tools for research into pathogenic mechanisms and the development of effective, safe therapies. Rodent models (rats and mice) have provided important information about the pathogenic mechanisms. However, the evolutionary distance between rodents and humans hampers the translation of scientific principles into effective therapies. The impact of the genetic distance between the species is especially seen with treatments based on biological molecules, which are usually species-specific. The outbred nature and the closer anatomical, genetic, microbiological, physiological, and immunological similarity of nonhuman primates to humans may help to bridge the wide gap between inbred rodent strain models and the heterogeneous RA patient population. Here we review clinical, immunological and pathological aspects of the rhesus monkey model of collagen-induced arthritis, which has emerged as a reproducible model of human RA in nonhuman primates.
Collapse
Affiliation(s)
- Michel P M Vierboom
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands.
| | | | | | | |
Collapse
|
20
|
Vierboom MPM, Zavodny PJ, Chou CC, Tagat JR, Pugliese-Sivo C, Strizki J, Steensma RW, McCombie SW, Celebi-Paul L, Remarque E, Jonker M, Narula SK, Hart B. Inhibition of the development of collagen-induced arthritis in rhesus monkeys by a small molecular weight antagonist of CCR5. ACTA ACUST UNITED AC 2005; 52:627-36. [PMID: 15693002 DOI: 10.1002/art.20850] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Collagen-induced arthritis (CIA) in the rhesus monkey is a nonhuman primate model of rheumatoid arthritis (RA). The close phylogenetic relationship between humans and the rhesus monkey makes this model useful for the preclinical safety and efficacy testing of new therapies that are inactive in animals more distinctly related to humans. In this study, we tested the therapeutic potential of a novel, small molecular weight antagonist of CCR5, SCH-X, in this model. METHODS CIA was induced in 10 rhesus monkeys. The animals were allocated to receive SCH-X or saline as the control (n = 5 in each group). Treatment was initiated on the day of CIA induction and continued for 45 days. Monkeys were monitored before and 63 days after CIA induction for macroscopic signs of clinical arthritis, such as soft-tissue swelling and body weight. Furthermore, markers of inflammation and joint degradation were monitored to follow the disease course. RESULTS Only 2 of 5 animals in the SCH-X-treated group displayed prominent soft-tissue swelling, compared with all 5 saline-treated monkeys. In addition to the suppression of joint inflammation, treatment with SCH-X resulted in a reduction in joint destruction, as demonstrated by lower rates of urinary excretion of collagen crosslinks, with confirmation by histology. Whereas in all saline-treated monkeys, marked erosion of joint cartilage was observed, this was absent in 4 of the 5 SCH-X-treated monkeys. CONCLUSION The systemic effects of treatment with SCH-X were a suppressed acute-phase reaction (reduction in C-reactive protein level) in the 3 treated monkeys with CIA that remained asymptomatic, and an altered antibody response toward type II collagen. The results suggest that the CCR5 antagonist SCH-X might have a strong clinical potential for treatment during periods of active inflammation, as seen in RA.
Collapse
|
21
|
't Hart BA, Amor S, Jonker M. Evaluating the validity of animal models for research into therapies for immune-based disorders. Drug Discov Today 2004; 9:517-24. [PMID: 15183159 DOI: 10.1016/s1359-6446(04)03112-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The last few decades of the 20th century have shown an intensified search for safer and more effective medications against chronic diseases that burden ageing societies of the western world. The impressive development of biotechnological production techniques has greatly facilitated the pharmaceutical development of relatively non-toxic biological molecules. However, despite the huge investments, only a few effective therapies for immune-based diseases have reached the clinic. In this article we use examples from monoclonal antibody trials to discuss the validity and predictive strength of the animal models currently used for the development of effective therapies.
Collapse
MESH Headings
- Adjuvants, Immunologic/therapeutic use
- Animals
- Antibodies, Monoclonal/therapeutic use
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/immunology
- Disease Models, Animal
- Drug Evaluation, Preclinical/methods
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Immune System Diseases/immunology
- Immune System Diseases/therapy
- Immunotherapy/methods
- Multiple Sclerosis/drug therapy
- Multiple Sclerosis/immunology
- Organ Transplantation
Collapse
Affiliation(s)
- Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands.
| | | | | |
Collapse
|
22
|
Hanyecz A, Berlo SE, Szántó S, Broeren CPM, Mikecz K, Glant TT. Achievement of a synergistic adjuvant effect on arthritis induction by activation of innate immunity and forcing the immune response toward the Th1 phenotype. ACTA ACUST UNITED AC 2004; 50:1665-76. [PMID: 15146438 DOI: 10.1002/art.20180] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVE To apply and analyze the mechanisms of action of dimethyldioctadecylammonium bromide (DDA), a powerful adjuvant that does not have the side effects of the conventionally used Freund's adjuvants, in proteoglycan-induced arthritis (PGIA) and collagen-induced arthritis (CIA). METHODS PGIA and CIA were generated using standard immunization protocols with cartilage proteoglycan aggrecan (PG) or human type II collagen (CII) emulsified with Freund's complete adjuvant (CFA), and compared with PGIA and CIA generated using immunization protocols in which the same antigens were used in combination with the adjuvant DDA. Immune responses to immunizing and self PGs and CII, and the incidence, severity, and onset of arthritis were monitored throughout the experiments. In addition, a new, inexpensive, and powerful method of inducing arthritis using crude cartilage extracts is described. RESULTS A significantly reduced onset period and a more severe arthritis were achieved in BALB/c mice immunized with cartilage PGs in DDA. PGs from bovine, ovine, and porcine cartilage, which otherwise have no effect or have only a subarthritogenic effect, and crude extracts of human osteoarthritic cartilage induced a 100% incidence with a very high arthritis score in BALB/c mice. The overall immune responses to either CII or PG were similar in antigen/CFA-immunized and antigen/DDA-immunized animals, but the Th1/Th2 balance shifted significantly toward a Th1 bias in DDA-injected animals with either PGIA or CIA. CONCLUSION DDA, which was first used in autoimmune models, is a potent nonirritant adjuvant, which eliminates all undesired side effects of the Freund's adjuvants. DDA exerts a strong stimulatory effect via the activation of nonspecific (innate) immunity and forces the immune regulation toward Th1 dominance. These lines of evidence also suggest the possibility that seemingly innocuous compounds may exert an adjuvant effect in humans and may create the pathophysiologic basis of autoimmunity in susceptible individuals via the activation/stimulation of innate immunity.
Collapse
Affiliation(s)
- Anita Hanyecz
- Departments of Biochemistry and Orthopedic Surgery, Rush University Medical Center, Cohn Research Building, 1735 West Harrison Street, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
23
|
't Hart BA, Vogels J, Bauer J, Brok HPM, Blezer E. Non-invasive measurement of brain damage in a primate model of multiple sclerosis. Trends Mol Med 2004; 10:85-91. [PMID: 15102362 DOI: 10.1016/j.molmed.2003.12.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Early recognition of whether a product has potential as a new therapy for treating multiple sclerosis (MS) relies upon the quality of the animal models used in the preclinical trials. The promising effects of new treatments in rodent models of experimental autoimmune encephalomyelitis (EAE) have rarely been reproduced in patients suffering from MS. EAE in outbred marmoset monkeys, Callithrix jacchus, is a valid new model, and might provide an experimental link between EAE in rodent models and human MS. Using magnetic resonance imaging techniques similar to those used in patients suffering from MS pathological abnormalities in the brain, white matter of the animal can be visualized and quantified. Moreover, NMR spectroscopy, in combination with pattern recognition, offers an advanced uroscopic technique for the identification of biomarkers of inflammatory demyelination.
Collapse
MESH Headings
- Animals
- Animals, Outbred Strains
- Antigens, CD/immunology
- Biomarkers
- Brain/diagnostic imaging
- Brain/pathology
- CD4-Positive T-Lymphocytes/immunology
- Callithrix
- Chronic Disease
- Demyelinating Diseases/immunology
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/diagnostic imaging
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Genes, MHC Class II/genetics
- Genes, MHC Class II/immunology
- Humans
- Magnetic Resonance Imaging
- Magnetic Resonance Spectroscopy
- Mice
- Multiple Sclerosis/diagnostic imaging
- Multiple Sclerosis/immunology
- Multiple Sclerosis/pathology
- Myelin Basic Protein/immunology
- Myelin Basic Protein/pharmacology
- Myelin Proteins
- Myelin-Associated Glycoprotein/immunology
- Myelin-Associated Glycoprotein/pharmacology
- Myelin-Oligodendrocyte Glycoprotein
- Radiography
- T-Lymphocytes, Cytotoxic/immunology
- Th2 Cells/immunology
Collapse
Affiliation(s)
- Bert A 't Hart
- Department of Biopharmaceutical Analysis, TNO Pharma, 3704 HE Zeist, The Netherlands.
| | | | | | | | | |
Collapse
|