1
|
Bougandoura O, Achour Y, Zaoui A. Electroporation in Cancer Therapy: A Simplified Model Derived from the Hodgkin-Huxley Model. Bioelectricity 2024; 6:181-195. [PMID: 39372085 PMCID: PMC11447485 DOI: 10.1089/bioe.2023.0045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024] Open
Abstract
Cancer remains a global health challenge, necessitating effective treatments with fewer side effects. Traditional methods such as chemotherapy and surgery often have complications. Pulsed electric fields and electroporation have emerged as promising approaches to mitigate these challenges. This study presents a comprehensive overview of electroporation as an innovative tool in cancer therapy, encompassing critical elements such as pulse generators and delivery devices. Furthermore, it introduces a simplified reversible electroporation model grounded in the Hodgkin-Huxley model. This model ensures resting potential stability by regulating ionic currents. When membrane charges reach the electroporation threshold, the model swiftly increases the fraction of open pores, resulting in a rapid rise in electroporation current. Conversely, as the transmembrane potential drops below the threshold, the model gradually reduces the fraction of open pores, leading to a gradual decline in electroporation current, indicating pore resealing. This model contributes to easier modeling and implementation of reversible electroporation dynamics, providing a valuable tool for further exploration of electroporation for cancer therapy.
Collapse
Affiliation(s)
| | - Yahia Achour
- UER-ELT, Ecole Militaire Polytechnique, Algiers, Algeria
| | - Abdelhalim Zaoui
- Department of Electrical Engineering and Industrial Computing, Ecole Nationale Supérieure des Technologies Avancées, Algiers, Algeria
| |
Collapse
|
2
|
Palepšienė R, Muralidharan A, Maciulevičius M, Ruzgys P, Chopra S, Boukany PE, Šatkauskas S. New insights into the mechanism of electrotransfer of small nucleic acids. Bioelectrochemistry 2024; 158:108696. [PMID: 38583283 DOI: 10.1016/j.bioelechem.2024.108696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/09/2024]
Abstract
RNA interference (RNAi) is a powerful and rapidly developing technology that enables precise silencing of genes of interest. However, the clinical development of RNAi is hampered by the limited cellular uptake and stability of the transferred molecules. Electroporation (EP) is an efficient and versatile technique for the transfer of both RNA and DNA. Although the mechanism of electrotransfer of small nucleic acids has been studied previously, too little is known about the potential effects of significantly larger pDNA on this process. Here we present a fundamental study of the mechanism of electrotransfer of oligonucleotides and siRNA that occur independently and simultaneously with pDNA by employing confocal fluorescence microscopy. In contrast to the conditional understanding of the mechanism, we have shown that the electrotransfer of oligonucleotides and siRNA is driven by both electrophoretic forces and diffusion after EP, followed by subsequent entry into the nucleus within 5 min after treatment. The study also revealed that the efficiency of siRNA electrotransfer decreases in response to an increase in pDNA concentration. Overall, the study provides new insights into the mechanism of electrotransfer of small nucleic acids which may have broader implications for the future application of RNAi-based strategies.
Collapse
Affiliation(s)
- Rūta Palepšienė
- Research Institute of Natural Sciences and Technology, Vytautas Magnus University, Universiteto str. 10, Akademija, Kaunas district LT-53361, Lithuania.
| | - Aswin Muralidharan
- Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9 2629 HZ Delft, Netherlands; Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9 2629 HZ Delft, Netherlands.
| | - Martynas Maciulevičius
- Research Institute of Natural Sciences and Technology, Vytautas Magnus University, Universiteto str. 10, Akademija, Kaunas district LT-53361, Lithuania.
| | - Paulius Ruzgys
- Research Institute of Natural Sciences and Technology, Vytautas Magnus University, Universiteto str. 10, Akademija, Kaunas district LT-53361, Lithuania.
| | - Sonam Chopra
- Research Institute of Natural Sciences and Technology, Vytautas Magnus University, Universiteto str. 10, Akademija, Kaunas district LT-53361, Lithuania.
| | - Pouyan E Boukany
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9 2629 HZ Delft, Netherlands.
| | - Saulius Šatkauskas
- Research Institute of Natural Sciences and Technology, Vytautas Magnus University, Universiteto str. 10, Akademija, Kaunas district LT-53361, Lithuania.
| |
Collapse
|
3
|
Švajger U, Kamenšek U. Interleukins and interferons in mesenchymal stromal stem cell-based gene therapy of cancer. Cytokine Growth Factor Rev 2024; 77:76-90. [PMID: 38508954 DOI: 10.1016/j.cytogfr.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
The tumor microenvironment is importantly shaped by various cytokines, where interleukins (ILs) and interferons (IFNs) shape the balance of immune activity within tumor niche and associated lymphoid organs. Their importance in activation and tuning of both innate and adaptive immune responses prompted their use in several clinical trials, albeit with limited therapeutic efficacy and risk of toxicity due to systemic administration. Increasing preclinical evidence suggests that local delivery of ILs and IFNs could significantly increase their effectiveness, while simultaneously attenuate the known side effects and issues related to their biological activity. A prominent way to achieve this is to use cell-based delivery vehicles. For this purpose, mesenchymal stromal stem cells (MSCs) are considered an almost ideal candidate. Namely, MSCs can be obtained in large quantities and from obtainable sources (e.g. umbilical cord or adipose tissue), their ex vivo expansion is relatively straightforward compared to other cell types and they possess very low immunogenicity making them suitable for allogeneic use. Importantly, MSCs have shown an intrinsic capacity to respond to tumor-directed chemotaxis. This review provides a focused and detailed discussion on MSC-based gene therapy using ILs and IFNs, engineering techniques and insights on potential future advancements.
Collapse
Affiliation(s)
- Urban Švajger
- Slovenian Institute for Transfusion Medicine, Department for Therapeutic Services, Šlajmerjeva Ulica 6, Ljubljana SI-1000, Slovenia; Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, Ljubljana SI-1000, Slovenia.
| | - Urška Kamenšek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloška Cesta 2, Ljubljana SI-1000, Slovenia; Biotechnical Faculty, University of Ljubljana, Jamnikarjeva Ulica 101, Ljubljana SI-1000, Slovenia
| |
Collapse
|
4
|
Qian K, Wang Y, Lei Y, Yang Q, Yao C. An experimental and theoretical study on cell swelling for osmotic imbalance induced by electroporation. Bioelectrochemistry 2024; 157:108637. [PMID: 38215652 DOI: 10.1016/j.bioelechem.2023.108637] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/02/2023] [Accepted: 12/28/2023] [Indexed: 01/14/2024]
Abstract
The cellular membrane serves as a pivotal barrier in regulating intra- and extracellular matter exchange. Disruption of this barrier through pulsed electric fields (PEFs) induces the transmembrane transport of ions and molecules, creating a concentration gradient that subsequently results in the imbalance of cellular osmolality. In this study, a multiphysics model was developed to simulate the electromechanical response of cells exposed to microsecond pulsed electric fields (μsPEFs). Within the proposed model, the diffusion coefficient of the cellular membrane for various ions was adjusted based on electropore density. Cellular osmolality was governed and described using Van't Hoff theory, subsequently converted to loop stress to dynamically represent the cell swelling process. Validation of the model was conducted through a hypotonic experiment and simulation at 200 mOsm/kg, revealing a 14.2% increase in the cell's equivalent radius, thereby confirming the feasibility of the cell mechanical model. With the transmembrane transport of ions induced by the applied μsPEF, the hoop stress acting on the cellular membrane reached 179.95 Pa, and the cell equivalent radius increased by 11.0% when the extra-cellular medium was supplied with normal saline. The multiphysics model established in this study accurately predicts the dynamic changes in cell volume resulting from osmotic imbalance induced by PEF action. This model holds theoretical significance, offering valuable references for research on drug delivery and tumor microenvironment modulation.
Collapse
Affiliation(s)
- Kun Qian
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, No.174 Shazhengjie Road, Chongqing 400044, China
| | - Yancheng Wang
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, No.174 Shazhengjie Road, Chongqing 400044, China
| | - Yizhen Lei
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, No.174 Shazhengjie Road, Chongqing 400044, China
| | - Qiang Yang
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, No.174 Shazhengjie Road, Chongqing 400044, China
| | - Chenguo Yao
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, No.174 Shazhengjie Road, Chongqing 400044, China.
| |
Collapse
|
5
|
Pavlin M, Škorja Milić N, Kandušer M, Pirkmajer S. Importance of the electrophoresis and pulse energy for siRNA-mediated gene silencing by electroporation in differentiated primary human myotubes. Biomed Eng Online 2024; 23:47. [PMID: 38750477 PMCID: PMC11097476 DOI: 10.1186/s12938-024-01239-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 04/23/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Electrotransfection is based on application of high-voltage pulses that transiently increase membrane permeability, which enables delivery of DNA and RNA in vitro and in vivo. Its advantage in applications such as gene therapy and vaccination is that it does not use viral vectors. Skeletal muscles are among the most commonly used target tissues. While siRNA delivery into undifferentiated myoblasts is very efficient, electrotransfection of siRNA into differentiated myotubes presents a challenge. Our aim was to develop efficient protocol for electroporation-based siRNA delivery in cultured primary human myotubes and to identify crucial mechanisms and parameters that would enable faster optimization of electrotransfection in various cell lines. RESULTS We established optimal electroporation parameters for efficient siRNA delivery in cultured myotubes and achieved efficient knock-down of HIF-1α while preserving cells viability. The results show that electropermeabilization is a crucial step for siRNA electrotransfection in myotubes. Decrease in viability was observed for higher electric energy of the pulses, conversely lower pulse energy enabled higher electrotransfection silencing yield. Experimental data together with the theoretical analysis demonstrate that siRNA electrotransfer is a complex process where electropermeabilization, electrophoresis, siRNA translocation, and viability are all functions of pulsing parameters. However, despite this complexity, we demonstrated that pulse parameters for efficient delivery of small molecule such as PI, can be used as a starting point for optimization of electroporation parameters for siRNA delivery into cells in vitro if viability is preserved. CONCLUSIONS The optimized experimental protocol provides the basis for application of electrotransfer for silencing of various target genes in cultured human myotubes and more broadly for electrotransfection of various primary cell and cell lines. Together with the theoretical analysis our data offer new insights into mechanisms that underlie electroporation-based delivery of short RNA molecules, which can aid to faster optimisation of the pulse parameters in vitro and in vivo.
Collapse
Affiliation(s)
- Mojca Pavlin
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000, Ljubljana, Slovenia.
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia.
| | - Nives Škorja Milić
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Korytkova 2, Ljubljana, Slovenia
| | - Maša Kandušer
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
- Pharmacy Institute, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Sergej Pirkmajer
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia.
| |
Collapse
|
6
|
Qian K, Zhong Z. Research frontiers of electroporation-based applications in cancer treatment: a bibliometric analysis. BIOMED ENG-BIOMED TE 2023; 68:445-456. [PMID: 37185096 DOI: 10.1515/bmt-2023-0113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023]
Abstract
OBJECTIVES Electroporation, the breakdown of the biomembrane induced by external electric fields, has increasingly become a research hotspot for its promising related methods in various kinds of cancers. CONTENT In this article, we utilized CiteSpace 6.1.R2 to perform a bibliometric analysis on the research foundation and frontier of electroporation-based applications in cancer therapy. A total of 3,966 bibliographic records were retrieved from the Web of Science Core Collection for the bibliometric analysis. Sersa G. and Mir L. M. are the most indispensable researchers in this field, and the University of Ljubljana of Slovenia is a prominent institution. By analyzing references and keywords, we found that, with a lower recurrence rate, fewer severe adverse events, and a higher success rate, irreversible electroporation, gene electrotransfer, and electrochemotherapy are the three main research directions that may influence the future treatment protocol of cancers. SUMMARY This article visualized relevant data to synthesize scientific research on electroporation-based cancer therapy, providing helpful suggestions for further investigations on electroporation. OUTLOOK Although electroporation-based technologies have been proven as promising tools for cancer treatment, its radical mechanism is still opaque and their commercialization and universalization need further efforts from peers.
Collapse
Affiliation(s)
- Kun Qian
- Department of High-voltage and Insulation, School of Electrical Engineering, Chongqing University, Chongqing, China
| | - Zilong Zhong
- Research Institute of Foreign Languages, Beijing Foreign Studies University, Beijing, China
| |
Collapse
|
7
|
Rawas-Qalaji M, Cagliani R, Al-Hashimi N, Al-Dabbagh R, Al-Dabbagh A, Hussain Z. Microfluidics in drug delivery: review of methods and applications. Pharm Dev Technol 2023; 28:61-77. [PMID: 36592376 DOI: 10.1080/10837450.2022.2162543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Microfluidics technology has emerged as a promising methodology for the fabrication of a wide variety of advanced drug delivery systems. Owing to its ability for accurate handling and processing of small quantities of fluidics as well as immense control over physicochemical properties of fabricated micro and nanoparticles (NPs), microfluidic technology has significantly improved the pharmacokinetics and pharmacodynamics of drugs. This emerging technology has offered numerous advantages over the conventional drug delivery methods for fabricating of a variety of micro and nanocarriers for poorly soluble drugs. In addition, a microfluidic system can be designed for targeted drug delivery aiming to increase the local bioavailability of drugs. This review spots the light on the recent advances made in the area of microfluidics including various methods of fabrication of drug carriers, their characterization, and unique features. Furthermore, applications of microfluidic technology for the robust fabrication and development of drug delivery systems, the existing challenges associated with conventional fabrication methodologies as well as the proposed solutions offered by microfluidic technology have been discussed in details.HighlightsMicrofluidic technology has revolutionized fabrication of tunable micro and nanocarriers.Microfluidic platforms offer several advantages over the conventional fabrication methods.Microfluidic devices hold great promise in controlling the physicochemical features of fabricated drug carriers.Micro and nanocarriers with controllable release kinetics and site-targeting efficiency can be fabricated.Drug carriers fabricated by microfluidic technology exhibited improved pharmacokinetic and pharmacodynamic profiles.
Collapse
Affiliation(s)
- Mutasem Rawas-Qalaji
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates.,Research Institute For Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Roberta Cagliani
- Research Institute For Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Noor Al-Hashimi
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Rahma Al-Dabbagh
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Amena Al-Dabbagh
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Zahid Hussain
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates.,Research Institute For Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
8
|
Aleksanyan M, Faizi HA, Kirmpaki MA, Vlahovska PM, Riske KA, Dimova R. Assessing membrane material properties from the response of giant unilamellar vesicles to electric fields. ADVANCES IN PHYSICS: X 2022; 8:2125342. [PMID: 36211231 PMCID: PMC9536468 DOI: 10.1080/23746149.2022.2125342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023] Open
Abstract
Knowledge of the material properties of membranes is crucial to understanding cell viability and physiology. A number of methods have been developed to probe membranes in vitro, utilizing the response of minimal biomimetic membrane models to an external perturbation. In this review, we focus on techniques employing giant unilamellar vesicles (GUVs), model membrane systems, often referred to as minimal artificial cells because of the potential they offer to mimick certain cellular features. When exposed to electric fields, GUV deformation, dynamic response and poration can be used to deduce properties such as bending rigidity, pore edge tension, membrane capacitance, surface shear viscosity, excess area and membrane stability. We present a succinct overview of these techniques, which require only simple instrumentation, available in many labs, as well as reasonably facile experimental implementation and analysis.
Collapse
Affiliation(s)
- Mina Aleksanyan
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Institute for Chemistry and Biochemistry, Free University of Berlin, 14195 Berlin, Germany
| | - Hammad A Faizi
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| | - Maria-Anna Kirmpaki
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Petia M Vlahovska
- Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, USA
| | - Karin A Riske
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, 04039-032 Brazil
| | - Rumiana Dimova
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| |
Collapse
|
9
|
Aleksanyan M, Lira RB, Steinkühler J, Dimova R. GM1 asymmetry in the membrane stabilizes pores. Biophys J 2022; 121:3295-3302. [PMID: 35668647 PMCID: PMC9463649 DOI: 10.1016/j.bpj.2022.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/20/2022] [Accepted: 06/03/2022] [Indexed: 11/29/2022] Open
Abstract
Cell membranes are highly asymmetric and their stability against poration is crucial for survival. We investigated the influence of membrane asymmetry on electroporation of giant unilamellar vesicles with membranes doped with GM1, a ganglioside asymmetrically enriched in the outer leaflet of neuronal cell membranes. Compared with symmetric membranes, the lifetimes of micronsized pores are about an order of magnitude longer suggesting that pores are stabilized by GM1. Internal membrane nanotubes caused by the GM1 asymmetry, obstruct and additionally slow down pore closure, effectively reducing pore edge tension and leading to leaky membranes. Our results point to the drastic effects this ganglioside can have on pore resealing in biotechnology applications based on poration as well as on membrane repair processes.
Collapse
Affiliation(s)
- Mina Aleksanyan
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476 Potsdam, Germany; Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Rafael B Lira
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476 Potsdam, Germany
| | - Jan Steinkühler
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476 Potsdam, Germany
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476 Potsdam, Germany.
| |
Collapse
|
10
|
Abstract
Electroporation (EP) is a commonly used strategy to increase cell permeability for intracellular cargo delivery or irreversible cell membrane disruption using electric fields. In recent years, EP performance has been improved by shrinking electrodes and device structures to the microscale. Integration with microfluidics has led to the design of devices performing static EP, where cells are fixed in a defined region, or continuous EP, where cells constantly pass through the device. Each device type performs superior to conventional, macroscale EP devices while providing additional advantages in precision manipulation (static EP) and increased throughput (continuous EP). Microscale EP is gentle on cells and has enabled more sensitive assaying of cells with novel applications. In this Review, we present the physical principles of microscale EP devices and examine design trends in recent years. In addition, we discuss the use of reversible and irreversible EP in the development of therapeutics and analysis of intracellular contents, among other noteworthy applications. This Review aims to inform and encourage scientists and engineers to expand the use of efficient and versatile microscale EP technologies.
Collapse
Affiliation(s)
- Sung-Eun Choi
- Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Harrison Khoo
- Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Soojung Claire Hur
- Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
- Institute for NanoBioTechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
- Department of Oncology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 401 North Broadway, Baltimore, Maryland 21231, United States
| |
Collapse
|
11
|
Li Z, Xuan Y, Ghatak S, Guda PR, Roy S, Sen CK. Modeling the gene delivery process of the needle array-based tissue nanotransfection. NANO RESEARCH 2022; 15:3409-3421. [PMID: 36275042 PMCID: PMC9581438 DOI: 10.1007/s12274-021-3947-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/17/2021] [Accepted: 10/24/2021] [Indexed: 05/14/2023]
Abstract
Hollow needle array-based tissue nanotransfection (TNT) presents an in vivo transfection approach that directly translocate exogeneous genes to target tissues by using electric pulses. In this work, the gene delivery process of TNT was simulated and experimentally validated. We adopted the asymptotic method and cell-array-based model to investigate the electroporation behaviors of cells within the skin structure. The distribution of nonuniform electric field across the skin results in various electroporation behavior for each cell. Cells underneath the hollow microchannels of the needle exhibited the highest total pore numbers compared to others due to the stronger localized electric field. The percentage of electroporated cells within the skin structure, with pore radius over 10 nm, increases from 25% to 82% as the applied voltage increases from 100 to 150 V/mm. Furthermore, the gene delivery behavior across the skin tissue was investigated through the multilayer-stack-based model. The delivery distance increased nonlinearly as the applied voltage and pulse number increased, which mainly depends on the diffusion characteristics and electric conductivity of each layer. It was also found that the skin is required to be exfoliated prior to the TNT procedure to enhance the delivery depth. This work provides the foundation for transition from the study of murine skin to translation use in large animals and human settings.
Collapse
Affiliation(s)
- Zhigang Li
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Birck Nanotechnology Center and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Yi Xuan
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Birck Nanotechnology Center and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Subhadip Ghatak
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Poornachander R. Guda
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sashwati Roy
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chandan K. Sen
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Birck Nanotechnology Center and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
12
|
Gene Therapy of Chronic Limb-Threatening Ischemia: Vascular Medical Perspectives. J Clin Med 2022; 11:jcm11051282. [PMID: 35268373 PMCID: PMC8910863 DOI: 10.3390/jcm11051282] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 12/27/2022] Open
Abstract
A decade ago, gene therapy seemed to be a promising approach for the treatment of chronic limb-threatening ischemia, providing new perspectives for patients without conventional, open or endovascular therapeutic options by potentially enabling neo-angiogenesis. Yet, until now, the results have been far from a safe and routine clinical application. In general, there are two approaches for inserting exogenous genes in a host genome: transduction and transfection. In case of transduction, viral vectors are used to introduce genes into cells, and depending on the selected strain of the virus, a transient or stable duration of protein production can be achieved. In contrast, the transfection of DNA is transmitted by chemical or physical processes such as lipofection, electro- or sonoporation. Relevant risks of gene therapy may be an increasing neo-vascularization in undesired tissue. The risks of malignant transformation and inflammation are the potential drawbacks. Additionally, atherosclerotic plaques can be destabilized by the increased angiogenesis, leading to arterial thrombosis. Clinical trials from pilot studies to Phase II and III studies on angiogenic gene therapy show mainly a mixed picture of positive and negative final results; thus, the role of gene therapy in vascular occlusive disease remains unclear.
Collapse
|
13
|
Genetic Modification of Mesenchymal Stem Cells for Neurological Disease Therapy: What Effects Does it Have on Phenotype/Cell Behavior, Determining Their Effectiveness? Mol Diagn Ther 2021; 24:683-702. [PMID: 32926348 DOI: 10.1007/s40291-020-00491-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mesenchymal stem cells are a promising tool in regenerative medicine, and their functions can be enhanced through genetic modification. Recent advances in genetic engineering provide several methods that enable gene delivery to mesenchymal stem cells. However, it remains to be decided whether genetic modification of mesenchymal stem cells by vectors carrying reporter or therapeutic genes leads to adverse effects on morphology, phenotypic profiles, and viability of transplanted cells. In this regard, we focus on the description of genetic modification methods of mesenchymal stem cells, their effectiveness, and the impact on phenotype/cell behavior/proliferation and the differentiation ability of these cells in vitro and in vivo. Furthermore, we compare the main effects of genetically modified mesenchymal stem cells with native mesenchymal stem cells when applied in the therapy of neurological diseases.
Collapse
|
14
|
Meglič SH, Pavlin M. The impact of impaired DNA mobility on gene electrotransfer efficiency: analysis in 3D model. Biomed Eng Online 2021; 20:85. [PMID: 34419072 PMCID: PMC8379608 DOI: 10.1186/s12938-021-00922-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 08/09/2021] [Indexed: 11/21/2022] Open
Abstract
Background Gene electrotransfer is an established method that enables transfer of DNA into cells with electric pulses. Several studies analyzed and optimized different parameters of gene electrotransfer, however, one of main obstacles toward efficient electrotransfection in vivo is relatively poor DNA mobility in tissues. Our aim was to analyze the effect of impaired mobility on gene electrotransfer efficiency experimentally and theoretically. We applied electric pulses with different durations on plated cells, cells grown on collagen layer and cells embedded in collagen gel (3D model) and analyzed gene electrotransfer efficiency. In order to analyze the effect of impaired mobility on gene electrotransfer efficiency, we applied electric pulses with different durations on plated cells, cells grown on collagen layer and cells embedded in collagen gel (3D model) and analyzed gene electrotransfer efficiency. Results We obtained the highest transfection in plated cells, while transfection efficiency of embedded cells in 3D model was lowest, similarly as in in vivo. To further analyze DNA diffusion in 3D model, we applied DNA on top or injected it into 3D model and showed, that for the former gene electrotransfer efficiency was similarly as in in vivo. The experimental results are explained with theoretical analysis of DNA diffusion and electromobility. Conclusion We show, empirically and theoretically that DNA has impaired electromobility and especially diffusion in collagen environment, where the latter crucially limits electrotransfection. Our model enables optimization of gene electrotransfer in in vitro conditions.
Collapse
Affiliation(s)
- Saša Haberl Meglič
- Faculty of Electrical Engineering, Laboratory of Biocybernetics, University of Ljubljana, Tržaška 25, 1000, Ljubljana, Slovenia
| | - Mojca Pavlin
- Faculty of Medicine, Institute of Biophysics, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia. .,Faculty of Electrical Engineering, Group for Nano and Biotechnological Applications, University of Ljubljana, Tržaška 25, 1000, Ljubljana, Slovenia.
| |
Collapse
|
15
|
Sharma D, Arora S, Singh J, Layek B. A review of the tortuous path of nonviral gene delivery and recent progress. Int J Biol Macromol 2021; 183:2055-2073. [PMID: 34087309 PMCID: PMC8266766 DOI: 10.1016/j.ijbiomac.2021.05.192] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023]
Abstract
Gene therapy encompasses the transfer of exogenous genetic materials into the patient's target cells to treat or prevent diseases. Nevertheless, the transfer of genetic material into desired cells is challenging and often requires specialized tools or delivery systems. For the past 40 years, scientists are mainly pursuing various viruses as gene delivery vectors, and the overall progress has been slow and far from the expectation. As an alternative, nonviral vectors have gained substantial attention due to their several advantages, including superior safety profile, enhanced payload capacity, and stealth abilities. Since nonviral vectors encounter multiple extra- and intra-cellular barriers limiting the transfer of genetic payload into the target cell nucleus, we have discussed these barriers in detail for this review. A direct approach, utilizing physical methods like electroporation, sonoporation, gene gun, eliminate the requirement for a specific carrier for gene delivery. In contrast, chemical methods of gene transfer exploit natural or synthetic compounds as carriers to increase cellular targeting and gene therapy effectiveness. We have also emphasized the recent advancements aimed at enhancing the current nonviral approaches. Therefore, in this review, we have focused on discussing the current evolving state of nonviral gene delivery systems and their future perspectives.
Collapse
Affiliation(s)
- Divya Sharma
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo 58105, ND, USA
| | - Sanjay Arora
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo 58105, ND, USA
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo 58105, ND, USA
| | - Buddhadev Layek
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo 58105, ND, USA.
| |
Collapse
|
16
|
Naftali Ben Haim L, Moisseiev E. Drug Delivery via the Suprachoroidal Space for the Treatment of Retinal Diseases. Pharmaceutics 2021; 13:pharmaceutics13070967. [PMID: 34206925 PMCID: PMC8309112 DOI: 10.3390/pharmaceutics13070967] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
The suprachoroidal space (SCS), a potential space between the sclera and choroid, is becoming an applicable method to deliver therapeutics to the back of the eye. In recent years, a vast amount of research in the field has been carried out, with new discoveries in different areas of interest, such as imaging, drug delivery methods, pharmacokinetics, pharmacotherapies in preclinical and clinical trials and advanced therapies. The SCS can be visualized via advanced techniques of optical coherence tomography (OCT) in eyes with different pathologies, and even in healthy eyes. Drugs can be delivered easily and safely via hollow microneedles fitted to the length of the approximate thickness of the sclera. SCS injections were found to reach greater baseline concentrations in the target layers compared to intravitreal (IVT) injection, while agent clearance was faster with highly aqueous soluble molecules. Clinical trials with SCS injection of triamcinolone acetonide (TA) were executed with promising findings for patients with noninfectious uveitis (NIU), NIU implicated with macular edema and diabetic macular edema (DME). Gene therapy is evolving rapidly with viral and non-viral vectors that were found to be safe and efficient in preclinical trials. Here, we review these novel different aspects and new developments in clinical treatment of the posterior segment of the eye.
Collapse
Affiliation(s)
- Liron Naftali Ben Haim
- Department of Ophthalmology, Meir Medical Center, Kfar Saba, 59 Tshernichovsky St., Kfar Saba 4428164, Israel;
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Correspondence: ; Tel.: +972-97471527; Fax: +972-97472427
| | - Elad Moisseiev
- Department of Ophthalmology, Meir Medical Center, Kfar Saba, 59 Tshernichovsky St., Kfar Saba 4428164, Israel;
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
17
|
A DNA-based vaccine protects against Crimean-Congo haemorrhagic fever virus disease in a Cynomolgus macaque model. Nat Microbiol 2020; 6:187-195. [PMID: 33257849 PMCID: PMC7854975 DOI: 10.1038/s41564-020-00815-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/13/2020] [Indexed: 11/26/2022]
Abstract
There is currently no specific prophylaxis or vaccine against Crimean-Congo hemorrhagic fever virus (CCHFV). Crimean-Congo hemorrhagic fever (CCHF) is a severe febrile-illness transmitted by Hyalomma ticks in endemic areas, handling of infected livestock or care of infected patients. We report here the successful protection against CCHFV-mediated disease in a non-human primate disease model. Cynomolgus macaques were vaccinated with a DNA-based vaccine using in vivo electroporation-assisted delivery. The vaccine contained two plasmids encoding the glycoprotein precursor (GPC) and the nucleoprotein (NP) of CCHFV. Animals received three vaccinations and we recorded potent antibody and T-cell responses after vaccination. While all sham-vaccinated animals developed viremia, high tissue viral loads and CCHF-induced disease, the NP + GPC vaccinated animals were significantly protected. In conclusion, this is the first evidence of a vaccine that can protect against CCHFV-induced disease in a non-human primate model. This supports clinical development of the vaccine to protect groups at risk for contracting the infection. A DNA-based vaccine confers significant protection from CCHFV infection in Cynomolgus macaques
Collapse
|
18
|
Hoogewoud F, Kowalczuk L, Bousquet E, Brézin A, Touchard E, Buggage R, Bordet T, Behar-Cohen F. [Anti-TNF-α in the treatment of non-infectious uveitis]. Med Sci (Paris) 2020; 36:893-899. [PMID: 33026332 DOI: 10.1051/medsci/2020160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Non-infectious uveitis is a heterogenous group of potentially blinding ocular autoimmune diseases that may represent a manifestation of a systemic condition or may affect the eyes only. A systemically administered anti-TNF has recently been approved for the treatment of non-infectious uveitis, broadening the therapeutic arsenal available to control intraocular inflammation and reduce uveitis complications that can lead to vision loss. When uveitis affects only the eyes, a local anti-TNF-α administration strategy could optimize the ocular therapeutic effect and reduce undesirable systemic side-effects. A new ocular method of non-viral gene therapy, currently in development, may broaden the indications for ocular anti-TNF-α agents, not only for uveitis but also for other diseases in which TNF-α-mediated neuro-inflammation has been demonstrated.
Collapse
Affiliation(s)
- Florence Hoogewoud
- Ophtalmopole Hôpital Cochin; Assistance Publique-Hôpitaux de Paris; Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014 Paris, France - Département d'ophtalmologie de l'université de Lausanne, Hôpital Ophtalmologique Jules-Gonin, Lausanne, Suisse
| | - Laura Kowalczuk
- Département d'ophtalmologie de l'université de Lausanne, Hôpital Ophtalmologique Jules-Gonin, Lausanne, Suisse - Centre de recherches des Cordeliers; Inserm UMR 1138, Physiopathologie des maladies oculaires : innovations thérapeutiques; Université de Paris, 15 rue de l'École de Médecine, 75006 Paris, France
| | - Elodie Bousquet
- Ophtalmopole Hôpital Cochin; Assistance Publique-Hôpitaux de Paris; Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014 Paris, France - Centre de recherches des Cordeliers; Inserm UMR 1138, Physiopathologie des maladies oculaires : innovations thérapeutiques; Université de Paris, 15 rue de l'École de Médecine, 75006 Paris, France
| | - Antoine Brézin
- Ophtalmopole Hôpital Cochin; Assistance Publique-Hôpitaux de Paris; Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014 Paris, France - Centre de recherches des Cordeliers; Inserm UMR 1138, Physiopathologie des maladies oculaires : innovations thérapeutiques; Université de Paris, 15 rue de l'École de Médecine, 75006 Paris, France
| | | | | | | | - Francine Behar-Cohen
- Ophtalmopole Hôpital Cochin; Assistance Publique-Hôpitaux de Paris; Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014 Paris, France - Centre de recherches des Cordeliers; Inserm UMR 1138, Physiopathologie des maladies oculaires : innovations thérapeutiques; Université de Paris, 15 rue de l'École de Médecine, 75006 Paris, France
| |
Collapse
|
19
|
Jakstys B, Jakutaviciute M, Uzdavinyte D, Satkauskiene I, Satkauskas S. Correlation between the loss of intracellular molecules and cell viability after cell electroporation. Bioelectrochemistry 2020; 135:107550. [DOI: 10.1016/j.bioelechem.2020.107550] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/05/2020] [Accepted: 05/08/2020] [Indexed: 12/16/2022]
|
20
|
Maglietti F, Tellado M, De Robertis M, Michinski S, Fernández J, Signori E, Marshall G. Electroporation as the Immunotherapy Strategy for Cancer in Veterinary Medicine: State of the Art in Latin America. Vaccines (Basel) 2020; 8:E537. [PMID: 32957424 PMCID: PMC7564659 DOI: 10.3390/vaccines8030537] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
Electroporation is a technology that increases cell membrane permeability by the application of electric pulses. Electrochemotherapy (ECT), the best-known application of electroporation, is a very effective local treatment for tumors of any histology in human and veterinary medicine. It induces a local yet robust immune response that is responsible for its high effectiveness. Gene electrotransfer (GET), used in research to produce a systemic immune response against cancer, is another electroporation-based treatment that is very appealing for its effectiveness, low cost, and simplicity. In this review, we present the immune effect of electroporation-based treatments and analyze the results of the vast majority of the published papers related to immune response enhancement by gene electrotransfer in companion animals with spontaneous tumors. In addition, we present a brief history of the initial steps and the state of the art of the electroporation-based treatments in Latin America. They have the potential to become an essential form of immunotherapy in the region. This review gives insight into the subject and helps to choose promising research lines for future work; it also helps to select the adequate treatment parameters for performing a successful application of this technology.
Collapse
Affiliation(s)
- Felipe Maglietti
- Instituto Universitario del Hospital Italiano de Buenos Aires, CONICET, Buenos Aires 1199, Argentina
| | - Matías Tellado
- VetOncologia, Veterinary Oncology Clinic, Buenos Aires 1408, Argentina; (M.T.); (J.F.)
| | - Mariangela De Robertis
- CNR-Institute of Biomembrane, Bioenergetics, and Molecular Biotechnology, 70126 Bari, Italy;
- Department of Bioscience, Biotechnology, and Biopharmaceutics, University of Bari, 70126 Bari, Italy
| | - Sebastián Michinski
- Instituto de Física del Plasma, DF, FCEyN, UBA-CONICET, Buenos Aires 1428, Argentina; (S.M.); (G.M.)
| | - Juan Fernández
- VetOncologia, Veterinary Oncology Clinic, Buenos Aires 1408, Argentina; (M.T.); (J.F.)
| | - Emanuela Signori
- Laboratory of Molecular Pathology and Experimental Oncology, Institute of Translational Pharmacology, CNR, 00133 Rome, Italy;
| | - Guillermo Marshall
- Instituto de Física del Plasma, DF, FCEyN, UBA-CONICET, Buenos Aires 1428, Argentina; (S.M.); (G.M.)
| |
Collapse
|
21
|
Desbiolles BXE, de Coulon E, Maïno N, Bertsch A, Rohr S, Renaud P. Nanovolcano microelectrode arrays: toward long-term on-demand registration of transmembrane action potentials by controlled electroporation. MICROSYSTEMS & NANOENGINEERING 2020; 6:67. [PMID: 34567678 PMCID: PMC8433144 DOI: 10.1038/s41378-020-0178-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/11/2020] [Accepted: 05/05/2020] [Indexed: 05/29/2023]
Abstract
Volcano-shaped microelectrodes (nanovolcanoes) functionalized with nanopatterned self-assembled monolayers have recently been demonstrated to report cardiomyocyte action potentials after gaining spontaneous intracellular access. These nanovolcanoes exhibit recording characteristics similar to those of state-of-the-art micro-nanoelectrode arrays that use electroporation as an insertion mechanism. In this study, we investigated whether the use of electroporation improves the performance of nanovolcano arrays in terms of action potential amplitudes, recording durations, and yield. Experiments with neonatal rat cardiomyocyte monolayers grown on nanovolcano arrays demonstrated that electroporation pulses with characteristics derived from analytical models increased the efficiency of nanovolcano recordings, as they enabled multiple on-demand registration of intracellular action potentials with amplitudes as high as 62 mV and parallel recordings in up to ~76% of the available channels. The performance of nanovolcanoes showed no dependence on the presence of functionalized nanopatterns, indicating that the tip geometry itself is instrumental for establishing a tight seal at the cell-electrode interface, which ultimately determines the quality of recordings. Importantly, the use of electroporation permitted the recording of attenuated cardiomyocyte action potentials during consecutive days at identical sites, indicating that nanovolcano recordings are nondestructive and permit long-term on-demand recordings from excitable cardiac tissues. Apart from demonstrating that less complex manufacturing processes can be used for next-generation nanovolcano arrays, the finding that the devices are suitable for performing on-demand recordings of electrical activity from multiple sites of excitable cardiac tissues over extended periods of time opens the possibility of using the devices not only in basic research but also in the context of comprehensive drug testing.
Collapse
Affiliation(s)
- Benoît X. E. Desbiolles
- Laboratory of Microsystems LMIS4, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Etienne de Coulon
- Department of Physiology, Laboratory of Cellular Optics II, University of Bern, Bern, Switzerland
| | - Nicolas Maïno
- Laboratory of Microsystems LMIS4, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Arnaud Bertsch
- Laboratory of Microsystems LMIS4, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Stephan Rohr
- Department of Physiology, Laboratory of Cellular Optics II, University of Bern, Bern, Switzerland
| | - Philippe Renaud
- Laboratory of Microsystems LMIS4, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
22
|
Peri D, Deville M, Poignard C, Signori E, Natalini R. Numerical optimization of plasmid DNA delivery combined with hyaluronidase injection for electroporation protocol. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 186:105204. [PMID: 31760303 DOI: 10.1016/j.cmpb.2019.105204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE The paper focuses on the numerical strategies to optimize a plasmid DNA delivery protocol, which combines hyaluronidase and electroporation. METHODS A well-defined continuum mechanics model of muscle porosity and advanced numerical optimization strategies have been used, to propose a substantial improvement of a pre-existing experimental protocol of DNA transfer in mice. Our work suggests that a computational model might help in the definition of innovative therapeutic procedures, thanks to the fine tuning of all the involved experimental steps. This approach is particularly interesting in optimizing complex and costly protocols, to make in vivo DNA therapeutic protocols more effective. RESULTS Our preliminary work suggests that computational model might help in the definition of innovative therapeutic protocol, thanks to the fine tuning of all the involved operations. CONCLUSIONS This approach is particularly interesting in optimizing complex and costly protocols for which the number of degrees of freedom prevents a experimental test of the possible configuration.
Collapse
Affiliation(s)
- Daniele Peri
- CNR-IAC - National Research Council, Istituto per le Applicazioni del Calcolo "Mauro Picone" Via dei Taurini 19, Rome 00185, Italy.
| | - Manon Deville
- Team MONC, INRIA Bordeaux-Sud-Ouest, Institut de Mathématiques de Bordeaux, CNRS UMR 5251 & Université de Bordeaux, 351 cours de la Libération, Talence Cedex 33405, France
| | - Clair Poignard
- Team MONC, INRIA Bordeaux-Sud-Ouest, Institut de Mathématiques de Bordeaux, CNRS UMR 5251 & Université de Bordeaux, 351 cours de la Libération, Talence Cedex 33405, France
| | - Emanuela Signori
- CNR-IFT - National Research Council - Istituto di Farmacologia Traslazionale, Via Fosso del Cavaliere 100, Rome 00133, Italy.
| | - Roberto Natalini
- CNR-IAC - National Research Council, Istituto per le Applicazioni del Calcolo "Mauro Picone" Via dei Taurini 19, Rome 00185, Italy
| |
Collapse
|
23
|
Ionomycin-Induced Changes in Membrane Potential Alter Electroporation Outcomes in HL-60 Cells. Biophys J 2019; 114:2875-2886. [PMID: 29925024 DOI: 10.1016/j.bpj.2018.05.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 05/07/2018] [Accepted: 05/15/2018] [Indexed: 01/25/2023] Open
Abstract
Previous studies have shown greater fluorophore uptake during electroporation on the anode-facing side of the cell than on the cathode-facing side. Based on these observations, we hypothesized that hyperpolarizing a cell before electroporation would decrease the requisite pulsed electric field intensity for electroporation outcomes, thereby yielding a higher probability of reversible electroporation at lower electric field strengths and a higher probability of irreversible electroporation (IRE) at higher electric field strengths. In this study, we tested this hypothesis by hyperpolarizing HL-60 cells using ionomycin before electroporation. These cells were then electroporated in a solution containing propidium iodide, a membrane integrity indicator. After 20 min, we added trypan blue to identify IRE cells. Our results showed that hyperpolarizing cells before electroporation alters the pulsed electric field intensity thresholds for reversible electroporation and IRE, allowing for greater control and selectivity of electroporation outcomes.
Collapse
|
24
|
Michel O, Błasiak P, Saczko J, Kulbacka J, Drąg-Zalesińska M, Rzechonek A. Electropermeabilization of metastatic chondrosarcoma cells from primary cell culture. Biotechnol Appl Biochem 2019; 66:945-954. [PMID: 31476023 DOI: 10.1002/bab.1809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 08/20/2019] [Indexed: 11/12/2022]
Abstract
Primary cell cultures are challenging, but reliable model reflecting tumor response in vitro. The study was designed to examine if the increased electropermeabilization can overcame initial drug insensitivity in chondrosarcoma cells from lung metastasis. We established a primary cell culture and evaluated the cytotoxic impact of four drugs-cisplatin (CDDP), camptothecin, 2-methoxyestradiol, and leucovorin calcium (LeuCa). After determination of parameters allowing for electropermeabilization, we performed electrochemotherapy in vitro with the least toxic drugs-CDDP and LeuCa. Although combining CDDP and leucovorin together increased their toxicity and supported apoptosis, application of pulsed electric fields (PEFs) brought no advantage for their efficacy. The study emphasizes the need for introduction of primary cell cultures into studies on pulse electric fields as model frequently less sensitive to PEF-based treatments than continuous cell lines.
Collapse
Affiliation(s)
- Olga Michel
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| | - Piotr Błasiak
- Department of Thoracic Surgery, Wroclaw Medical University, Wroclaw, Poland
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Wroclaw, Poland
| | - Małgorzata Drąg-Zalesińska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Adam Rzechonek
- Department of Thoracic Surgery, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
25
|
Zhu Q, Hamilton M, Vasquez B, He M. 3D-printing enabled micro-assembly of a microfluidic electroporation system for 3D tissue engineering. LAB ON A CHIP 2019; 19:2362-2372. [PMID: 31214669 PMCID: PMC6636854 DOI: 10.1039/c9lc00046a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Electro-transfection is an essential workhorse tool for regulating cellular responses and engineering cellular materials in tissue engineering. However, most of the existing approaches are only focused on cell suspensions in vitro, which fails to mimic an in vivo tissue microenvironment regarding the 3D electric field distribution and mass transport in a biological matrix. However, building a 3D electro-transfection system that is compatible with 3D cell culture for mimicking the in vivo tissue microenvironment is challenging, due to the substantial difficulties in control of the 3D electric field distribution as well as the cellular growth. To address such challenges, we introduce a novel 3D micro-assembly strategy assisted by 3D printing, which enables the molding of 3D microstructures as LEGO® parts from 3D-printed molds. The molded PDMS LEGO® bricks are then assembled into a 3D-cell culture chamber interconnected with vertical and horizontal perfusion microchannels as a 3D channel network. Such a 3D perfusion microchannel network is unattainable by direct 3D printing or other microfabrication approaches, which can facilitate the highly-efficient exchange of nutrition and waste for 3D cell growth. Four flat electrodes are mounted into the 3D culture chamber via a 3D-printed holder and controlled by a programmable power sequencer for multi-directional electric frequency scanning (3D μ-electro-transfection). This multi-directional scanning not only can create transient pores all over the cell membrane, but also can generate local oscillation for enhancing mass transport and improving cell transfection efficiency. As a proof-of-concept, we electro-delivered the pAcGFP1-C1 vector to 3D cultured HeLa cells within peptide hydrogel scaffolding. The expressed GFP level from transfected HeLa cells reflects the transfection efficiency. We found two key parameters including electric field strength and plasmid concentration playing more important roles than the pulse duration and duty cycles. The results showed an effective transfection efficiency of ∼15% with ∼85% cell viability, which is 3-fold higher compared to that of the conventional benchtop 3D cell electro-transfection. This 3D μ-electrotransfection system was further used for genetically editing 3D-cultured Hek-293 cells via direct delivery of CRISPR/Cas9 plasmid which showed successful transfection with GFP expressed in the cytoplasm as the reporter. The 3D-printing enabled micro-assembly allows facile creation of a novel 3D culture system for electro-transfection, which can be employed for versatile gene delivery and cellular engineering, as well as building in vivo like tissue models for fundamentally studying cellular regulation mechanisms at the molecular level.
Collapse
Affiliation(s)
- Qingfu Zhu
- Department of Chemical and Petroleum Engineering, Bioengineering Program, University of Kansas, Lawrence, Kansas, USA.
| | | | | | | |
Collapse
|
26
|
Sokołowska E, Błachnio-Zabielska AU. A Critical Review of Electroporation as A Plasmid Delivery System in Mouse Skeletal Muscle. Int J Mol Sci 2019; 20:ijms20112776. [PMID: 31174257 PMCID: PMC6600476 DOI: 10.3390/ijms20112776] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022] Open
Abstract
The gene delivery to skeletal muscles is a promising strategy for the treatment of both muscular disorders (by silencing or overexpression of specific gene) and systemic secretion of therapeutic proteins. The use of a physical method like electroporation with plate or needle electrodes facilitates long-lasting gene silencing in situ. It has been reported that electroporation enhances the expression of the naked DNA gene in the skeletal muscle up to 100 times and decreases the changeability of the intramuscular expression. Coelectransfer of reporter genes such as green fluorescent protein (GFP), luciferase or beta-galactosidase allows the observation of correctly performed silencing in the muscles. Appropriate selection of plasmid injection volume and concentration, as well as electrotransfer parameters, such as the voltage, the length and the number of electrical pulses do not cause long-term damage to myocytes. In this review, we summarized the electroporation methodology as well as the procedure of electrotransfer to the gastrocnemius, tibialis, soleus and foot muscles and compare their advantages and disadvantages.
Collapse
Affiliation(s)
- Emilia Sokołowska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, 15-222 Bialystok, Poland.
| | | |
Collapse
|
27
|
Abstract
Inherited retinal degeneration (IRD), a group of rare retinal diseases that primarily lead to the progressive loss of retinal photoreceptor cells, can be inherited in all modes of inheritance: autosomal dominant (AD), autosomal recessive (AR), X-linked (XL), and mitochondrial. Based on the pattern of inheritance of the dystrophy, retinal gene therapy has 2 main strategies. AR, XL, and AD IRDs with haploinsufficiency can be treated by inserting a functional copy of the gene using either viral or nonviral vectors (gene augmentation). Different types of viral vectors and nonviral vectors are used to transfer plasmid DNA both in vitro and in vivo. AD IRDs with gain-of-function mutations or dominant-negative mutations can be treated by disrupting the mutant allele with (and occasionally without) gene augmentation. This review article aims to provide an overview of ocular gene therapy for treating IRDs using gene augmentation with viral or nonviral vectors or gene disruption through different gene-editing tools, especially with the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system.
Collapse
Affiliation(s)
- Amirmohsen Arbabi
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Amelia Liu
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Hossein Ameri
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
28
|
A Continuum Mechanics Model of Enzyme-Based Tissue Degradation in Cancer Therapies. Bull Math Biol 2018; 80:3184-3226. [DOI: 10.1007/s11538-018-0515-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 09/24/2018] [Indexed: 12/29/2022]
|
29
|
In vitro analysis of various cell lines responses to electroporative electric pulses by means of electrical impedance spectroscopy. Biosens Bioelectron 2018; 117:207-216. [DOI: 10.1016/j.bios.2018.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 11/17/2022]
|
30
|
Boehringer S, Ruzgys P, Tamò L, Šatkauskas S, Geiser T, Gazdhar A, Hradetzky D. A new electrospray method for targeted gene delivery. Sci Rep 2018; 8:4031. [PMID: 29507307 PMCID: PMC5838090 DOI: 10.1038/s41598-018-22280-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 02/20/2018] [Indexed: 11/15/2022] Open
Abstract
A challenge for gene therapy is absence of safe and efficient local delivery of therapeutic genetic material. An efficient and reproducible physical method of electrospray for localized and targeted gene delivery is presented. Electrospray works on the principle of coulombs repulsion, under influence of electric field the liquid carrying genetic material is dispersed into micro droplets and is accelerated towards the targeted tissue, acting as a counter electrode. The accelerated droplets penetrate the targeted cells thus facilitating the transfer of genetic material into the cell. The work described here presents the principle of electrospray for gene delivery, the basic instrument design, and the various optimized parameters to enhance gene transfer in vitro. We estimate a transfection efficiency of up to 60% was achieved. We describe an efficient gene transfer method and a potential electrospray-mediated gene transfer mechanism.
Collapse
Affiliation(s)
- Stephan Boehringer
- Institute for Medical and Analytical Technologies, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Paulius Ruzgys
- Department of Pulmonary Medicine, University Hospital Bern, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
- Biophysical Research Group, Faculty of Natural Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Luca Tamò
- Department of Pulmonary Medicine, University Hospital Bern, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Science, University of Bern, Bern, Switzerland
| | - Saulius Šatkauskas
- Biophysical Research Group, Faculty of Natural Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Thomas Geiser
- Department of Pulmonary Medicine, University Hospital Bern, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Amiq Gazdhar
- Department of Pulmonary Medicine, University Hospital Bern, Bern, Switzerland.
- Department of Biomedical Research, University of Bern, Bern, Switzerland.
| | - David Hradetzky
- Institute for Medical and Analytical Technologies, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland.
| |
Collapse
|
31
|
Affiliation(s)
- Huntington Potter
- Rocky Mountain Alzheimer's Disease Center, Anschutz Medical Campus, University of Colorado Aurora Colorado
| | - Richard Heller
- Medical Diagnostics and Translational Sciences, Old Dominion University Norfolk Virginia
- Frank Reidy Research Center for Bioelectrics, Old Dominion University Norfolk Virginia
| |
Collapse
|
32
|
|
33
|
Pierini S, Perales-Linares R, Uribe-Herranz M, Pol JG, Zitvogel L, Kroemer G, Facciabene A, Galluzzi L. Trial watch: DNA-based vaccines for oncological indications. Oncoimmunology 2017; 6:e1398878. [PMID: 29209575 DOI: 10.1080/2162402x.2017.1398878] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 12/16/2022] Open
Abstract
DNA-based vaccination is a promising approach to cancer immunotherapy. DNA-based vaccines specific for tumor-associated antigens (TAAs) are indeed relatively simple to produce, cost-efficient and well tolerated. However, the clinical efficacy of DNA-based vaccines for cancer therapy is considerably limited by central and peripheral tolerance. During the past decade, considerable efforts have been devoted to the development and characterization of novel DNA-based vaccines that would circumvent this obstacle. In this setting, particular attention has been dedicated to the route of administration, expression of modified TAAs, co-expression of immunostimulatory molecules, and co-delivery of immune checkpoint blockers. Here, we review preclinical and clinical progress on DNA-based vaccines for cancer therapy.
Collapse
Affiliation(s)
- Stefano Pierini
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Ovarian Cancer Research Center (OCRC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Renzo Perales-Linares
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Ovarian Cancer Research Center (OCRC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mireia Uribe-Herranz
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Ovarian Cancer Research Center (OCRC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan G Pol
- Université Paris Descartes/Paris V, France.,Université Pierre et Marie Curie/Paris VI, Paris.,Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,INSERM, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT), Villejuif, France.,Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Université Paris Descartes/Paris V, France.,Université Pierre et Marie Curie/Paris VI, Paris.,Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.,Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP; Paris, France
| | - Andrea Facciabene
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Ovarian Cancer Research Center (OCRC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, France.,Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|
34
|
Abstract
Electroporation-the use of high-voltage electric shocks to introduce DNA into cells-can be used with most cell types, yields a high frequency of both stable transformation and transient gene expression, and, because it requires fewer steps, can be easier than alternative techniques. This unit describes electroporation of mammalian cells, including ES cells, for the preparation of knock-out, knock-in, and transgenic mice. Protocols are described for the use of electroporation in vivo to perform gene therapy for cancer, as well as for DNA vaccination. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Huntington Potter
- Department of Neurology, University of Colorado
- Anschutz Medical Campus, Aurora, Colorado
| | - Richard Heller
- Medical Laboratory and Radiation Sciences, Old Dominion University, Norfolk, Virginia.,Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia
| |
Collapse
|
35
|
Ako-Adounvo AM, Marabesi B, Lemos RC, Patricia A, Karla PK. Drug and Gene Delivery Materials and Devices. EMERGING NANOTECHNOLOGIES FOR DIAGNOSTICS, DRUG DELIVERY AND MEDICAL DEVICES 2017:375-392. [DOI: 10.1016/b978-0-323-42978-8.00015-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
36
|
Bui L, Aleid A, Alassaf A, Wilson OC, Raub CB, Frenkel V. Development of a custom biological scaffold for investigating ultrasound-mediated intracellular delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:461-470. [DOI: 10.1016/j.msec.2016.09.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/08/2016] [Accepted: 09/12/2016] [Indexed: 01/15/2023]
|
37
|
Ansari AS, Santerre PJ, Uludağ H. Biomaterials for polynucleotide delivery to anchorage-independent cells. J Mater Chem B 2017; 5:7238-7261. [DOI: 10.1039/c7tb01833a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Comparison of various chemical vectors used for polynucleotide delivery to mammalian anchorage-independent cells.
Collapse
Affiliation(s)
- Aysha S. Ansari
- Department of Chemical & Materials Engineering
- Faculty of Engineering
- University of Alberta
- Edmonton
- Canada
| | - Paul J. Santerre
- Institute of Biomaterials & Biomedical Engineering
- University of Toronto
- Toronto
- Canada
| | - Hasan Uludağ
- Department of Chemical & Materials Engineering
- Faculty of Engineering
- University of Alberta
- Edmonton
- Canada
| |
Collapse
|
38
|
Niakan S, Heidari B, Akbari G, Nikousefat Z. Comparison of Different Electroporation Parameters on Transfection Efficiency of Sheep Testicular Cells. CELL JOURNAL 2016; 18:425-37. [PMID: 27602325 PMCID: PMC5011331 DOI: 10.22074/cellj.2016.4571] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 11/28/2015] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Electroporation can be a highly efficient method for introducing the foreign genetic materials into the targeted cells for transient and/or permanent genetic modification. Considering the application of this technique as a very efficient method for drug, oligonucleotide, antibody and plasmid delivery for clinical applications and production of transgenic animals, the present study aimed to optimize the transfection efficiency of sheep testicular cells including spermatogonial stem cells (SSCs) via electroporation. MATERIALS AND METHODS This study is an experimental research conducted in Biotechnology Research Center (Avicenna Research Institute, Tehran, Iran) from September 2013 to March 2014. Following isolation and propagation of one-month lamb testicular cells (SSCs and somatic testicular cells including; Sertoli, Leydig, and myoid cells), the effect of different electroporation parameters including total voltages (280, 320, and 350 V), burst durations (10, 8, and 5 milliseconds), burst modes (single or double) and addition of dimethyl sulfoxide (DMSO) were evaluated on transfection efficiency, viability rate and mean fluorescent intensity (MFI) of sheep testicular cells. RESULTS The most transfection efficiency was obtained in 320 V/8 milliseconds/single burst group in transduction medium with and without DMSO. There was a significantly inverse correlation between transfection efficiency with application of both following parameters: addition of DMSO and double burst. After transfection, the highest and lowest viability rates of testicular cells were demonstrated in 320 V/8 milliseconds with transduction medium without DMSO and 350 V/5 milliseconds in medium containing DMSO. Ad- dition of DMSO to transduction medium in all groups significantly decreased the viability rate. The comparison of gene expression indicated that Sertoli and SSCs had the most fluorescence intensity in 320 V/double burst/DMSO positive. However, myoid and Leydig cells showed the maximum expression in 320 V/single burst and/or 350 V/double burst/ DMSO positive. CONCLUSION We optimized the electroporation method for transfection of sheep testicular cells and recommended the application of 320 V/8 milliseconds/single pulse/DMSO negative for transduction of plasmid vector into these cells. Among testicular cells, the most external gene expression was demonstrated in SSC population.
Collapse
Affiliation(s)
- Sarah Niakan
- Department of Clinical Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Banafsheh Heidari
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ghasem Akbari
- Department of Clinical Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Nikousefat
- Department of Clinical Science, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| |
Collapse
|
39
|
Bulysheva AA, Burcus N, Lundberg C, Edelblute CM, Francis MP, Heller R. Recellularized human dermis for testing gene electrotransfer ex vivo. ACTA ACUST UNITED AC 2016; 11:035002. [PMID: 27121769 DOI: 10.1088/1748-6041/11/3/035002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Gene electrotransfer (GET) is a proven and valuable tool for in vivo gene delivery to a variety of tissues such as skin, cardiac muscle, skeletal muscle, and tumors, with controllable gene delivery and expression levels. Optimizing gene expression is a challenging hurdle in preclinical studies, particularly for skin indications, due to differences in electrical conductivity of animal compared to human dermis. Therefore, the goal of this study was to develop an ex vivo model for GET using recellularized human dermis to more closely mimic human skin. Decellularized human dermis (DermACELL(®)) was cultured with human dermal fibroblasts and keratinocytes for 4 weeks. After one week of fibroblast culture, fibroblasts infiltrated and dispersed throughout the dermis. Air-liquid interface culture led to epithelial cell proliferation, stratification and terminal differentiation with distinct basal, spinous, granular and cornified strata. Firefly luciferase expression kinetics were evaluated after GET of recellularized constructs for testing gene delivery parameters to skin in vitro. Elevated luciferase expression persisted up to a week following GET compared to controls without electrotransfer. In summary, recellularized dermis structurally and functionally resembled native human skin in tissue histological organization and homeostasis, proving an effective 3D human skin model for preclinical gene delivery studies.
Collapse
Affiliation(s)
- Anna A Bulysheva
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | | | | | | | | | | |
Collapse
|
40
|
Šilkūnas M, Saulė R, Batiuškaitė D, Saulis G. The Electroporation as a Tool for Studying the Role of Plasma Membrane in the Mechanism of Cytotoxicity of Bisphosphonates and Menadione. J Membr Biol 2016; 249:611-621. [DOI: 10.1007/s00232-016-9895-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 03/28/2016] [Indexed: 12/21/2022]
|
41
|
Venslauskas MS, Šatkauskas S. Mechanisms of transfer of bioactive molecules through the cell membrane by electroporation. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 44:277-89. [PMID: 25939984 DOI: 10.1007/s00249-015-1025-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/26/2015] [Accepted: 04/07/2015] [Indexed: 01/19/2023]
Abstract
A short review of biophysical mechanisms for electrotransfer of bioactive molecules through the cell membrane by using electroporation is presented. The concept of transient hydrophilic aqueous pores and membrane electroporation mechanisms of single cells and cells in suspension models are analyzed. Alongside the theoretical approach, some peculiarities of drug and gene electrotransfer into cells and applications in clinical trials are discussed.
Collapse
Affiliation(s)
- Mindaugas S Venslauskas
- Biophysical Research Group, Department of Biology, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos 8, 44404, Kaunas, Lithuania,
| | | |
Collapse
|
42
|
Demiryurek Y, Nickaeen M, Zheng M, Yu M, Zahn JD, Shreiber DI, Lin H, Shan JW. Transport, resealing, and re-poration dynamics of two-pulse electroporation-mediated molecular delivery. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1706-14. [PMID: 25911207 DOI: 10.1016/j.bbamem.2015.04.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 03/16/2015] [Accepted: 04/14/2015] [Indexed: 01/08/2023]
Abstract
Electroporation is of interest for many drug-delivery and gene-therapy applications. Prior studies have shown that a two-pulse-electroporation protocol consisting of a short-duration, high-voltage first pulse followed by a longer, low-voltage second pulse can increase delivery efficiency and preserve viability. In this work the effects of the field strength of the first and second pulses and the inter-pulse delay time on the delivery of two different-sized Fluorescein-Dextran (FD) conjugates are investigated. A series of two-pulse-electroporation experiments were performed on 3T3-mouse fibroblast cells, with an alternating-current first pulse to permeabilize the cell, followed by a direct-current second pulse. The protocols were rationally designed to best separate the mechanisms of permeabilization and electrophoretic transport. The results showed that the delivery of FD varied strongly with the strength of the first pulse and the size of the target molecule. The delivered FD concentration also decreased linearly with the logarithm of the inter-pulse delay. The data indicate that membrane resealing after electropermeabilization occurs rapidly, but that a non-negligible fraction of the pores can be reopened by the second pulse for delay times on the order of hundreds of seconds. The role of the second pulse is hypothesized to be more than just electrophoresis, with a minimum threshold field strength required to reopen nano-sized pores or defects remaining from the first pulse. These results suggest that membrane electroporation, sealing, and re-poration is a complex process that has both short-term and long-term components, which may in part explain the wide variation in membrane-resealing times reported in the literature.
Collapse
Affiliation(s)
- Yasir Demiryurek
- Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854, USA
| | - Masoud Nickaeen
- Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854, USA
| | - Mingde Zheng
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Miao Yu
- Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854, USA
| | - Jeffrey D Zahn
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - David I Shreiber
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Hao Lin
- Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854, USA
| | - Jerry W Shan
- Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
43
|
Sadik MM, Yu M, Zheng M, Zahn JD, Shan JW, Shreiber DI, Lin H. Scaling relationship and optimization of double-pulse electroporation. Biophys J 2014; 106:801-12. [PMID: 24559983 DOI: 10.1016/j.bpj.2013.12.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/20/2013] [Accepted: 12/31/2013] [Indexed: 02/03/2023] Open
Abstract
The efficacy of electroporation is known to vary significantly across a wide variety of biological research and clinical applications, but as of this writing, a generalized approach to simultaneously improve efficiency and maintain viability has not been available in the literature. To address that discrepancy, we here outline an approach that is based on the mapping of the scaling relationships among electroporation-mediated molecular delivery, cellular viability, and electric pulse parameters. The delivery of Fluorescein-Dextran into 3T3 mouse fibroblast cells was used as a model system. The pulse was rationally split into two sequential phases: a first precursor for permeabilization, followed by a second one for molecular delivery. Extensive data in the parameter space of the second pulse strength and duration were collected and analyzed with flow cytometry. The fluorescence intensity correlated linearly with the second pulse duration, confirming the dominant role of electrophoresis in delivery. The delivery efficiency exhibited a characteristic sigmoidal dependence on the field strength. An examination of short-term cell death using 7-Aminoactinomycin D demonstrated a convincing linear correlation with respect to the electrical energy. Based on these scaling relationships, an optimal field strength becomes identifiable. A model study was also performed, and the results were compared with the experimental data to elucidate underlying mechanisms. The comparison reveals the existence of a critical transmembrane potential above which delivery with the second pulse becomes effective. Together, these efforts establish a general route to enhance the functionality of electroporation.
Collapse
Affiliation(s)
- Mohamed M Sadik
- Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Miao Yu
- Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Mingde Zheng
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Jeffrey D Zahn
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Jerry W Shan
- Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - David I Shreiber
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Hao Lin
- Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey.
| |
Collapse
|
44
|
Abstract
Ultrasound-mediated gene delivery with microbubbles has emerged as an attractive nonviral vector system for site-specific and noninvasive gene therapy. Ultrasound promotes intracellular uptake of therapeutic agents, particularly in the presence of microbubbles, by increasing vascular and cell membrane permeability. Several preclinical studies have reported successful gene delivery into solid tumors with significant therapeutic effects using this novel approach. This review provides background information on gene therapy and ultrasound bioeffects and discusses the current progress and overall perspectives on the application of ultrasound and microbubble-mediated gene delivery in cancer.
Collapse
|
45
|
Choi YS, Lee MY, David AE, Park YS. Nanoparticles for gene delivery: therapeutic and toxic effects. Mol Cell Toxicol 2014. [DOI: 10.1007/s13273-014-0001-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
46
|
Liu S, Ma L, Tan R, Lu Q, Geng Y, Wang G, Gu Z. Safe and efficient local gene delivery into skeletal muscle via a combination of Pluronic L64 and modified electrotransfer. Gene Ther 2014; 21:558-65. [PMID: 24694536 DOI: 10.1038/gt.2014.27] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/25/2013] [Accepted: 01/24/2014] [Indexed: 11/09/2022]
Abstract
Efficient DNA electrotransfer into muscles can be achieved by combining two types of electronic pulses sequentially: short high-voltage (HV) pulse for the cell electropermeabilization and long low-voltage (LV) pulse for the DNA electrophoresis into cells. However, the voltages currently applied can still induce histological and functional damages to tissues. Pluronic L64 has been considered as a molecule possessing cell membrane-disturbing ability. For these reasons, we hope that L64 can be used as a substitute for the HV pulse in cell membrane permeabilization, and a safe LV pulse may still keep the ability to drive plasmid DNA across the permeabilized membrane. In this work, we optimized the electrotransfer parameters to establish a safe and efficient procedure using a clinically applied instrument, and found out that the critical condition for a successful combination of electrotransfer with L64 was that the injection of plasmid/L64 mixture should be applied 1 h before the electrotransfer. In addition, we revealed that the combined procedure could not efficiently transfer plasmid into solid tumor because the uncompressed plasmid may rapidly permeate the leaky tumor vessels and flow away. Altogether, the results demonstrate that the combined procedure has the potential for plasmid-based gene therapy through safe and efficient local gene delivery into skeletal muscles.
Collapse
Affiliation(s)
- S Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - L Ma
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - R Tan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Q Lu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Y Geng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - G Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Z Gu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| |
Collapse
|
47
|
García-Sánchez T, Guitart M, Rosell-Ferrer J, Gómez-Foix AM, Bragós R. A new spiral microelectrode assembly for electroporation and impedance measurements of adherent cell monolayers. Biomed Microdevices 2014; 16:575-90. [DOI: 10.1007/s10544-014-9860-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
48
|
Kennedy SM, Aiken EJ, Beres KA, Hahn AR, Kamin SJ, Hagness SC, Booske JH, Murphy WL. Cationic peptide exposure enhances pulsed-electric-field-mediated membrane disruption. PLoS One 2014; 9:e92528. [PMID: 24671150 PMCID: PMC3966810 DOI: 10.1371/journal.pone.0092528] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 02/24/2014] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The use of pulsed electric fields (PEFs) to irreversibly electroporate cells is a promising approach for destroying undesirable cells. This approach may gain enhanced applicability if the intensity of the PEF required to electrically disrupt cell membranes can be reduced via exposure to a molecular deliverable. This will be particularly impactful if that reduced PEF minimally influences cells that are not exposed to the deliverable. We hypothesized that the introduction of charged molecules to the cell surfaces would create regions of enhanced transmembrane electric potential in the vicinity of each charged molecule, thereby lowering the PEF intensity required to disrupt the plasma membranes. This study will therefore examine if exposure to cationic peptides can enhance a PEF's ability to disrupt plasma membranes. METHODOLOGY/PRINCIPAL FINDINGS We exposed leukemia cells to 40 μs PEFs in media containing varying concentrations of a cationic peptide, polyarginine. We observed the internalization of a membrane integrity indicator, propidium iodide (PI), in real time. Based on an individual cell's PI fluorescence versus time signature, we were able to determine the relative degree of membrane disruption. When using 1-2 kV/cm, exposure to >50 μg/ml of polyarginine resulted in immediate and high levels of PI uptake, indicating severe membrane disruption, whereas in the absence of peptide, cells predominantly exhibited signatures indicative of no membrane disruption. Additionally, PI entered cells through the anode-facing membrane when exposed to cationic peptide, which was theoretically expected. CONCLUSIONS/SIGNIFICANCE Exposure to cationic peptides reduced the PEF intensity required to induce rapid and irreversible membrane disruption. Critically, peptide exposure reduced the PEF intensities required to elicit irreversible membrane disruption at normally sub-electroporation intensities. We believe that these cationic peptides, when coupled with current advancements in cell targeting techniques will be useful tools in applications where targeted destruction of unwanted cell populations is desired.
Collapse
Affiliation(s)
- Stephen M. Kennedy
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Electrical and Computer Engineering, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Erik J. Aiken
- Department of Electrical and Computer Engineering, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Kaytlyn A. Beres
- Department of Electrical and Computer Engineering, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Adam R. Hahn
- Department of Electrical and Computer Engineering, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Samantha J. Kamin
- Department of Electrical and Computer Engineering, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Susan C. Hagness
- Department of Electrical and Computer Engineering, University of Wisconsin, Madison, Wisconsin, United States of America
| | - John H. Booske
- Department of Electrical and Computer Engineering, University of Wisconsin, Madison, Wisconsin, United States of America
| | - William L. Murphy
- Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Orthopedics and Rehabilitation, University of Wisconsin, Madison, Wisconsin, United States of America
| |
Collapse
|
49
|
Mali B, Zulj S, Magjarevic R, Miklavcic D, Jarm T. Matlab-based tool for ECG and HRV analysis. Biomed Signal Process Control 2014. [DOI: 10.1016/j.bspc.2014.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
50
|
Aurisicchio L, Fridman A, Bagchi A, Scarselli E, La Monica N, Ciliberto G. A novel minigene scaffold for therapeutic cancer vaccines. Oncoimmunology 2014; 3:e27529. [PMID: 24790791 PMCID: PMC4002591 DOI: 10.4161/onci.27529] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/12/2013] [Accepted: 12/14/2013] [Indexed: 12/14/2022] Open
Abstract
Genetic vaccines are emerging as a powerful modality to induce T-cell responses to target tumor associated antigens (TAA). Viral or plasmid DNA or RNA vectors harbor an expression cassette encoding the antigen of choice delivered in vivo by vaccination. In this context, immunizations with minigenes containing selected, highly antigenic, T-cell epitopes of TAAs may have several advantages relative to full-length proteins. The objective of this study was to identify an optimal scaffold for minigene construction. We generated a number of minigenes containing epitopes from the carcinoembryonic antigen (CEA) model TAA and utilized muscle DNA electro-gene-transfer (DNA-EGT) to vaccinate HLA-A*0201 (HHD) and CEA/HHD double transgenic mice. The components utilized to construct the minigenes included CD8+ T cell epitopes and (or) anchor modified analogs that were selected on the basis of their predicted binding to HLA-*A0201, their uniqueness in the human proteome, and the likelihood of cancer cell natural processing and presentation via MHC-I. Other candidate components comparatively tested included: helper CD4+ T-cell epitopes, flanking regions for optimal epitope processing (including both proteasome-dependent and furin-dependent polypeptide processing mechanisms), and immunoenhancing moieties. Through a series of comparative studies and iterations we have identified an optimal minigene scaffold comprising the following elements: human tissue plasminogen activator (TPA) signal peptide, T-cell epitopes connected by furin sensitive linkers, and the E. Coli enterotoxin B subunit. The selected epitope modified minigenes (EMM) delivered by DNA-EGT were able to break immune tolerance in CEA/HHD mice and induce a strong immune response against all epitopes tested, independently of their relative positions within the scaffold. Furthermore, the optimized EMMs delivered via DNA-EGT were more immunogenic and exerted more powerful antitumor effects in a B16-CEA/HHD metastatic melanoma model than a DNA vector encoding the full-length protein or a mixture of the same peptides injected subcutaneously. Our data may shed light on the optimal design of a universal vehicle for epitope-targeted, genetic cancer vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | - Gennaro Ciliberto
- IRCCS, Istituto Nazionale Tumori Fondazione G. Pascale; Napoli, Italy
| |
Collapse
|