1
|
Geoffroy M, Pili L, Buffa V, Caroff M, Bigot A, Gicquel E, Rouby G, Richard I, Fragnoud R. CRISPR-Cas9 KO Cell Line Generation and Development of a Cell-Based Potency Assay for rAAV-FKRP Gene Therapy. Cells 2023; 12:2444. [PMID: 37887288 PMCID: PMC10604961 DOI: 10.3390/cells12202444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/25/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
Limb-Girdle Muscular Dystrophy R9 (LGMDR9) is a dystroglycanopathy caused by Fukutin-related protein (FKRP) defects leading to the deficiency of α-DG glycosylation, essential to membrane integrity. Recombinant adeno-associated viral vector (rAAV) gene therapy offers great therapeutic promise for such neuromuscular disorders. Pre-clinical studies have paved the way for a phase 1/2 clinical trial aiming to evaluate the safety and efficacy of FKRP gene therapy in LGMDR9 patients. To demonstrate product activity, quality, and consistency throughout product and clinical development, regulatory authorities request several quality controls, including a potency assay aiming to demonstrate and quantify the intended biological effect of the gene therapy product. In the present study, we generated FKRP knock-out (KO) cells fully depleted of α-DG glycosylation using CRISPR-Cas9 to assess the functional activity of a rAAV-FKRP gene therapy. We then developed a high-throughput On-Cell-Western methodology to evaluate the restoration of α-DG glycosylation in KO-FKRP cells and determine the biological activity of the FKRP transgene. The determination of the half maximal effective concentration (EC50) provides a method to compare the rAAV-FKRP batch using a reference standard. The generation of KO-FKRP muscle cells associated with the high-throughput On-Cell-Western technique may serve as a cell-based potency assay to assess rAAV-FKRP gene therapy products.
Collapse
Affiliation(s)
- Marine Geoffroy
- Généthon, 91000 Evry-Courcouronnes, France
- Université Paris-Saclay/Université Evry, INSERM, Généthon, Integrare Research Unit, UMR_S951, 91000 Evry, France
| | - Louna Pili
- Généthon, 91000 Evry-Courcouronnes, France
- Université Paris-Saclay/Université Evry, INSERM, Généthon, Integrare Research Unit, UMR_S951, 91000 Evry, France
| | - Valentina Buffa
- Généthon, 91000 Evry-Courcouronnes, France
- Université Paris-Saclay/Université Evry, INSERM, Généthon, Integrare Research Unit, UMR_S951, 91000 Evry, France
| | - Maëlle Caroff
- Généthon, 91000 Evry-Courcouronnes, France
- Université Paris-Saclay/Université Evry, INSERM, Généthon, Integrare Research Unit, UMR_S951, 91000 Evry, France
| | - Anne Bigot
- Institut de Myologie, Université Pierre et Marie Curie Paris 6, UM76 Univ. Paris 6/U974 UMR7215, CNRS Pitié-Salpétrière-INSERM, UMRS 974, 75000 Paris, France
| | - Evelyne Gicquel
- Généthon, 91000 Evry-Courcouronnes, France
- Université Paris-Saclay/Université Evry, INSERM, Généthon, Integrare Research Unit, UMR_S951, 91000 Evry, France
| | - Grégory Rouby
- Généthon, 91000 Evry-Courcouronnes, France
- Université Paris-Saclay/Université Evry, INSERM, Généthon, Integrare Research Unit, UMR_S951, 91000 Evry, France
| | - Isabelle Richard
- Généthon, 91000 Evry-Courcouronnes, France
- Université Paris-Saclay/Université Evry, INSERM, Généthon, Integrare Research Unit, UMR_S951, 91000 Evry, France
- Atamyo Therapeutics, 91000 Evry, France
| | - Romain Fragnoud
- Généthon, 91000 Evry-Courcouronnes, France
- Université Paris-Saclay/Université Evry, INSERM, Généthon, Integrare Research Unit, UMR_S951, 91000 Evry, France
| |
Collapse
|
2
|
Lesman D, Rodriguez Y, Rajakumar D, Wein N. U7 snRNA, a Small RNA with a Big Impact in Gene Therapy. Hum Gene Ther 2021; 32:1317-1329. [PMID: 34139889 DOI: 10.1089/hum.2021.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The uridine-rich 7 (U7) small nuclear RNA (snRNA) is a component of a small nuclear ribonucleoprotein (snRNP) complex. U7 snRNA naturally contains an antisense sequence that identifies histone premessenger RNAs (pre-mRNAs) and is involved in their 3' end processing. By altering this antisense sequence, researchers have turned U7 snRNA into a versatile tool for targeting pre-mRNAs and modifying splicing. Encapsulating a modified U7 snRNA into a viral vector such as adeno-associated virus (also referred as vectorized exon skipping/inclusion, or VES/VEI) enables the delivery of this highly efficacious splicing modulator into a range of cell lines, primary cells, and tissues. In addition, and in contrast to antisense oligonucleotides, viral delivery of U7 snRNA enables long-term expression of antisense sequences in the nucleus as part of a stable snRNP complex. As a result, VES/VEI has emerged as a promising therapeutic platform for treating a large variety of human diseases caused by errors in pre-mRNA splicing or its regulation. Here we provide an overview of U7 snRNA's natural function and its applications in gene therapy.
Collapse
Affiliation(s)
- Daniel Lesman
- Center for Gene Therapy, The Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Yacidzohara Rodriguez
- Center for Gene Therapy, The Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Dhanarajan Rajakumar
- Center for Gene Therapy, The Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Nicolas Wein
- Center for Gene Therapy, The Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatric, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
3
|
Petkova MV, Stantzou A, Morin A, Petrova O, Morales‐Gonzalez S, Seifert F, Bellec‐Dyevre J, Manoliu T, Goyenvalle A, Garcia L, Richard I, Laplace‐Builhé C, Schuelke M, Amthor H. Live‐imaging of revertant and therapeutically restored dystrophin in the
Dmd
EGFP‐mdx
mouse model for Duchenne muscular dystrophy. Neuropathol Appl Neurobiol 2020; 46:602-614. [DOI: 10.1111/nan.12639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 01/01/2023]
Affiliation(s)
- M. V. Petkova
- Université Paris‐SaclayUVSQInsermEND‐ICAP Versailles France
- Department of Neuropediatrics Charité–Universitätsmedizin Berlincorporate member of Freie Universität BerlinHumboldt‐Universität zu BerlinBerlin Institute of Health (BIH)NeuroCure Clinical Research Center Berlin Germany
| | - A. Stantzou
- Université Paris‐SaclayUVSQInsermEND‐ICAP Versailles France
| | - A. Morin
- Université Paris‐SaclayUVSQInsermEND‐ICAP Versailles France
| | - O. Petrova
- Université Paris‐SaclayUVSQInsermEND‐ICAP Versailles France
| | - S. Morales‐Gonzalez
- Department of Neuropediatrics Charité–Universitätsmedizin Berlincorporate member of Freie Universität BerlinHumboldt‐Universität zu BerlinBerlin Institute of Health (BIH)NeuroCure Clinical Research Center Berlin Germany
| | - F. Seifert
- Department of Neuropediatrics Charité–Universitätsmedizin Berlincorporate member of Freie Universität BerlinHumboldt‐Universität zu BerlinBerlin Institute of Health (BIH)NeuroCure Clinical Research Center Berlin Germany
| | - J. Bellec‐Dyevre
- Integrare (UMR_S951)InsermGénéthonUniv EvryUniversité Paris‐Saclay Evry France
| | - T. Manoliu
- Gustave RoussyUniversité Paris‐SaclayPlate‐forme Imagerie et Cytométrie.UMS AMMCa. Villejuif France
| | - A. Goyenvalle
- Université Paris‐SaclayUVSQInsermEND‐ICAP Versailles France
- LIA BAHN Centre scientifique de Monaco Monaco
| | - L. Garcia
- Université Paris‐SaclayUVSQInsermEND‐ICAP Versailles France
- LIA BAHN Centre scientifique de Monaco Monaco
| | - I. Richard
- Integrare (UMR_S951)InsermGénéthonUniv EvryUniversité Paris‐Saclay Evry France
| | - C. Laplace‐Builhé
- Gustave RoussyUniversité Paris‐SaclayPlate‐forme Imagerie et Cytométrie.UMS AMMCa. Villejuif France
| | - M. Schuelke
- Department of Neuropediatrics Charité–Universitätsmedizin Berlincorporate member of Freie Universität BerlinHumboldt‐Universität zu BerlinBerlin Institute of Health (BIH)NeuroCure Clinical Research Center Berlin Germany
| | - H. Amthor
- Université Paris‐SaclayUVSQInsermEND‐ICAP Versailles France
- Pediatric Department University Hospital Raymond Poincaré Garches France
| |
Collapse
|
4
|
Gicquel E, Maizonnier N, Foltz SJ, Martin WJ, Bourg N, Svinartchouk F, Charton K, Beedle AM, Richard I. AAV-mediated transfer of FKRP shows therapeutic efficacy in a murine model but requires control of gene expression. Hum Mol Genet 2017; 26:1952-1965. [PMID: 28334834 DOI: 10.1093/hmg/ddx066] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/17/2017] [Indexed: 02/06/2023] Open
Abstract
Limb Girdle Muscular Dystrophies type 2I (LGMD2I), a recessive autosomal muscular dystrophy, is caused by mutations in the Fukutin Related Protein (FKRP) gene. It has been proposed that FKRP, a ribitol-5-phosphate transferase, is a participant in α-dystroglycan (αDG) glycosylation, which is important to ensure the cell/matrix anchor of muscle fibers. A LGMD2I knock-in mouse model was generated to express the most frequent mutation (L276I) encountered in patients. The expression of FKRP was not altered neither at transcriptional nor at translational levels, but its function was impacted since abnormal glycosylation of αDG was observed. Skeletal muscles were functionally impaired from 2 months of age and a moderate dystrophic pattern was evident starting from 6 months of age. Gene transfer with a rAAV2/9 vector expressing Fkrp restored biochemical defects, corrected the histological abnormalities and improved the resistance to eccentric stress in the mouse model. However, injection of high doses of the vector induced a decrease of αDG glycosylation and laminin binding, even in WT animals. Finally, intravenous injection of the rAAV-Fkrp vector into a dystroglycanopathy mouse model due to Fukutin (Fktn) knock-out indicated a dose-dependent toxicity. These data suggest requirement for a control of FKRP expression in muscles.
Collapse
Affiliation(s)
- Evelyne Gicquel
- INSERM, U951, INTEGRARE Research Unit, Généthon, Evry, F-91002, France
| | | | - Steven J Foltz
- Pharmaceutical & Biomedical Sciences, University of Georgia College of Pharmacy, Athens, GA 30602, USA
| | - William J Martin
- Animal Health Research Center, University of Georgia, Athens, GA 30602, USA
| | - Nathalie Bourg
- INSERM, U951, INTEGRARE Research Unit, Généthon, Evry, F-91002, France
| | | | - Karine Charton
- INSERM, U951, INTEGRARE Research Unit, Généthon, Evry, F-91002, France
| | - Aaron M Beedle
- Pharmaceutical & Biomedical Sciences, University of Georgia College of Pharmacy, Athens, GA 30602, USA.,Pharmaceutical Sciences, Binghamton University SUNY, Binghamton, NY 13902, USA
| | - Isabelle Richard
- INSERM, U951, INTEGRARE Research Unit, Généthon, Evry, F-91002, France
| |
Collapse
|
5
|
Beedle AM. Cryosectioning of Contiguous Regions of a Single Mouse Skeletal Muscle for Gene Expression and Histological Analyses. J Vis Exp 2016. [PMID: 28060301 DOI: 10.3791/55058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
With this method, consecutive cryosections are collected to enable both microscopy applications for tissue histology and enrichment of RNA for gene expression using adjacent regions from a single mouse skeletal muscle. Typically, it is challenging to achieve adequate homogenization of small skeletal muscle samples because buffer volumes may be too low for efficient grinding applications, yet without sufficient mechanical disruption, the dense tissue architecture of muscle limits penetration of buffer reagents, ultimately causing low RNA yield. By following the protocol reported here, 30 μm sections are collected and pooled allowing cryosectioning and subsequent needle homogenization to mechanically disrupt the muscle, increasing the surface area exposed for buffer penetration. The primary limitations of the technique are that it requires a cryostat, and it is relatively low throughput. However, high-quality RNA can be obtained from small samples of pooled muscle cryosections, making this method accessible for many different skeletal muscles and other tissues. Furthermore, this technique enables matched analyses (e.g., tissue histopathology and gene expression) from adjacent regions of a single skeletal muscle so that measurements can be directly compared across applications to reduce experimental uncertainty and to reduce replicative animal experiments necessary to source a small tissue for multiple applications.
Collapse
Affiliation(s)
- Aaron M Beedle
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia;
| |
Collapse
|
6
|
Rapid, scalable, and low-cost purification of recombinant adeno-associated virus produced by baculovirus expression vector system. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16035. [PMID: 27226971 PMCID: PMC4867670 DOI: 10.1038/mtm.2016.35] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 12/14/2022]
Abstract
Recombinant adeno-associated viruses (rAAV) are largely used for gene transfer in research, preclinical developments, and clinical trials. Their broad in vivo biodistribution and long-term efficacy in postmitotic tissues make them good candidates for numerous gene transfer applications. Upstream processes able to produce large amounts of rAAV were developed, particularly those using baculovirus expression vector system. In parallel, downstream processes present a large panel of purification methods, often including multiple and time consuming steps. Here, we show that simple tangential flow filtration, coupled with an optimized iodixanol-based isopycnic density gradient, is sufficient to purify several liters of crude lysate produced by baculovirus expression vector system in only one working day, leading to high titers and good purity of rAAV products. Moreover, we show that the viral vectors retain their in vitro and in vivo functionalities. Our results demonstrate that simple, rapid, and relatively low-cost methods can easily be implemented for obtaining a high-quality grade of gene therapy products based on rAAV technology.
Collapse
|
7
|
Simple downstream process based on detergent treatment improves yield and in vivo transduction efficacy of adeno-associated virus vectors. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2015. [PMID: 26207258 PMCID: PMC4502676 DOI: 10.1038/mtm.2015.24] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Recombinant adeno-associated viruses (rAAV) are promising candidates for gene therapy approaches. The last two decades were particularly fruitful in terms of processes applied in the production and purification of this type of gene transfer vectors. This rapid technological evolution led to better yields and higher levels of vector purity. Recently, some reports showed that rAAV produced by transient tri-transfection method in adherent human embryonic kidney 293 cells can be harvested directly from supernatant, leading to easier and faster purification compared to classical virus extraction from cell pellets. Here, we compare these approaches with new vector recovery method using small quantity of detergent at the initial clarification step to treat the whole transfected cell culture. Coupled with tangential flow filtration and iodixanol-based isopycnic density gradient, this new method significantly increases rAAV yields and conserves high vector purity. Moreover, this approach leads to the reduction of the total process duration. Finally, the vectors maintain their functionality, showing unexpected higher in vitro and in vivo transduction efficacies. This new development in rAAV downstream process once more demonstrates the great capacity of these vectors to easily accommodate to large panel of methods, able to furthermore ameliorate their safety, functionality, and scalability.
Collapse
|
8
|
Morró M, Teichenne J, Jimenez V, Kratzer R, Marletta S, Maggioni L, Mallol C, Ruberte J, Kochanek S, Bosch F, Ayuso E. Pancreatic transduction by helper-dependent adenoviral vectors via intraductal delivery. Hum Gene Ther 2015; 25:824-36. [PMID: 25046147 DOI: 10.1089/hum.2013.182] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pancreatic gene transfer could be useful to treat several diseases, such as diabetes mellitus, cystic fibrosis, chronic pancreatitis, or pancreatic cancer. Helper-dependent adenoviral vectors (HDAds) are promising tools for gene therapy because of their large cloning capacity, high levels of transgene expression, and long-term persistence in immunocompetent animals. Nevertheless, the ability of HDAds to transduce the pancreas in vivo has not been investigated yet. Here, we have generated HDAds carrying pancreas-specific expression cassettes, that is, driven either by the elastase or insulin promoter, using a novel and convenient plasmid family and homologous recombination in bacteria. These HDAds were delivered to the pancreas of immunocompetent mice via intrapancreatic duct injection. HDAds, encoding a CMV-GFP reporter cassette, were able to transduce acinar and islet cells, but transgene expression was lost 15 days postinjection in correlation with severe lymphocytic infiltration. When HDAds encoding GFP under the control of the specific elastase promoter were used, expression was detected in acinar cells, but similarly, the expression almost disappeared 30 days postinjection and lymphocytic infiltration was also observed. In contrast, long-term transgene expression (>8 months) was achieved with HDAds carrying the insulin promoter and the secretable alkaline phosphatase as the reporter gene. Notably, transduction of the liver, the preferred target for adenovirus, was minimal by this route of delivery. These data indicate that HDAds could be used for pancreatic gene therapy but that selection of the expression cassette is of critical importance to achieve long-term expression of the transgene in this tissue.
Collapse
Affiliation(s)
- Meritxell Morró
- 1 Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona , Bellaterra 08193, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Pryadkina M, Lostal W, Bourg N, Charton K, Roudaut C, Hirsch ML, Richard I. A comparison of AAV strategies distinguishes overlapping vectors for efficient systemic delivery of the 6.2 kb Dysferlin coding sequence. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2015; 2:15009. [PMID: 26029720 PMCID: PMC4445010 DOI: 10.1038/mtm.2015.9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 01/29/2015] [Accepted: 01/29/2015] [Indexed: 12/12/2022]
Abstract
Recombinant adeno-associated virus (rAAV) is currently the best vector for gene delivery into the skeletal muscle. However, the 5-kb packaging size of this virus is a major obstacle for large gene transfer. This past decade, many different strategies were developed to circumvent this issue (concatemerization-splicing, overlapping vectors, hybrid dual or fragmented AAV). Loss of function mutations in the DYSF gene whose coding sequence is 6.2kb lead to progressive muscular dystrophies (LGMD2B: OMIM_253601; MM: OMIM_254130; DMAT: OMIM_606768). In this study, we compared large gene transfer techniques to deliver the DYSF gene into the skeletal muscle. After rAAV8s intramuscular injection into dysferlin deficient mice, we showed that the overlap strategy is the most effective approach to reconstitute a full-length messenger. After systemic administration, the level of dysferlin obtained on different muscles corresponded to 0.5- to 2-fold compared to the normal level. We further demonstrated that the overlapping vector set was efficient to correct the histopathology, resistance to eccentric contractions and whole body force in the dysferlin deficient mice. Altogether, these data indicate that using overlapping vectors could be a promising approach for a potential clinical treatment of dysferlinopathies.
Collapse
Affiliation(s)
- Marina Pryadkina
- Inserm, U951 , Evry, France ; Genethon, R&D Department, INTEGRARE Research Unit , Evry, France
| | - William Lostal
- Inserm, U951 , Evry, France ; Genethon, R&D Department, INTEGRARE Research Unit , Evry, France
| | - Nathalie Bourg
- Inserm, U951 , Evry, France ; Genethon, R&D Department, INTEGRARE Research Unit , Evry, France
| | - Karine Charton
- Inserm, U951 , Evry, France ; Genethon, R&D Department, INTEGRARE Research Unit , Evry, France
| | - Carinne Roudaut
- Inserm, U951 , Evry, France ; Genethon, R&D Department, INTEGRARE Research Unit , Evry, France
| | - Matthew L Hirsch
- Gene Therapy Center, University of North Carolina , Chapel Hill, North Carolina, USA ; Department of Ophthalmology, University of North Carolina , Chapel Hill, North Carolina, USA
| | - Isabelle Richard
- Inserm, U951 , Evry, France ; Genethon, R&D Department, INTEGRARE Research Unit , Evry, France
| |
Collapse
|
10
|
Le Guiner C, Montus M, Servais L, Cherel Y, Francois V, Thibaud JL, Wary C, Matot B, Larcher T, Guigand L, Dutilleul M, Domenger C, Allais M, Beuvin M, Moraux A, Le Duff J, Devaux M, Jaulin N, Guilbaud M, Latournerie V, Veron P, Boutin S, Leborgne C, Desgue D, Deschamps JY, Moullec S, Fromes Y, Vulin A, Smith RH, Laroudie N, Barnay-Toutain F, Rivière C, Bucher S, Le TH, Delaunay N, Gasmi M, Kotin RM, Bonne G, Adjali O, Masurier C, Hogrel JY, Carlier P, Moullier P, Voit T. Forelimb treatment in a large cohort of dystrophic dogs supports delivery of a recombinant AAV for exon skipping in Duchenne patients. Mol Ther 2014; 22:1923-35. [PMID: 25200009 PMCID: PMC4429735 DOI: 10.1038/mt.2014.151] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 07/14/2014] [Indexed: 02/07/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe muscle-wasting disorder caused by mutations in the dystrophin gene, without curative treatment yet available. Our study provides, for the first time, the overall safety profile and therapeutic dose of a recombinant adeno-associated virus vector, serotype 8 (rAAV8) carrying a modified U7snRNA sequence promoting exon skipping to restore a functional in-frame dystrophin transcript, and injected by locoregional transvenous perfusion of the forelimb. Eighteen Golden Retriever Muscular Dystrophy (GRMD) dogs were exposed to increasing doses of GMP-manufactured vector. Treatment was well tolerated in all, and no acute nor delayed adverse effect, including systemic and immune toxicity was detected. There was a dose relationship for the amount of exon skipping with up to 80% of myofibers expressing dystrophin at the highest dose. Similarly, histological, nuclear magnetic resonance pathological indices and strength improvement responded in a dose-dependent manner. The systematic comparison of effects using different independent methods, allowed to define a minimum threshold of dystrophin expressing fibers (>33% for structural measures and >40% for strength) under which there was no clear-cut therapeutic effect. Altogether, these results support the concept of a phase 1/2 trial of locoregional delivery into upper limbs of nonambulatory DMD patients.
Collapse
Affiliation(s)
- Caroline Le Guiner
- Atlantic Gene Therapies, INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
- Généthon, Evry, France
| | | | - Laurent Servais
- Institut de Myologie, Service of Clinical Trials and Databases, Paris, France
| | - Yan Cherel
- Atlantic Gene Therapies, INRA UMR 703, ONIRIS, Nantes, France
| | - Virginie Francois
- Atlantic Gene Therapies, INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
| | - Jean-Laurent Thibaud
- Institut de Myologie, Laboratoire RMN, AIM & CEA, Paris, France
- UPR de Neurobiologie, Ecole Nationale Vétérinaire d'Alfort, Maisons Alfort, France
| | - Claire Wary
- Institut de Myologie, Laboratoire RMN, AIM & CEA, Paris, France
| | - Béatrice Matot
- Institut de Myologie, Laboratoire RMN, AIM & CEA, Paris, France
| | - Thibaut Larcher
- Atlantic Gene Therapies, INRA UMR 703, ONIRIS, Nantes, France
| | - Lydie Guigand
- Atlantic Gene Therapies, INRA UMR 703, ONIRIS, Nantes, France
| | - Maeva Dutilleul
- Atlantic Gene Therapies, INRA UMR 703, ONIRIS, Nantes, France
| | - Claire Domenger
- Atlantic Gene Therapies, INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
| | - Marine Allais
- Atlantic Gene Therapies, INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
| | - Maud Beuvin
- Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, Université Pierre and Marie Curie Paris 6 UPMC-INSERM UMR 974, CNRS FRE 3617, Paris, France
| | - Amélie Moraux
- Institut de Myologie, Neuromuscular Physiology and Evaluation Laboratory, Paris, France
| | - Johanne Le Duff
- Atlantic Gene Therapies, INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
| | - Marie Devaux
- Atlantic Gene Therapies, INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
| | - Nicolas Jaulin
- Atlantic Gene Therapies, INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
| | - Mickaël Guilbaud
- Atlantic Gene Therapies, INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
| | | | | | | | | | | | - Jack-Yves Deschamps
- Atlantic Gene Therapies, INRA UMR 703, ONIRIS, Nantes, France
- Atlantic Gene Therapies, Centre de Boisbonne, ONIRIS, Nantes, France
| | - Sophie Moullec
- Atlantic Gene Therapies, Centre de Boisbonne, ONIRIS, Nantes, France
| | - Yves Fromes
- Atlantic Gene Therapies, Centre de Boisbonne, ONIRIS, Nantes, France
| | - Adeline Vulin
- Research Institute, Center for Gene Therapy, Nationwide Childrens Hospital, Columbus, Ohio, USA
| | - Richard H Smith
- Laboratory of Molecular Virology and Gene Therapy, National Heart Lung and Blood Institute, National Institute of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | - Robert M Kotin
- Laboratory of Molecular Virology and Gene Therapy, National Heart Lung and Blood Institute, National Institute of Health, Bethesda, Maryland, USA
| | - Gisèle Bonne
- Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, Université Pierre and Marie Curie Paris 6 UPMC-INSERM UMR 974, CNRS FRE 3617, Paris, France
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, U.F. Cardiogénétique et Myogénétique, Service de Biochimie Métabolique, Paris, France
| | - Oumeya Adjali
- Atlantic Gene Therapies, INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
| | | | - Jean-Yves Hogrel
- Institut de Myologie, Neuromuscular Physiology and Evaluation Laboratory, Paris, France
| | - Pierre Carlier
- Institut de Myologie, Laboratoire RMN, AIM & CEA, Paris, France
| | - Philippe Moullier
- Atlantic Gene Therapies, INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
- Généthon, Evry, France
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| | - Thomas Voit
- Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, Université Pierre and Marie Curie Paris 6 UPMC-INSERM UMR 974, CNRS FRE 3617, Paris, France
| |
Collapse
|
11
|
Lostal W, Kodippili K, Yue Y, Duan D. Full-length dystrophin reconstitution with adeno-associated viral vectors. Hum Gene Ther 2014; 25:552-62. [PMID: 24580018 DOI: 10.1089/hum.2013.210] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is the most common lethal muscle disorder in children. It is caused by mutations of the dystrophin gene. Adeno-associated virus (AAV)-mediated gene replacement therapy has been actively pursued to treat DMD. However, this promising therapeutic modality has been challenged by the small packaging capacity of the AAV vector. The size of the full-length dystrophin cDNA is >11 kb, while an AAV virus can carry only a 5 kb genome. Innovative high-capacity AAV vectors may offer an opportunity to express the full-length dystrophin coding sequence. Here we describe several sets of tri-AAV vectors for full-length human dystrophin delivery. In each set, the full-length human dystrophin cDNA was split into three fragments and independently packaged into separate recombinant AAV vectors. Each vector was engineered with unique recombination signals for directional recombination. Tri-AAV vectors were coinjected into the tibialis anterior muscle of dystrophin-deficient mdx4cv mice. Thirty-five days after injection, dystrophin expression was examined by immunofluorescence staining. Despite low reconstitution efficiency, full-length human dystrophin was successfully expressed from the tri-AAV vectors. Our results suggest that AAV can be engineered to express an extra-large (up to 15 kb) gene that is approximately three times the size of the wild-type AAV genome. Further optimization of the trivector strategy may expand the utility of AAV for human gene therapy.
Collapse
Affiliation(s)
- William Lostal
- 1 Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri , Columbia, MO 65212
| | | | | | | |
Collapse
|
12
|
Mahmood OA, Jiang XM. Limb-girdle muscular dystrophies: where next after six decades from the first proposal (Review). Mol Med Rep 2014; 9:1515-32. [PMID: 24626787 PMCID: PMC4020495 DOI: 10.3892/mmr.2014.2048] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 01/27/2014] [Indexed: 12/13/2022] Open
Abstract
Limb-girdle muscular dystrophies (LGMD) are a heterogeneous group of disorders, which has led to certain investigators disputing its rationality. The mutual feature of LGMD is limb-girdle affection. Magnetic resonance imaging (MRI), perioral skin biopsies, blood-based assays, reverse-protein arrays, proteomic analyses, gene chips and next generation sequencing are the leading diagnostic techniques for LGMD and gene, cell and pharmaceutical treatments are the mainstay therapies for these genetic disorders. Recently, more highlights have been shed on disease biomarkers to follow up disease progression and to monitor therapeutic responsiveness in future trials. In this study, we review LGMD from a variety of aspects, paying specific attention to newly evolving research, with the purpose of bringing this information into the clinical setting to aid the development of novel therapeutic strategies for this hereditary disease. In conclusion, substantial progress in our ability to diagnose and treat LGMD has been made in recent decades, however enhancing our understanding of the detailed pathophysiology of LGMD may enhance our ability to improve disease outcome in subsequent years.
Collapse
Affiliation(s)
- Omar A Mahmood
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xin Mei Jiang
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
13
|
Lorain S, Peccate C, Le Hir M, Griffith G, Philippi S, Précigout G, Mamchaoui K, Jollet A, Voit T, Garcia L. Dystrophin rescue by trans-splicing: a strategy for DMD genotypes not eligible for exon skipping approaches. Nucleic Acids Res 2013; 41:8391-402. [PMID: 23861443 PMCID: PMC3783188 DOI: 10.1093/nar/gkt621] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
RNA-based therapeutic approaches using splice-switching oligonucleotides have been successfully applied to rescue dystrophin in Duchenne muscular dystrophy (DMD) preclinical models and are currently being evaluated in DMD patients. Although the modular structure of dystrophin protein tolerates internal deletions, many mutations that affect nondispensable domains of the protein require further strategies. Among these, trans-splicing technology is particularly attractive, as it allows the replacement of any mutated exon by its normal version as well as introducing missing exons or correcting duplication mutations. We have applied such a strategy in vitro by using cotransfection of pre–trans-splicing molecule (PTM) constructs along with a reporter minigene containing part of the dystrophin gene harboring the stop-codon mutation found in the mdx mouse model of DMD. Optimization of the different functional domains of the PTMs allowed achieving accurate and efficient trans-splicing of up to 30% of the transcript encoded by the cotransfected minigene. Optimized parameters included mRNA stabilization, choice of splice site sequence, inclusion of exon splice enhancers and artificial intronic sequence. Intramuscular delivery of adeno-associated virus vectors expressing PTMs allowed detectable levels of dystrophin in mdx and mdx4Cv, illustrating that a given PTM can be suitable for a variety of mutations.
Collapse
Affiliation(s)
- Stéphanie Lorain
- Thérapie des maladies du muscle strié, Um76 UPMC - UMR 7215 CNRS - U974 Inserm - Institut de Myologie, 75013 Paris, France and UFR des Sciences de la Santé, Université de Versailles Saint-Quentin-en-Yvelines, 78180 Montigny-le-Bretonneux, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
AAV genome loss from dystrophic mouse muscles during AAV-U7 snRNA-mediated exon-skipping therapy. Mol Ther 2013; 21:1551-8. [PMID: 23752313 DOI: 10.1038/mt.2013.121] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 04/29/2013] [Indexed: 11/08/2022] Open
Abstract
In the context of future adeno-associated viral (AAV)-based clinical trials for Duchenne myopathy, AAV genome fate in dystrophic muscles is of importance considering the viral capsid immunogenicity that prohibits recurring treatments. We showed that AAV genomes encoding non-therapeutic U7 were lost from mdx dystrophic muscles within 3 weeks after intramuscular injection. In contrast, AAV genomes encoding U7ex23 restoring expression of a slightly shortened dystrophin were maintained endorsing that the arrest of the dystrophic process is crucial for maintaining viral genomes in transduced fibers. Indeed, muscles treated with low doses of AAV-U7ex23, resulting in sub-optimal exon skipping, displayed much lower titers of viral genomes, showing that sub-optimal dystrophin restoration does not prevent AAV genome loss. We also followed therapeutic viral genomes in severe dystrophic dKO mice over time after systemic treatment with scAAV9-U7ex23. Dystrophin restoration decreased significantly between 3 and 12 months in various skeletal muscles, which was correlated with important viral genome loss, except in the heart. Altogether, these data show that the success of future AAV-U7 therapy for Duchenne patients would require optimal doses of AAV-U7 to induce substantial levels of dystrophin to stabilize the treated fibers and maintain the long lasting effect of the treatment.
Collapse
|
15
|
Transduction of skeletal muscles with common reporter genes can promote muscle fiber degeneration and inflammation. PLoS One 2012; 7:e51627. [PMID: 23251598 PMCID: PMC3520959 DOI: 10.1371/journal.pone.0051627] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 11/05/2012] [Indexed: 12/12/2022] Open
Abstract
Recombinant adeno-associated viral vectors (rAAV vectors) are promising tools for delivering transgenes to skeletal muscle, in order to study the mechanisms that control the muscle phenotype, and to ameliorate diseases that perturb muscle homeostasis. Many studies have employed rAAV vectors carrying reporter genes encoding for β-galactosidase (β-gal), human placental alkaline phosphatase (hPLAP), and green fluorescent protein (GFP) as experimental controls when studying the effects of manipulating other genes. However, it is not clear to what extent these reporter genes can influence signaling and gene expression signatures in skeletal muscle, which may confound the interpretation of results obtained in experimentally manipulated muscles. Herein, we report a strong pro-inflammatory effect of expressing reporter genes in skeletal muscle. Specifically, we show that the administration of rAAV6:hPLAP vectors to the hind limb muscles of mice is associated with dose- and time-dependent macrophage recruitment, and skeletal muscle damage. Dose-dependent expression of hPLAP also led to marked activity of established pro-inflammatory IL-6/Stat3, TNFα, IKKβ and JNK signaling in lysates obtained from homogenized muscles. These effects were independent of promoter type, as expression cassettes featuring hPLAP under the control of constitutive CMV and muscle-specific CK6 promoters both drove cellular responses when matched for vector dose. Importantly, the administration of rAAV6:GFP vectors did not induce muscle damage or inflammation except at the highest doses we examined, and administration of a transgene-null vector (rAAV6:MCS) did not cause damage or inflammation at any of the doses tested, demonstrating that GFP-expressing, or transgene-null vectors may be more suitable as experimental controls. The studies highlight the importance of considering the potential effects of reporter genes when designing experiments that examine gene manipulation in vivo.
Collapse
|
16
|
Poupiot J, Ausseil J, Richard I. Methods for noninvasive monitoring of muscle fiber survival with an AAV vector encoding the mSEAP reporter gene. Methods Mol Biol 2011; 709:63-74. [PMID: 21194021 DOI: 10.1007/978-1-61737-982-6_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Muscular dystrophies (MD) are a group of genetically and phenotypically heterogeneous inherited disorders characterized by the progressive degeneration of the skeletal muscle tissue. In the last decade, a tremendous amount of studies were performed to test therapeutic strategies in animal models. Evaluation of such strategies requires the use of criteria predictive of their therapeutic relevance. Here we describe a simple, noninvasive assay to monitor muscle degenerative process. An adeno-associated vector encoding a secreted form of murine embryonic alkaline phosphatase (mSEAP) reporter gene is administrated at the time of treatment. The amount of circulating mSEAP will reflect the level of myofiber survival. We tested this assay with therapeutic gene transfer. We found a strong correlation between therapeutic gene expression/muscle disease amelioration and the circulating levels of mSEAP. The assay will be very useful for monitoring muscle cell survival after therapeutic intervention.
Collapse
Affiliation(s)
- Jérôme Poupiot
- Généthon - CNRS-UMR8587 LAMBE, 1 bis rue de l'Internationale, Evry, France
| | | | | |
Collapse
|
17
|
Lu QL, Yokota T, Takeda S, Garcia L, Muntoni F, Partridge T. The status of exon skipping as a therapeutic approach to duchenne muscular dystrophy. Mol Ther 2010; 19:9-15. [PMID: 20978473 DOI: 10.1038/mt.2010.219] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is associated with mutations in the dystrophin gene that disrupt the open reading frame whereas the milder Becker's form is associated with mutations which leave an in-frame mRNA transcript that can be translated into a protein that includes the N- and C- terminal functional domains. It has been shown that by excluding specific exons at, or adjacent to, frame-shifting mutations, open reading frame can be restored to an out-of-frame mRNA, leading to the production of a partially functional Becker-like dystrophin protein. Such targeted exclusion can be achieved by administration of oligonucleotides that are complementary to sequences that are crucial to normal splicing of the exon into the transcript. This principle has been validated in mouse and canine models of DMD with a number of variants of oligonucleotide analogue chemistries and by transduction with adeno-associated virus (AAV)-small nuclear RNA (snRNA) reagents encoding the antisense sequence. Two different oligonucleotide agents are now being investigated in human trials for splicing out of exon 51 with some early indications of success at the biochemical level.
Collapse
Affiliation(s)
- Qi-Long Lu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Neuromuscular/ALS Center, Carolinas Medical Center, Charlotte, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
18
|
Lostal W, Bartoli M, Bourg N, Roudaut C, Bentaïb A, Miyake K, Guerchet N, Fougerousse F, McNeil P, Richard I. Efficient recovery of dysferlin deficiency by dual adeno-associated vector-mediated gene transfer. Hum Mol Genet 2010; 19:1897-907. [PMID: 20154340 DOI: 10.1093/hmg/ddq065] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Deficiency of the dysferlin protein presents as two major clinical phenotypes: limb-girdle muscular dystrophy type 2B and Miyoshi myopathy. Dysferlin is known to participate in membrane repair, providing a potential hypothesis to the underlying pathophysiology of these diseases. The size of the dysferlin cDNA prevents its direct incorporation into an adeno-associated virus (AAV) vector for therapeutic gene transfer into muscle. To bypass this limitation, we split the dysferlin cDNA at the exon 28/29 junction and cloned it into two independent AAV vectors carrying the appropriate splicing sequences. Intramuscular injection of the corresponding vectors into a dysferlin-deficient mouse model led to the expression of full-length dysferlin for at least 1 year. Importantly, systemic injection in the tail vein of the two vectors led to a widespread although weak expression of the full-length protein. Injections were associated with an improvement of the histological aspect of the muscle, a reduction in the number of necrotic fibers, restoration of membrane repair capacity and a global improvement in locomotor activity. Altogether, these data support the use of such a strategy for the treatment of dysferlin deficiency.
Collapse
Affiliation(s)
- William Lostal
- Généthon, CNRS UMR8587 LAMBE, 1, rue de l'Internationale, 91000 Evry, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Pham L, Nakamura T, Gabriela Rosales A, Carlson SK, Bailey KR, Peng KW, Russell SJ. Concordant activity of transgene expression cassettes inserted into E1, E3 and E4 cloning sites in the adenovirus genome. J Gene Med 2009; 11:197-206. [PMID: 19140107 DOI: 10.1002/jgm.1289] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Expression cassettes can be inserted at several positions into recombinant adenoviral genomes but the implications of this choice for transgene expression level have not been determined. Knowledge of the relative expression levels of transgenes inserted at different sites in the adenoviral genome is of particular significance for transgene expression monitoring approaches that rely on the concordant expression of a marker transgene inserted elsewhere in the viral genome. METHODS Three expression cassettes, each comprising a cytomegalovirus promoter driving one of three marker peptides [serum carcinoembryonic antigen (sCEA), beta subunit of human chorionic gonadotropin (betahCG) or human sodium iodide symporter (hNIS)], were inserted into E1, E3 or E4 cloning sites in a recombinant adenoviral vector backbone. High titer stocks of bicistronic adenoviral vectors coding for combinations of marker peptides were prepared. A panel of human cells of various lineages was infected with the vectors and expression ratios of the transgene-encoded proteins were analysed. Serum levels of the soluble proteins and hepatic uptake of radioactive iodine were also compared in vivo in nude rats after intravenous vector infusion. RESULTS High concordance of expression between the inserted transgenes was observed in all of the bicistronic vectors irrespective of whether the expression cassettes were placed in the E1, E3 or E4 regions. Concordance was maintained across multiple cell lineages. In vivo, in athymic rats, blood and urine levels of betahCG were highly concordant with serum levels of sCEA at all timepoints after intravenous infusion of the bicistronic vectors encoding both of these soluble markers. Hepatic radioiodine uptake was concordant with serum CEA concentration in mice infused with a bicistronic vector expressing CEA and NIS. CONCLUSIONS The expression level of a given transgene in an adenoviral vector genome can be accurately and quantitatively inferred from the expression of a marker protein encoded by a second transgene inserted elsewhere in the vector genome.
Collapse
Affiliation(s)
- Linh Pham
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Real-time monitoring of cell transplantation in mouse dystrophic muscles by a secreted alkaline phosphatase reporter gene. Gene Ther 2009; 16:815-9. [PMID: 19282846 DOI: 10.1038/gt.2009.28] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transplantation of muscle precursor cells (MPCs) is a promising approach for the treatment of muscular dystrophies. However, preclinical and clinical results have shown that the technology is not yet efficient enough for most therapeutic applications. Among the problems that remain unsolved are low cellular survival, poor proliferation and lack of migration of the transplanted cells. One major technical hurdle for the optimization of transplantation protocols is how to follow precisely the fate of the cells after transplantation. In this study, we examined the use of a secreted form of the mouse alkaline phosphatase (mSeAP) enzyme as the reporter system transduced into MPCs using a retroviral vector. We show that circulating mSeAP could be detected in the serum of the transplanted mice at different time points after MPC transplantation. We also found that the level of circulating mSeAP is highly correlated with the number of transplanted cells and that mSeAP is an excellent histological marker. Further, studying the levels of circulating mSeAP compared with the number of muscle fibers positive to mSeAP and to dystrophin, enabled detailed analyses of bottleneck steps for successful transplantation. Taken together, our results show that mSeAP is an excellent quantitative 'real-time' reporter gene for cell therapy preclinical studies.
Collapse
|
21
|
Laure L, Suel L, Roudaut C, Bourg N, Ouali A, Bartoli M, Richard I, Danièle N. Cardiac ankyrin repeat protein is a marker of skeletal muscle pathological remodelling. FEBS J 2009; 276:669-84. [PMID: 19143834 DOI: 10.1111/j.1742-4658.2008.06814.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In an attempt to identify potential therapeutic targets for the correction of muscle wasting, the gene expression of several pivotal proteins involved in protein metabolism was investigated in experimental atrophy induced by transient or definitive denervation, as well as in four animal models of muscular dystrophies (deficient for calpain 3, dysferlin, alpha-sarcoglycan and dystrophin, respectively). The results showed that: (a) the components of the ubiquitin-proteasome pathway are upregulated during the very early phases of atrophy but do not greatly increase in the muscular dystrophy models; (b) forkhead box protein O1 mRNA expression is augmented in the muscles of a limb girdle muscular dystrophy 2A murine model; and (c) the expression of cardiac ankyrin repeat protein (CARP), a regulator of transcription factors, appears to be persistently upregulated in every condition, suggesting that CARP could be a hub protein participating in common pathological molecular pathway(s). Interestingly, the mRNA level of a cell cycle inhibitor known to be upregulated by CARP in other tissues, p21(WAF1/CIP1), is consistently increased whenever CARP is upregulated. CARP overexpression in muscle fibres fails to affect their calibre, indicating that CARP per se cannot initiate atrophy. However, a switch towards fast-twitch fibres is observed, suggesting that CARP plays a role in skeletal muscle plasticity. The observation that p21(WAF1/CIP1) is upregulated, put in perspective with the effects of CARP on the fibre type, fits well with the idea that the mechanisms at stake might be required to oppose muscle remodelling in skeletal muscle.
Collapse
|
22
|
Lorain S, Gross DA, Goyenvalle A, Danos O, Davoust J, Garcia L. Transient Immunomodulation Allows Repeated Injections of AAV1 and Correction of Muscular Dystrophy in Multiple Muscles. Mol Ther 2008; 16:541-7. [DOI: 10.1038/sj.mt.6300377] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
23
|
Bartoli M, Poupiot J, Vulin A, Fougerousse F, Arandel L, Daniele N, Roudaut C, Noulet F, Garcia L, Danos O, Richard I. AAV-mediated delivery of a mutated myostatin propeptide ameliorates calpain 3 but not α-sarcoglycan deficiency. Gene Ther 2007; 14:733-40. [PMID: 17330087 DOI: 10.1038/sj.gt.3302928] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Myostatin is a negative regulator of muscle mass whose inhibition has been proposed as a therapeutic strategy for muscle-wasting conditions. Indeed, blocking myostatin action through different strategies has proved beneficial for the pathophysiology of the dystrophin-deficient mdx mouse. In this report, we tested the inhibition of myostatin by AAV-mediated expression of a mutated propeptide in animal models of two limb-girdle muscular dystrophies: LGMD2A caused by mutations in the calpain 3 (CAPN3) gene and LGMD2D caused by mutations in the alpha-sarcoglycan gene (SGCA). In the highly regenerative Sgca-null mice, survival of the alpha-sarcoglycan-deficient muscle fibers did not improve after transfer of the myostatin propeptide. In calpain 3-deficient mice, a boost in muscle mass and an increase in absolute force were obtained, suggesting that myostatin inhibition could constitute a therapeutic strategy in this predominantly atrophic disorder.
Collapse
Affiliation(s)
- M Bartoli
- Généthon, CNRS UMR8115, Evry, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Danièle N, Richard I, Bartoli M. Ins and outs of therapy in limb girdle muscular dystrophies. Int J Biochem Cell Biol 2007; 39:1608-24. [PMID: 17339125 DOI: 10.1016/j.biocel.2007.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 02/02/2007] [Accepted: 02/05/2007] [Indexed: 12/11/2022]
Abstract
Muscular dystrophies are hereditary degenerative muscle diseases that cause life-long disability in patients. They comprise the well-known Duchenne Muscular Dystrophy (DMD) but also the group of Limb Girdle Muscular Dystrophies (LGMD) which account for a third to a fourth of DMD cases. From the clinical point of view, LGMD are characterised by predominant effects on the proximal limb muscles. The LGMD group is still growing today and consists of 19 autosomal dominant and recessive forms (LGMD1A to LGMD1G and LGMD2A to LGMD2M). The proteins involved are very diverse and include sarcomeric, sarcolemmal and enzymatic proteins. With respect to this variability and in line with the intense search for a potent therapeutic approach for DMD, many different strategies have been tested in rodent models. These include replacing the lost function by gene transfer or stem cell transplantation, using a related protein for functional substitution, increasing muscle mass, or blocking the molecular pathological mechanisms by pharmacological means to alleviate the symptoms. The purpose of this review is to summarize current data arising from these preclinical studies and to examine the potential of the tested strategies to lead to clinical applications.
Collapse
|
25
|
Fougerousse F, Bartoli M, Poupiot J, Arandel L, Durand M, Guerchet N, Gicquel E, Danos O, Richard I. Phenotypic Correction of α-Sarcoglycan Deficiency by Intra-arterial Injection of a Muscle-specific Serotype 1 rAAV Vector. Mol Ther 2007; 15:53-61. [PMID: 17164775 DOI: 10.1038/sj.mt.6300022] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Accepted: 09/14/2006] [Indexed: 11/08/2022] Open
Abstract
alpha-Sarcoglycanopathy (limb-girdle muscular dystrophy type 2D, LGMD2D) is a recessive muscular disorder caused by deficiency in alpha-sarcoglycan, a transmembrane protein part of the dystrophin-associated complex. To date, no treatment exists for this disease. We constructed recombinant pseudotype-1 adeno-associated virus (rAAV) vectors expressing the human alpha-sarcoglycan cDNA from a ubiquitous or a muscle-specific promoter. Evidence of specific immune response leading to disappearance of the vector was observed with the ubiquitous promoter. In contrast, efficient and sustained transgene expression with correct sarcolemmal localization and without evident toxicity was obtained with the muscle-specific promoter after intra-arterial injection into the limbs of an LGMD2D murine model. Transgene expression resulted in restoration of the sarcoglycan complex, histological improvement, membrane stabilization, and correction of pseudohypertrophy. More importantly, alpha-sarcoglycan transfer produced full rescue of the contractile force deficits and stretch sensibility and led to an increase of the global activity of the animals when both posterior limbs are injected. Our results establish the feasibility for AAV-mediated alpha-sarcoglycan gene transfer as a therapeutic approach.
Collapse
|
26
|
't Hoen PAC, van der Wees CGC, Aartsma-Rus A, Turk R, Goyenvalle A, Danos O, Garcia L, van Ommen GJB, den Dunnen JT, van Deutekom JCT. Gene expression profiling to monitor therapeutic and adverse effects of antisense therapies for Duchenne muscular dystrophy. Pharmacogenomics 2006; 7:281-97. [PMID: 16610940 DOI: 10.2217/14622416.7.3.281] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVES The objective of this study was to assess the utility of the gene expression profiling technique for the preclinical evaluation of drug efficacy and safety, taking a new therapeutic approach for Duchenne muscular dystrophy (DMD) as an example. METHODS Muscles from dystrophin-deficient (mdx) mice, a well-characterized animal model for DMD, were injected with antisense constructs that restore the open reading frame in the Dmd gene. Synthetic antisense oligonucleotides (AONs) complexed with different carriers to enhance cellular uptake and recombinant adeno-associated virus (rAAV)-expressed antisense sequences were evaluated. Muscular gene expression profiles were analyzed on oligonucleotide microarrays. RESULTS Polyethylenimine (PEI)-complexed AONs restored the reading frame slightly more effectively than uncomplexed, F127- or Optison-complexed AONs. However, PEI induced the expression of many immune genes, reflecting an aggravation of the inflammation present in untreated mdx mice. Expression profiles in Optison and F127-injected muscles were similar to those of saline treated muscles, implying that these carriers did not evoke adverse responses. Due to moderate levels of exon skipping, a significant shift toward wild-type expression levels was not detected. Injection with rAAV vectors resulted in much higher production of dystrophin and greatly improved the histological appearance of the muscle. Depending on the efficacy of the treatment, the expression of genes previously shown to be elevated in muscular dystrophies, partly or completely returned to wild-type expression levels. Reductions in inflammation and fibrosis were among the most prominent changes observed. CONCLUSION Expression profiling is a powerful tool for the evaluation of both desired and adverse effects of new pharmacological therapies. It is sensitive and detects changes that are not histologically visible. In addition, its ability to simultaneously monitor a large number of different biological processes not only reduces the number of different assays required in preclinical research and clinical trials, but may also assist in the early detection of potential side effects.
Collapse
Affiliation(s)
- Peter A C 't Hoen
- Leiden University Medical Center, Center for Human and Clinical Genetics, Room S-04-003, Postbus 9600, 2300 RC Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Tran VK, Takeshima Y, Zhang Z, Yagi M, Nishiyama A, Habara Y, Matsuo M. Splicing analysis disclosed a determinant single nucleotide for exon skipping caused by a novel intraexonic four-nucleotide deletion in the dystrophin gene. J Med Genet 2006; 43:924-30. [PMID: 16738009 PMCID: PMC2563197 DOI: 10.1136/jmg.2006.042317] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Mutations in exonic splicing enhancer sequences are known to cause splicing errors. Although exonic splicing enhancers have been identified as a stretch of purine-rich sequences, it has been difficult to precisely pinpoint the determinant nucleotides in these sequences. This article reports that a 4-bp deletion in exon 38 of the dystrophin gene induced complete exon 38 skipping in vivo. Moreover, the third nucleotide of the deletion was shown to be determinant for the exonic splicing enhancer activity in in vivo splicing analysis of hybrid minigenes encoding mutant exons. METHOD Genomic DNA analysis of a 2-year-old boy with a raised level of serum creatine kinase yielded a 4-bp deletion 11 bp upstream of the 3' end of exon 38 of the dystrophin gene (c. 5434-5437del TTCA), disrupting a predicted SC35-binding site. RESULT Interestingly, his dystrophin mRNA was shown to completely lack exon 38 (exon 38- transcript). As the exon 38- transcript coded for a truncated dystrophin protein, this exon skipping was determined to be a modifying factor of his phenotype. In an in vivo splicing assay, a hybrid minigene encoding exon 38 with the 4-bp deletion was shown to induce complete exon 38 skipping, confirming the deleted region as a splicing enhancer sequence. Site-directed mutagenesis of the deleted sequence showed that the complete exon 38 skipping was caused by mutation of the third nucleotide position of the deletion (C5436), whereas mutations at the other three nucleotide positions induced partial exon skipping. CONCLUSION Our results underline the potential of understanding the regulation of exonic splicing enhancer sequences and exon skipping therapy for treatment of Duchenne's muscular dystrophy.
Collapse
Affiliation(s)
- Van Khanh Tran
- Department of Pediatrics, Graduate School of Medicine, Kobe University, 7-5-1 Kusunokicho, Chuo, Kobe 650-0017, Japan
| | | | | | | | | | | | | |
Collapse
|