1
|
Pinzi V, Bisogno I, Prada F, Ciusani E, Fariselli L. Radiotherapy of meningioma: a treatment in need of radiobiological research. Int J Radiat Biol 2018; 94:621-627. [DOI: 10.1080/09553002.2018.1478157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Valentina Pinzi
- Neurosurgery Department, Radiotherapy Unit, Istituto Neurologico Fondazione C. Besta, Milan, Italy
| | - Ilaria Bisogno
- Neurosurgery Department, Radiotherapy Unit, Istituto Neurologico Fondazione C. Besta, Milan, Italy
- Biology and Biotechnology Department, University of Pavia, Pavia, Italy
| | - Francesco Prada
- Neurosurgery Department, Istituto Neurologico Fondazione C. Besta, Milan, Italy
- Department of Neurological Surgery, University of Virginia Health Science Center, Charlottesville, VA, USA
- Focused Ultrasound Foundation, Charlottesville, VA, USA
| | - Emilio Ciusani
- Laboratory of Clinical Pathology and Medical Genetics, Istituto Neurologico Fondazione C. Besta, Milan, Italy
| | - Laura Fariselli
- Neurosurgery Department, Radiotherapy Unit, Istituto Neurologico Fondazione C. Besta, Milan, Italy
| |
Collapse
|
2
|
Javan B, Shahbazi M. Hypoxia-inducible tumour-specific promoters as a dual-targeting transcriptional regulation system for cancer gene therapy. Ecancermedicalscience 2017; 11:751. [PMID: 28798809 PMCID: PMC5533602 DOI: 10.3332/ecancer.2017.751] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Indexed: 12/25/2022] Open
Abstract
Transcriptional targeting is the best approach for specific gene therapy. Hypoxia is a common feature of the tumour microenvironment. Therefore, targeting gene expression in hypoxic cells by placing transgene under the control of a hypoxia-responsive promoter can be a good strategy for cancer-specific gene therapy. The hypoxia-inducible gene expression system has been investigated more in suicide gene therapy and it can also be of great help in knocking down cancer gene therapy with siRNAs. However, this system needs to be optimised to have maximum efficacy with minimum side effects in normal tissues. The combination of tissue-/tumour-specific promoters with HRE core sequences has been found to enhance the specificity and efficacy of this system. In this review, hypoxia-inducible gene expression system as well as gene therapy strategies targeting tumour hypoxia will be discussed. This review will also focus on hypoxia-inducible tumour-specific promoters as a dual-targeting transcriptional regulation systems developed for cancer-specific gene therapy.
Collapse
Affiliation(s)
- Bita Javan
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan 4934174515, Iran
| | - Majid Shahbazi
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan 4934174515, Iran
| |
Collapse
|
3
|
Kuo WY, Hwu L, Wu CY, Lee JS, Chang CW, Liu RS. STAT3/NF-κB-Regulated Lentiviral TK/GCV Suicide Gene Therapy for Cisplatin-Resistant Triple-Negative Breast Cancer. Am J Cancer Res 2017; 7:647-663. [PMID: 28255357 PMCID: PMC5327640 DOI: 10.7150/thno.16827] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/24/2016] [Indexed: 12/23/2022] Open
Abstract
Triple-negative breast cancer (TNBC) represents approximately 20% of all breast cancers and appears resistance to conventional cytotoxic chemotherapy, demonstrating a particularly poor prognosis and a significantly worse clinical outcome than other types of cancer. Suicide gene therapy has been used for the in vivo treatment of various solid tumors in recent clinical trials. In tumor microenvironment, STAT3/NF-κB pathways are constitutively activated in stromal cells as well as in cancer stem cells (CSCs). In this study, we have cloned a novel STAT3/NF-κB-based reporter system to drive the expression of herpes simplex virus thymidine kinase (HSV-TK) against breast cancer. Lentiviral vector expressing HSV-TK under the regulation of STAT3/NF-κB fused response element was developed. In this setting, we exploited the constitutive STAT3/NF-κB activation in tumors to achieve higher transgene expression than that driven by a constitutively active CMV promotor in vivo. An orthotropic MDA-MB-231 triple negative breast cancer mouse model was used for evaluating the feasibility of STAT3-NF-κB-TK/GCV suicide gene therapy system. The basal promoter activity of Lenti-CMV-TK and Lenti-STAT3-NF-κB-TK in MDA-MB-231 cells was compared by 3H-FEAU uptake assay. The Lenti-CMV-TK showed ~5 fold higher 3H-FEAU uptake then Lenti -STAT3-NF-κB-TK. In clonogenic assay, cells expressing Lenti-CMV-TK were 2-fold more sensitive to GCV than Lenti-STAT3-NF-κB-TK transduced cells. In vitro effect of STAT3-NF-κB-induced transgene expression was determined by 10ng/mL TNF-α induction and confirmed by western blot analysis and DsRedm fluorescent microscopy. In vivo evaluation of therapeutic effect by bioluminescence and [18F]FHBG microPET imaging indicated that Lenti-STAT3-NF-κB-TK showed more tumor growth retardation than Lenti-CMV-TK when GCV (20 mg/kg) was administered. The invasiveness and expression of cancer stem cell markers were both decreased after STAT3/NF-κB-regulated HSV-TK/GCV therapy. Moreover, STAT3/NF-κB signaling targeting could further sensitize tumor cells to cisplatin. This study successfully established a theranositic approach to treat triple-negative breast cancer via STAT3-NF-κB responsive element-driven suicide gene therapy. This platform may also be an alternative strategy to handle with drug-resistant cancer cells.
Collapse
|
4
|
Yang YM, Fang F, Li X, Yu L, Wang ZC. TRAIL overexpression co-regulated by Egr1 and HRE enhances radiosensitivity of hypoxic A549 cells depending on its apoptosis inducing role. Oncol Rep 2016; 37:533-539. [PMID: 27878298 DOI: 10.3892/or.2016.5271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 11/17/2016] [Indexed: 11/05/2022] Open
Abstract
Ionizing radiation can upregulate the expression levels of TRAIL and enhance tumor cell apoptosis. While Early growth response 1 (Egr1) gene promoter has radiation inducible characteristics, the expression for exogenous gene controlled by Egr1 promoter could be enhanced by ionizing radiation, but its efficiency is limited by tissue hypoxia. Hypoxia response elements (HREs) are important hypoxic response regulatory sequences and sensitivity enhancers. Therefore, we chose TRAIL as the gene radiotherapy to observe whether it is regulated by Egr1 and HER and its effects on A549 cells and its mechanism. The pcDNA3.1-Egr1-TRAIL (pc-E-hsT) and pcDNA3.1-HRE/Egr1-TRAIL (pc-H/E-hsT) plasmids containing Egr1-hsTRAIL and HRE/Egr1-hsTRAIL were transfected into A549 cells, the cells were treated by hypoxia and radiation. The TRAIL mRNA in the cells and protein concentration in the culture supernatants were measured by RT-PCR and ELISA, respectively. Mean lethal dose D0 value was evaluated with colony forming assay. The cell apoptotic rates were analyzed by FCM and TUNEL assay. Expression of DR4, DR5 and cleaved caspase-3 proteins were analyzed by western blotting. It showed that TRAIL mRNA expression and TRAIL concentration all significantly increased under hypoxia and/or radiation. D0 value of pc-H/E‑hsT transfected cells under hypoxia was lowest, indicating more high radiosensitivity. Hypoxia could not cause the pc-E-hsT transfected cell apoptotic rate increase, but there were promoting effects in pc-H/E-hsT transfected cells. DR4 had not obvious change in pc-E-hsT and pc-H/E-hsT transfected cells under normoxic and hypoxic condition, otherwise, DR5 and cleaved caspase-3 increased mostly in pc-H/E-hsT transfected cells under hypoxic condition. TRAIL overexpression was co-regulated by Egr1 and HRE. TRAIL might promote hypoxic A549 cell radiosensitivity and induce apoptosis depending on DR5 to caspase-3 pathways.
Collapse
Affiliation(s)
- Yan-Ming Yang
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Fang Fang
- Key Laboratory of Radiobiology, Ministry of Health, School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xin Li
- Key Laboratory of Radiobiology, Ministry of Health, School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lei Yu
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Zhi-Cheng Wang
- Key Laboratory of Radiobiology, Ministry of Health, School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
5
|
Zhang H, Liang C, Hou X, Wang L, Zhang D. Study of the combined treatment of lung cancer using gene-loaded immunomagnetic albumin nanospheres in vitro and in vivo. Int J Nanomedicine 2016; 11:1039-50. [PMID: 27042059 PMCID: PMC4801199 DOI: 10.2147/ijn.s98519] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Combination therapy for lung cancer has garnered widespread attention. Radiation therapy, gene therapy, and molecular targeted therapy for lung cancer have certain effects, but the disadvantages of these treatment methods are evident. Combining these methods can decrease their side effects and increase their curative effects. In this study, we constructed a pYr-ads-8-5HRE-cfosp-iNOS-IFNG plasmid (a gene circuit that can express IFNγ), which is a gene circuit, and used that plasmid together with C225 (cetuximab) to prepare gene-loaded immunomagnetic albumin nanospheres (IMANS). Moreover, we investigated the therapeutic effects of gene-loaded IMANS in combination with radiation therapy on human lung cancer in vitro and in vivo. The results showed that this gene circuit was successively constructed and confirmed that the expression of INFγ was increased due to the gene circuit. Gene-loaded IMANS combined with radiation therapy demonstrated improved results in vitro and in vivo. In conclusion, gene-loaded IMANS enhanced the efficacy of combination therapy, solved problems related to gene transfer, and specifically targeted lung cancer cells.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Imaging and Nuclear Medicine, Medical School of Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Chen Liang
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Xinxin Hou
- Department of Pathology, Medical School of Henan Polytechnic University, Jiaozuo, Henan, People's Republic of China
| | - Ling Wang
- Department of Imaging and Nuclear Medicine, Medical School of Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Dongsheng Zhang
- Jiangsu Key Laboratory for Biomaterials and Devices, Medical School, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
6
|
Ding M, Li R, He R, Wang X, Yi Q, Wang W. p53 activated by AND gate genetic circuit under radiation and hypoxia for targeted cancer gene therapy. Cancer Sci 2015; 106:1163-73. [PMID: 26177264 PMCID: PMC4582985 DOI: 10.1111/cas.12739] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 05/22/2015] [Accepted: 06/27/2015] [Indexed: 01/14/2023] Open
Abstract
Radio-activated gene therapy has been developed as a novel therapeutic strategy against cancer; however, expression of therapeutic gene in peritumoral tissues will result in unacceptable toxicity to normal cells. To restrict gene expression in targeted tumor mass, we used hypoxia and radiation tolerance features of tumor cells to develop a synthetic AND gate genetic circuit through connecting radiation sensitivity promoter cArG6 , heat shock response elements SNF1, HSF1 and HSE4 with retroviral vector plxsn. Their construction and dynamic activity process were identified through downstream enhanced green fluorescent protein and wtp53 expression in non-small cell lung cancer A549 cells and in a nude mice model. The result showed that AND gate genetic circuit could be activated by lower required radiation dose (6 Gy) and after activated, AND gate could induce significant apoptosis effects and growth inhibition of cancer cells in vitro and in vivo. The radiation- and hypoxia-activated AND gate genetic circuit, which could lead to more powerful target tumoricidal activity represented a promising strategy for both targeted and effective gene therapy of human lung adenocarcinoma and low dose activation character of the AND gate genetic circuit implied that this model could be further exploited to decrease side-effects of clinical radiation therapy.
Collapse
Affiliation(s)
- Miao Ding
- Department of Cardiology, Children Hospital, Chongqing Medical University, Chongqing, China
| | - Rong Li
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Rong He
- Department of Emergency, Children Hospital, Chongqing Medical University, Chongqing, China
| | - Xingyong Wang
- Department of Emergency, Children Hospital, Chongqing Medical University, Chongqing, China
| | - Qijian Yi
- Department of Cardiology, Children Hospital, Chongqing Medical University, Chongqing, China
| | - Weidong Wang
- Department of Radiation Oncology, Tumor Hospital of Sichuan, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Detailed assessment of gene activation levels by multiple hypoxia-responsive elements under various hypoxic conditions. Ann Nucl Med 2014; 28:1011-9. [PMID: 25249501 PMCID: PMC4483249 DOI: 10.1007/s12149-014-0901-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 08/24/2014] [Indexed: 11/03/2022]
Abstract
OBJECTIVE HIF-1/HRE pathway is a promising target for the imaging and the treatment of intractable malignancy (HIF-1; hypoxia-inducible factor 1, HRE; hypoxia-responsive element). The purposes of our study are: (1) to assess the gene activation levels resulting from various numbers of HREs under various hypoxic conditions, (2) to evaluate the bidirectional activity of multiple HREs, and (3) to confirm whether multiple HREs can induce gene expression in vivo. METHODS Human colon carcinoma HCT116 cells were transiently transfected by the constructs containing a firefly luciferase reporter gene and various numbers (2, 4, 6, 8, 10, and 12) of HREs (nHRE+, nHRE-). The relative luciferase activities were measured under various durations of hypoxia (6, 12, 18, and 24 h), O2 concentrations (1, 2, 4, 8, and 16 %), and various concentrations of deferoxamine mesylate (20, 40, 80, 160, and 320 µg/mL growth medium). The bidirectional gene activation levels by HREs were examined in the constructs (dual-luc-nHREs) containing firefly and Renilla luciferase reporter genes at each side of nHREs. Finally, to test whether the construct containing 12HRE and the NIS reporter gene (12HRE-NIS) can induce gene expression in vivo, SPECT imaging was performed in a mouse xenograft model. RESULTS (1) gene activation levels by HREs tended to increase with increasing HRE copy number, but a saturation effect was observed in constructs with more than 6 or 8 copies of an HRE, (2) gene activation levels by HREs increased remarkably during 6-12 h of hypoxia, but not beyond 12 h, (3) gene activation levels by HREs decreased with increasing O2 concentrations, but could be detected even under mild hypoxia at 16 % O2, (4) the bidirectionally proportional activity of the HRE was confirmed regardless of the hypoxic severity, and (5) NIS expression driven by 12 tandem copies of an HRE in response to hypoxia could be visualized on in vivo SPECT imaging. CONCLUSION The results of this study will help in the understanding and assessment of the activity of multiple HREs under hypoxia and become the basis for hypoxia-targeted imaging and therapy in the future.
Collapse
|
8
|
Kamensek U, Sersa G, Cemazar M. Evaluation of p21 promoter for interleukin 12 radiation induced transcriptional targeting in a mouse tumor model. Mol Cancer 2013; 12:136. [PMID: 24219565 PMCID: PMC3832904 DOI: 10.1186/1476-4598-12-136] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 11/05/2013] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Radiation induced transcriptional targeting is a gene therapy approach that takes advantage of the targeting abilities of radiotherapy by using radio inducible promoters to spatially and temporally limit the transgene expression. Cyclin dependent kinase inhibitor 1 (CDKN1A), also known as p21, is a crucial regulator of the cell cycle, mediating G1 phase arrest in response to a variety of stress stimuli, including DNA damaging agents like irradiation. The aim of the study was to evaluate the suitability of the p21 promoter for radiation induced transcriptional targeting with the objective to test the therapeutic effectiveness of the combined radio-gene therapy with p21 promoter driven therapeutic gene interleukin 12. METHODS To test the inducibility of the p21 promoter, three reporter gene experimental models with green fluorescent protein (GFP) under the control of p21 promoter were established by gene electrotransfer of plasmid DNA: stably transfected cells, stably transfected tumors, and transiently transfected muscles. Induction of reporter gene expression after irradiation was determined using a fluorescence microplate reader in vitro and by non-invasive fluorescence imaging using fluorescence stereomicroscope in vivo. The antitumor effect of the plasmid encoding the p21 promoter driven interleukin 12 after radio-gene therapy was determined by tumor growth delay assay and by quantification of intratumoral and serum levels of interleukin 12 protein and intratumoral concentrations of interleukin 12 mRNA. RESULTS Using the reporter gene experimental models, p21 promoter was proven to be inducible with radiation, the induction was not dose dependent, and it could be re-induced. Furthermore radio-gene therapy with interleukin 12 under control of the p21 promoter had a good antitumor therapeutic effect with the statistically relevant tumor growth delay, which was comparable to that of the same therapy using a constitutive promoter. CONCLUSIONS In this study p21 promoter was proven to be a suitable candidate for radiation induced transcriptional targeting. As a proof of principle the therapeutic value was demonstrated with the radio-inducible interleukin 12 plasmid providing a synergistic antitumor effect to radiotherapy alone, which makes this approach feasible for the combined treatment with radiotherapy.
Collapse
Affiliation(s)
| | - Gregor Sersa
- Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Maja Cemazar
- Institute of Oncology Ljubljana, Ljubljana, Slovenia
- University of Primorska, Faculty of Health Sciences, Izola, Slovenia
| |
Collapse
|
9
|
Sun J, Wang Y, Yang J, Du D, Li Z, Wei J, Yang A. Long-term and stable correction of uremic anemia by intramuscular injection of plasmids containing hypoxia-regulated system of erythropoietin expression. Exp Mol Med 2012; 44:674-83. [PMID: 22990115 PMCID: PMC3509184 DOI: 10.3858/emm.2012.44.11.076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Relative deficiency in production of glycoprotein hormone erythropoietin (Epo) is a major cause of renal anemia. This study planned to investigate whether the hypoxia-regulated system of Epo expression, constructed by fusing Epo gene to the chimeric phosphoglycerate kinase (PGK) hypoxia response elements (HRE) in combination with cytomegalovirus immediate-early (CMV IE) basal gene promoter and delivered by plasmid intramuscular injection, might provide a long-term physiologically regulated Epo secretion expression to correct the anemia in adenine-induced uremic rats. Plasmid vectors (pHRE-Epo) were synthesized by fusing human Epo cDNA to the HRE/CMV promoter. Hypoxia-inducible activity of this promoter was evaluated first in vitro and then in vivo in healthy and uremic rats (n = 30 per group). The vectors (pCMV-Epo) in which Epo expression was directed by a constitutive CMV gene promoter served as control. ANOVA and Student's t-test were used to analyze between-group differences. A high-level expression of Epo was induced by hypoxia in vitro and in vivo. Though both pHRE-Epo and pCMV-Epo corrected anemia, the hematocrit of the pCMV-Epo-treated rats exceeded the normal (P < 0.05), but that of the pHRE-Epo-treated rats didn't. Hypoxia-regulated system of Epo gene expression constructed by fusing Epo to the HRE/CMV promoter and delivered by plasmid intramuscular injection may provide a long-term and stable Epo expression and secretion in vivo to correct the anemia in adenine-induced uremic rats.
Collapse
Affiliation(s)
- Jifeng Sun
- Department of Nephrology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China.
| | | | | | | | | | | | | |
Collapse
|
10
|
Leinonen HM, Ruotsalainen AK, Määttä AM, Laitinen HM, Kuosmanen SM, Kansanen E, Pikkarainen JT, Lappalainen JP, Samaranayake H, Lesch HP, Kaikkonen MU, Ylä-Herttuala S, Levonen AL. Oxidative stress-regulated lentiviral TK/GCV gene therapy for lung cancer treatment. Cancer Res 2012; 72:6227-35. [PMID: 23041549 DOI: 10.1158/0008-5472.can-12-1166] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nuclear factor erythroid-2 related factor 2 (Nrf2) is a transcription factor that regulates protection against a wide variety of toxic insults to cells, including cytotoxic cancer chemotherapeutic drugs. Many lung cancer cells harbor a mutation in either Nrf2 or its inhibitor Keap1 resulting in permanent activation of Nrf2 and chemoresistance. In this study, we sought to examine whether this attribute could be exploited in cancer suicide gene therapy by using a lentiviral (LV) vector expressing herpes simplex virus thymidine kinase (HSV-TK/GCV) under the regulation of antioxidant response element (ARE), a cis-acting enhancer sequence that binds Nrf2. In human lung adenocarcinoma cells in which Nrf2 is constitutively overexpressed, ARE activity was found to be high under basal conditions. In this setting, ARE-HSV-TK was more effective than a vector in which HSV-TK expression was driven by a constitutively active promoter. In a mouse xenograft model of lung cancer, suicide gene therapy with LV-ARE-TK/GCV was effective compared with LV-PGK-TK/GCV in reducing tumor size. We conclude that ARE-regulated HSV-TK/GCV therapy offers a promising approach for suicide cancer gene therapy in cells with high constitutive ARE activity, permitting a greater degree of therapeutic targeting to those cells.
Collapse
Affiliation(s)
- Hanna M Leinonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FIN-70210 Kuopio, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ding M, Zhang E, He R, Wang X, Li R, Wang W, Yi Q. The radiation dose-regulated AND gate genetic circuit, a novel targeted and real-time monitoring strategy for cancer gene therapy. Cancer Gene Ther 2012; 19:382-92. [PMID: 22498721 DOI: 10.1038/cgt.2012.11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The AND gate functions such that when all inputs are activated the downstream gene will be transcribed and it is off otherwise. To accomplish optimal and targeted gene therapy in solid tumor patients, we have constructed an AND gate genetic circuit and investigated whether it could be activated by low-dose radiation in vitro and in vivo. The enhancement green fluorescent protein (EGFP) expression in different tumor cells transfected with control vector plxsn-EGFP confirmed that 2 Gy of radiation and 1% O(2) for 3 h could activate our AND gate. Besides, the obvious different levels of EGFP expression between 2 and 6 Gy of radiation demonstrated that the AND gate could be regulated by radiation doses. Additionally, through EGFP expression and the codistribution of p53 and HIF-1α in xenografts, we illustrated the targeted activation property of the AND gate and real-time monitoring to hypoxic districts in vivo. Moreover, significant growth inhibition and cell cycle arrest in vitro and apoptosis-inducing effects in vitro and in vivo proved that the AND gate induced ideal antitumor effects. In conclusion, the radiation dose-regulated AND gate genetic circuit could not only effectively monitor the therapeutic process in real-time but also induce ideal antitumor efficacy, and can be further exploited for personal therapy in clinical tumor patients.
Collapse
Affiliation(s)
- M Ding
- Department of Cardiology, Chongqing Medical University, Chongqing, China.
| | | | | | | | | | | | | |
Collapse
|
12
|
van Putten EH, Dirven CM, van den Bent MJ, Lamfers ML. Sitimagene ceradenovec: a gene-based drug for the treatment of operable high-grade glioma. Future Oncol 2011; 6:1691-710. [PMID: 21142657 DOI: 10.2217/fon.10.134] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The field of gene therapy for malignant glioma has made important advances since the first gene transfer studies were performed 20 years ago. Multiple Phase I/II trials and two Phase III trials have been performed and have demonstrated the feasibility and safety of intratumoral vector delivery in the brain. Sitimagene ceradenovec is an adenoviral vector encoding the herpes simplex thymidine kinase gene, developed by Ark Therapeutics Group plc (UK and Finland) for the treatment of patients with operable high-grade glioma. In preclinical and Phase I/II clinical studies, sitimagene ceradenovec exhibited a significant increase in survival. Although the preliminary results of a Phase III clinical study demonstrated a significant positive effect of sitimagene ceradenovec treatment on time to reintervention or death when compared with standard care treatment (hazard ratio: 1.43; 95% CI: 1.06-1.93; p < 0.05), the European Committee for Medicinal Products for Human Use did not consider the data to provide sufficient evidence of clinical benefit. Further clinical evaluation, powered to demonstrate a benefit on a robust end point, is required. This article focuses on sitimagene ceradenovec and provides an overview of the developments in the field of gene therapy for malignant glioma.
Collapse
Affiliation(s)
- Erik Hp van Putten
- Department of Neurosurgery, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|
13
|
Rao Gogineni V, Kumar Nalla A, Gupta R, Gorantla B, Gujrati M, Dinh DH, Rao JS. Radiation-inducible silencing of uPA and uPAR in vitro and in vivo in meningioma. Int J Oncol 2010; 36:809-16. [PMID: 20198323 DOI: 10.3892/ijo_00000557] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Stereospecific radiation treatment offers a distinct opportunity for temporal and spatial regulation of gene expression at tumor sites by means of inducible promoters. To this end, a plasmid, pCArG-U2, was constructed by incorporating nine CArG elements (in tandem) of EGR1 gene upstream to uPA and uPAR siRNA oligonucleotides in a pCi-neo vector. Radiation-induced siRNA expression was detected in a meningioma cell line (IOMM-Lee). Immunoblotting and RT-PCR analyses confirmed downregulation of uPA and uPAR. A similar effect was observed in transfected cells followed by H2O2 treatment. Moreover, pre-treatment of transfected cells with N-acetyl L-cysteine blocked the silencing of uPA and uPAR, which further confirmed the oxidative damage-mediated downregulation. Cell proliferation assays and Western blot analysis for apoptotic molecules confirmed cell death in a radiation-inducible fashion. Migration and matrigel invasion assays also revealed a marked decrease in migration and invasion. Immunocytochemistry showed a marked decrease in uPA and uPAR levels in transfected and irradiated cells. H&E staining revealed a decrease in the pre-established tumor volume among the animals treated with pCArG-U2 and radiation. Immunohistochemistry of the brain sections established with intracranial tumors also revealed a marked decrease in uPA and uPAR in a radiation-inducible fashion. Taken together, our data suggest pCArG-U2 as a suitable candidate for radiation-inducible gene therapy.
Collapse
Affiliation(s)
- Venkateswara Rao Gogineni
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Lu Y, Madu CO. Viral-based gene delivery and regulated gene expression for targeted cancer therapy. Expert Opin Drug Deliv 2010; 7:19-35. [PMID: 19947888 DOI: 10.1517/17425240903419608] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
IMPORTANCE OF THE FIELD Cancer is both a major health concern and a care-cost issue in the US and the rest of the world. It is estimated that there will be a total of 1,479,350 new cancer cases and 562,340 cancer deaths in 2009 within the US alone. One of the major obstacles in cancer therapy is the ability to target specifically cancer cells. Most existing chemotherapies and other routine therapies (such as radiation therapy and hormonal manipulation) use indiscriminate approaches in which both cancer cells and non-cancerous surrounding cells are treated equally by the toxic treatment. As a result, either the cancer cell escapes the toxic dosage necessary for cell death and consequently resumes replication, or an adequate lethal dose that kills the cancer cell also causes the cancer patient to perish. Owing to this dilemma, cancer- or organ/tissue-specific targeting is greatly desired for effective cancer treatment and the reduction of side effect cytotoxicity within the patient. AREAS COVERED IN THIS REVIEW In this review, the strategies of targeted cancer therapy are discussed, with an emphasis on viral-based gene delivery and regulated gene expression. WHAT THE READER WILL GAIN Numerous approaches and updates in this field are presented for several common cancer types. TAKE HOME MESSAGE A summary of existing challenges and future directions is also included.
Collapse
Affiliation(s)
- Yi Lu
- University of Tennessee Health Science Center, Department of Pathology and Laboratory Medicine, Cancer Research Building, Room 218, 19 South Manassas Street, Memphis, TN 38163, USA.
| | | |
Collapse
|
15
|
Yao X, Yoshioka Y, Morishige T, Eto Y, Watanabe H, Okada Y, Mizuguchi H, Mukai Y, Okada N, Nakagawa S. Systemic administration of a PEGylated adenovirus vector with a cancer-specific promoter is effective in a mouse model of metastasis. Gene Ther 2010; 16:1395-404. [PMID: 19641532 DOI: 10.1038/gt.2009.95] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cancer gene therapy by adenovirus vectors (Advs) for metastatic cancer is limited because systemic administration of Adv produces low therapeutic effect and severe side effects. In this study, we generated a dual cancer-specific targeting vector system by using PEGylation and the telomere reverse transcriptase (TERT) promoter and attempted to treat experimental metastases through systemic administration of the vectors. We first optimized the molecular size of PEG and modification ratios used to create PEG-Ads. Systemic administration of PEG-Ad with 20-kDa PEG at a 45% modification ratio (PEG[20K/45%]-Ad) resulted in higher tumor-selective transgene expression than unmodified Adv. Next, we examined the effectiveness against metastases and side effects of a TERT promoter-driven PEG[20K/45%]-Ad containing the herpes simplex virus thymidine kinase (HSVtk) gene (PEG-Ad-TERT/HSVtk). Systemic administration of PEG-Ad-TERT/HSVtk showed superior antitumor effects against metastases with negligible side effects. A cytomegalovirus (CMV) promoter-driven PEG[20K/45%]-Ad also produced antimetastatic effects, but these were accompanied by side effects. Combining PEG-Ad-TERT/HSVtk with etoposide or 5-fluorouracil enhanced the therapeutic effects with negligible side effects. These results suggest that modification with 20-kDa PEG at a 45% modification ratio is the optimal condition for PEGylation of Adv, and PEG-Ad-TERT/HSVtk is a prototype Adv for systemic cancer gene therapy against metastases.
Collapse
Affiliation(s)
- X Yao
- Department of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Zhang P, Ying L, Xu R, Ge S, Mei W, Li F, Dai B, Lu J, Qian G. Tumor-Specific, Hypoxia-Regulated, WW Domain-Containing Oxidoreductase-Expressing Adenovirus Inhibits Human Non-Small Cell Lung Cancer Growth In Vivo. Hum Gene Ther 2010; 21:27-39. [DOI: 10.1089/hum.2009.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Ping Zhang
- Department of Biochemistry and Molecular Biology, Institutes of Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Lei Ying
- Department of Biochemistry and Molecular Biology, Institutes of Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Rang Xu
- Department of Biochemistry and Molecular Biology, Institutes of Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Shengfang Ge
- Department of Biochemistry and Molecular Biology, Institutes of Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Wenhan Mei
- Department of Biochemistry and Molecular Biology, Institutes of Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Feng Li
- Department of Biochemistry and Molecular Biology, Institutes of Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Bingbing Dai
- Department of Biochemistry and Molecular Biology, Institutes of Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Jian Lu
- Department of Biochemistry and Molecular Biology, Institutes of Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Guanxiang Qian
- Department of Biochemistry and Molecular Biology, Institutes of Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
17
|
Lee M. Hypoxia targeting gene expression for breast cancer gene therapy. Adv Drug Deliv Rev 2009; 61:842-9. [PMID: 19426773 DOI: 10.1016/j.addr.2009.04.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2008] [Accepted: 04/28/2009] [Indexed: 01/03/2023]
Abstract
Gene therapy is a promising strategy to treat various inherited and acquired diseases. However, targeting gene expression to specific tissue is required to minimize side effects of gene therapy. Hypoxia is present in the microenvironment of solid tumors such as breast tumors. A hypoxic tumor targeting gene expression system has been developed for cancer gene therapy. In hypoxic tissues, hypoxia inducible factor (HIF)-1alpha is accumulated and stimulates transcription of the genes that have hypoxia response elements (HREs) in their promoters. Therefore, transcriptional regulation with a hypoxia inducible promoter is the most widely used strategy for hypoxic tumors targeting gene therapy. In breast cancer gene therapy, breast tumor specific promoters in combination with HREs have been used to induce gene expression in hypoxic breast tumors. Post-transcriptional regulation using an untranslated region (UTR) is also a useful strategy to increase gene expression in hypoxic tumor tissue. In addition, post-translational regulation with the oxygen-dependent degradation (ODD) domain is effective to eliminate therapeutic gene products and reduce side effects in normal tissue. In combination with the breast tumor specific promoters, hypoxic tumor targeting strategies will be useful for the development of a safe breast cancer gene therapy.
Collapse
Affiliation(s)
- Minhyung Lee
- Department of Bioengineering, College of Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791, Republic of Korea.
| |
Collapse
|
18
|
Translation of the radio- and chemo-inducible TNFerade vector to the treatment of human cancers. Cancer Gene Ther 2009; 16:609-19. [PMID: 19444302 DOI: 10.1038/cgt.2009.37] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Radiotherapy is a widely used treatment for localized malignancies that is often delivered in combination with cytotoxic chemotherapeutic agents. The concept that treatment of localized tumors can be improved with a radio- and chemo-inducible gene therapy strategy has been investigated in the laboratory and now translated to the clinic. The TNFerade (Ad.Egr-TNF11D) adenoviral vector was engineered by inserting radio- and chemo-inducible elements from the Egr-1 promoter upstream to a cDNA encoding tumor necrosis factor-alpha (TNF-alpha). Transduction of tumor cells with TNFerade and then treatment with radiation or chemotherapy is associated with spatial and temporal control of TNF-alpha secretion and enhanced antitumor activity. TNFerade has been evaluated in trials for patients with sarcomas, melanomas and cancers of the pancreas, esophagus, rectum and head and neck. If the ongoing phase III trial for pancreatic cancer is successful, TNFerade will likely become the first gene therapy approved for cancer in the United States.
Collapse
|
19
|
Guo ZS, Li Q, Bartlett DL, Yang JY, Fang B. Gene transfer: the challenge of regulated gene expression. Trends Mol Med 2008; 14:410-8. [PMID: 18692441 DOI: 10.1016/j.molmed.2008.07.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 07/04/2008] [Accepted: 07/04/2008] [Indexed: 01/04/2023]
Abstract
Gene therapy is expected to have a major impact on human healthcare in the future. However, precise regulation of therapeutic gene expression in vivo is still a challenge. Natural and synthetic enhancer-promoters (EPs) can be utilized to drive gene transcription in a temporal, spatial or environmental signal-inducible manner in response to heat shock, hypoxia, radiation, chemotherapy, epigenetic agents or viral infection. To allow tightly regulated expression, a regulatable gene-expression system can also be implemented. Most of these systems are based on small molecule (drug)-responsive artificial transactivators. In this review, we aim to provide a brief overview of the classes of EPs and regulatable systems, along with lessons learned from these studies. We highlight the potential applications in gene transfer, gene therapy for cancer and genetic disease and the future challenges for clinical applications.
Collapse
Affiliation(s)
- Z Sheng Guo
- Division of Surgical Oncology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | | | | | | | | |
Collapse
|
20
|
Prodrug cancer gene therapy. Cancer Lett 2008; 270:191-201. [PMID: 18502571 DOI: 10.1016/j.canlet.2008.04.023] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 04/16/2008] [Accepted: 04/16/2008] [Indexed: 12/26/2022]
Abstract
There is no effective treatment for late stage and metastatic cancers of colorectal, prostate, pancreatic, breast, glioblastoma and melanoma cancers. Novel treatment modalities are needed for these late stage patients because cytotoxic chemotherapy offers only palliation, usually accompanied with systemic toxicities and poor quality of life. Gene directed enzyme prodrug therapy (GDEPT), which concentrates the cytotoxic effect in the tumor site may be one alternative. This review provides an explanation of the GDEPT principle, focusing on the development, application and potential of various GDEPTs. Current gene therapy limitations are in efficient expression of the therapeutic gene and in tumor-specific targeting. Therefore, the current status of research related to the enhancement of in situ GDEPT delivery and tumor-specific targeting of vectors is assessed. Finally, GDEPT versions of stem cell based gene therapy as another potential treatment modality for progressed tumors and metastases are discussed. Combinations of traditional, targeted, and stem cell directed gene therapy could significantly advance the treatment of cancer.
Collapse
|
21
|
Abstract
Anatomically based technologies (computed tomography scans, magnetic resonance imaging, and so on) are in routine use in radiotherapy for planning and assessment purposes. Even with improvements in imaging, however, radiotherapy is still limited in efficacy and toxicity in certain applications. Further advances may be provided by technologies that image the molecular activities of tumors and normal tissues. Possible uses for molecular imaging include better localization of tumor regions and early assay for the radiation response of tumors and normal tissues. Critical to the success of this approach is the identification and validation of molecular probes that are suitable in the radiotherapy context. Recent developments in molecular-imaging probes and integration of functional imaging with radiotherapy are promising. This review focuses on recent advances in molecular imaging strategies and probes that may aid in improving the efficacy of radiotherapy.
Collapse
|
22
|
Coulter JA, McCarthy HO, Worthington J, Robson T, Scott S, Hirst DG. The radiation-inducible pE9 promoter driving inducible nitric oxide synthase radiosensitizes hypoxic tumour cells to radiation. Gene Ther 2008; 15:495-503. [PMID: 18256696 DOI: 10.1038/gt.2008.7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 12/20/2007] [Accepted: 12/22/2007] [Indexed: 11/09/2022]
Abstract
Driving high-level transgene expression in a tumour-specific manner remains a key requirement in the development of cancer gene therapy. We have previously demonstrated the strong anticancer effects of generating abnormally high levels of intracellular NO(*) following the overexpression of the inducible nitric oxide synthase (iNOS) gene. Much of this work has focused on utilizing exogenously activated promoters, which have been primarily induced using X-ray radiation. Here we further examine the potential of the pE9 promoter, comprising a combination of nine CArG radio-responsive elements, to drive the iNOS transgene. Effects of X-ray irradiation on promoter activity were compared in vitro under normoxic conditions and various degrees of hypoxia. The pE9 promoter generated high-level transgene expression, comparable with that achieved using the constitutively driven cytomegalovirus promoter. Furthermore, the radio-resistance of radiation-induced fibrosarcoma-1 (RIF-1) mouse sarcoma cells exposed to 0.1 and 0.01% O(2) was effectively eliminated following transfection with the pE9/iNOS construct. Significant inhibition of tumour growth was also observed in vivo following direct intratumoural injection of the pE9/iNOS construct compared to empty vector alone (P<0.001) or to a single radiation dose of 10 Gy (P<0.01). The combination of both therapies resulted in a significant 4.25 day growth delay compared to the gene therapy treatment alone (P<0.001). In summary, we have demonstrated the potential of the pE9/iNOS construct for reducing radio-resistance conferred by tumour cell hypoxia in vitro and in vivo, with greater tumour growth delay observed following the treatment with the gene therapy construct as compared with radiotherapy alone.
Collapse
Affiliation(s)
- J A Coulter
- School of Pharmacy, McClay Research Centre, Queen's University, Belfast, Northern Ireland, UK
| | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Yao X, Yoshioka Y, Eto Y, Morishige T, Okada Y, Mizuguchi H, Mukai Y, Okada N, Nakagawa S. TERT promoter-driven adenovirus vector for cancer gene therapy via systemic injection. Biochem Biophys Res Commun 2007; 362:419-24. [PMID: 17707336 DOI: 10.1016/j.bbrc.2007.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Accepted: 08/01/2007] [Indexed: 10/23/2022]
Abstract
Adenovirus vectors (Adv) are used widely in cancer gene therapy research. However, the clinical application of Adv currently is limited to local, intratumoral administration; systemic administration leads to redundant transgene expression in the liver and subsequent hepatotoxicity. Here we replaced the conventional cytomegalovirus (CMV) promoter of Adv with a tumor-specific telomere reverse transcriptase (TERT) promoter, to restrict expression of the Adv-transduced transgene to tumor tissue alone. We evaluated the therapeutic and side effects after systemic administration of Adv expressing herpes simplex virus thymidine kinase (Ad-HSVtk) in mice bearing Meth-A tumors. Although systemically injected CMV promoter-driven Ad-HSVtk lacked therapeutic effect, mice injected with 2x10(11) viral particles containing TERT promoter-driven Ad-HSVtk showed inhibited tumor growth and prolonged survival with minimal side effects. Our results suggest that Adv in which transgene expression is driven by the TERT promoter are a promising prototype of tumor-targeting vectors for effective and safe cancer gene therapy.
Collapse
Affiliation(s)
- Xinglei Yao
- Department of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6, Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Hypoxia is an integral characteristic of the tumor microenvironment, primarily due to the microvascular defects that accompany the accelerated neoplastic growth. The presence of tumor hypoxic areas correlates with negative outcome after radiotherapy, chemotherapy, and surgery, as hypoxia not only provides an environment directly facilitating chemo- and radio-resistance, but also encourages the evolution of phenotypic changes inducing permanent resistance to treatment and metastatic spread. Therefore, successful treatment of hypoxic cells has the potential to not only improve local control but also impact overall patient survival. Specific and selective targeting of hypoxic tumor areas can be achieved at all three steps of a gene therapy treatment: delivery of the therapeutic gene to the tumor, regulation of gene expression, and therapeutic efficacy. In this review the latest developments and innovations in hypoxia-targeted gene therapy are discussed. In particular, approaches such as hypoxia-conditionally replicating viruses, cellular vehicles, and gene therapy means to disrupt the hypoxia-inducible factor (HIF) signaling are outlined.
Collapse
Affiliation(s)
- Olga Greco
- Tumour Microcirculation Group, University of Sheffield, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | | |
Collapse
|