1
|
Li X, Hu H, Wang H, Liu J, Jiang W, Zhou F, Zhang J. DNA nanotechnology-based strategies for minimising hybridisation-dependent off-target effects in oligonucleotide therapies. MATERIALS HORIZONS 2024. [PMID: 39692461 DOI: 10.1039/d4mh01158a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Targeted therapy has emerged as a transformative breakthrough in modern medicine. Oligonucleotide drugs, such as antisense oligonucleotides (ASOs) and small interfering RNAs (siRNAs), have made significant advancements in targeted therapy. Other oligonucleotide-based therapeutics like clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) systems are also leading a revolution in targeted gene therapy. However, hybridisation-dependent off-target effects, arising from imperfect base pairing, remain a significant and growing concern for the clinical translation of oligonucleotide-based therapeutics. These mismatches in base pairing can lead to unintended steric blocking or cleavage events in non-pathological genes, affecting the efficacy and safety of the oligonucleotide drugs. In this review, we examine recent developments in oligonucleotide-based targeted therapeutics, explore the factors influencing sequence-dependent targeting specificity, and discuss the current approaches employed to reduce the off-target side effects. The existing strategies, such as chemical modifications and oligonucleotide length optimisation, often require a trade-off between specificity and binding affinity. To further address the challenge of hybridisation-dependent off-target effects, we discuss DNA nanotechnology-based strategies that leverage the collaborative effects of nucleic acid assembly in the design of oligonucleotide-based therapies. In DNA nanotechnology, collaborative effects refer to the cooperative interactions between individual strands or nanostructures, where multiple bindings result in more stable and specific hybridisation behaviour. By requiring multiple complementary interactions to occur simultaneously, the likelihood of unintended partially complementary binding events in nucleic acid hybridisation should be reduced. And thus, with the aid of collaborative effects, DNA nanotechnology has great promise in achieving both high binding affinity and high specificity to minimise the hybridisation-dependent off-target effects of oligonucleotide-based therapeutics.
Collapse
Affiliation(s)
- Xiaoyu Li
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
| | - Huanhuan Hu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
| | - Hailong Wang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Jia Liu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
| | - Wenting Jiang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Feng Zhou
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
| | - Jiantao Zhang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
| |
Collapse
|
2
|
Formanski JP, Ngo HD, Grunwald V, Pöhlking C, Jonas JS, Wohlers D, Schwalbe B, Schreiber M. Transduction Efficiency of Zika Virus E Protein Pseudotyped HIV-1 gfp and Its Oncolytic Activity Tested in Primary Glioblastoma Cell Cultures. Cancers (Basel) 2024; 16:814. [PMID: 38398205 PMCID: PMC10887055 DOI: 10.3390/cancers16040814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
The development of new tools against glioblastoma multiforme (GBM), the most aggressive and common cancer originating in the brain, remains of utmost importance. Lentiviral vectors (LVs) are among the tools of future concepts, and pseudotyping offers the possibility of tailoring LVs to efficiently transduce and inactivate GBM tumor cells. Zika virus (ZIKV) has a specificity for GBM cells, leaving healthy brain cells unharmed, which makes it a prime candidate for the development of LVs with a ZIKV coat. Here, primary GBM cell cultures were transduced with different LVs encased with ZIKV envelope variants. LVs were generated by using the pNLgfpAM plasmid, which produces the lentiviral, HIV-1-based, core particle with GFP (green fluorescent protein) as a reporter (HIVgfp). Using five different GBM primary cell cultures and three laboratory-adapted GBM cell lines, we showed that ZIKV/HIVgfp achieved a 4-6 times higher transduction efficiency compared to the commonly used VSV/HIVgfp. Transduced GBM cell cultures were monitored over a period of 9 days to identify GFP+ cells to study the oncolytic effect due to ZIKV/HIVgfp entry. Tests of GBM tumor specificity by transduction of GBM tumor and normal brain cells showed a high specificity for GBM cells.
Collapse
Affiliation(s)
- Jan Patrick Formanski
- Department of Virology, LG Schreiber, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany (H.D.N.); (V.G.); (C.P.); (J.S.J.); (D.W.)
| | - Hai Dang Ngo
- Department of Virology, LG Schreiber, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany (H.D.N.); (V.G.); (C.P.); (J.S.J.); (D.W.)
| | - Vivien Grunwald
- Department of Virology, LG Schreiber, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany (H.D.N.); (V.G.); (C.P.); (J.S.J.); (D.W.)
| | - Celine Pöhlking
- Department of Virology, LG Schreiber, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany (H.D.N.); (V.G.); (C.P.); (J.S.J.); (D.W.)
| | - Jana Sue Jonas
- Department of Virology, LG Schreiber, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany (H.D.N.); (V.G.); (C.P.); (J.S.J.); (D.W.)
| | - Dominik Wohlers
- Department of Virology, LG Schreiber, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany (H.D.N.); (V.G.); (C.P.); (J.S.J.); (D.W.)
| | - Birco Schwalbe
- Department of Neurosurgery, Asklepios Klinik Nord, Standort Heidberg, 22417 Hamburg, Germany;
| | - Michael Schreiber
- Department of Virology, LG Schreiber, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany (H.D.N.); (V.G.); (C.P.); (J.S.J.); (D.W.)
| |
Collapse
|
3
|
Wong B, Birtch R, Rezaei R, Jamieson T, Crupi MJF, Diallo JS, Ilkow CS. Optimal delivery of RNA interference by viral vectors for cancer therapy. Mol Ther 2023; 31:3127-3145. [PMID: 37735876 PMCID: PMC10638062 DOI: 10.1016/j.ymthe.2023.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/28/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
In recent years, there has been a surge in the innovative modification and application of the viral vector-based gene therapy field. Significant and consistent improvements in the engineering, delivery, and safety of viral vectors have set the stage for their application as RNA interference (RNAi) delivery tools. Viral vector-based delivery of RNAi has made remarkable breakthroughs in the treatment of several debilitating diseases and disorders (e.g., neurological diseases); however, their novelty has yet to be fully applied and utilized for the treatment of cancer. This review highlights the most promising and emerging viral vector delivery tools for RNAi therapeutics while discussing the variables limiting their success and suitability for cancer therapy. Specifically, we outline different integrating and non-integrating viral platforms used for gene delivery, currently employed RNAi targets for anti-cancer effect, and various strategies used to optimize the safety and efficacy of these RNAi therapeutics. Most importantly, we provide great insight into what challenges exist in their application as cancer therapeutics and how these challenges can be effectively navigated to advance the field.
Collapse
Affiliation(s)
- Boaz Wong
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Rayanna Birtch
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Reza Rezaei
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Taylor Jamieson
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Mathieu J F Crupi
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jean-Simon Diallo
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Carolina S Ilkow
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
4
|
Ali Zaidi SS, Fatima F, Ali Zaidi SA, Zhou D, Deng W, Liu S. Engineering siRNA therapeutics: challenges and strategies. J Nanobiotechnology 2023; 21:381. [PMID: 37848888 PMCID: PMC10583313 DOI: 10.1186/s12951-023-02147-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023] Open
Abstract
Small interfering RNA (siRNA) is a potential method of gene silencing to target specific genes. Although the U.S. Food and Drug Administration (FDA) has approved multiple siRNA-based therapeutics, many biological barriers limit their use for treating diseases. Such limitations include challenges concerning systemic or local administration, short half-life, rapid clearance rates, nonspecific binding, cell membrane penetration inability, ineffective endosomal escape, pH sensitivity, endonuclease degradation, immunological responses, and intracellular trafficking. To overcome these barriers, various strategies have been developed to stabilize siRNA, ensuring their delivery to the target site. Chemical modifications implemented with nucleotides or the phosphate backbone can reduce off-target binding and immune stimulation. Encapsulation or formulation can protect siRNA from endonuclease degradation and enhance cellular uptake while promoting endosomal escape. Additionally, various techniques such as viral vectors, aptamers, cell-penetrating peptides, liposomes, and polymers have been developed for delivering siRNA, greatly improving their bioavailability and therapeutic potential.
Collapse
Affiliation(s)
- Syed Saqib Ali Zaidi
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Faria Fatima
- College of Medical Technology, Ziauddin University, Karachi, 74700, Pakistan
| | - Syed Aqib Ali Zaidi
- Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Dezhong Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Wuquan Deng
- Department of Endocrinology and Metabolism, Chongqing Diabetic Foot Medical Research Center, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, 400014, China.
| | - Shuai Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Chatterjee K, Lakdawala S, Quadir SS, Puri D, Mishra DK, Joshi G, Sharma S, Choudhary D. siRNA-Based Novel Therapeutic Strategies to Improve Effectiveness of Antivirals: An Insight. AAPS PharmSciTech 2023; 24:170. [PMID: 37566146 DOI: 10.1208/s12249-023-02629-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Since the ground-breaking discovery of RNA interference (RNAi), scientists have made significant progress in the field of small interfering RNA (siRNA) treatments. Due to severe barriers to the therapeutic application of siRNA, nanoparticle technologies for siRNA delivery have been designed. For pathological circumstances such as viral infection, toxic RNA abnormalities, malignancies, and hereditary diseases, siRNAs are potential therapeutic agents. However, systemic administration of siRNAs in vivo remains a substantial issue due to a lack of "drug-likeness" (siRNA are relatively larger than drugs and have low hydrophobicity), physiological obstacles, and possible toxicities. This write-up covers important accomplishment in the field of clinical trials and patents specially based of siRNAs using targeting viruses. Furthermore, it offers deep insight of nanoparticle applied for siRNA delivery and strategies to improve the effectiveness of antivirals.
Collapse
Affiliation(s)
- Krittika Chatterjee
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to be University), Mumbai, 400056, India
| | - Sagheerah Lakdawala
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to be University), Mumbai, 400056, India
| | - Sheikh Shahnawaz Quadir
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Dinesh Puri
- School of Pharmacy, Graphic Era Hill University, Dehradun, Uttarakhand, 248001, India
| | - Dinesh Kumar Mishra
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Koni, Bilaspur (C.G.), 495009, India
| | - Garima Joshi
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Sanjay Sharma
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to be University), Mumbai, 400056, India.
| | - Deepak Choudhary
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India.
| |
Collapse
|
6
|
Goltyaev MV, Varlamova EG. The Role of Selenium Nanoparticles in the Treatment of Liver Pathologies of Various Natures. Int J Mol Sci 2023; 24:10547. [PMID: 37445723 DOI: 10.3390/ijms241310547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
The liver is the body's largest gland, and regulates a wide variety of physiological processes. The work of the liver can be disrupted in a variety of pathologies, the number of which is several hundred. It is extremely important to monitor the health of the liver and develop approaches to combat liver diseases. In recent decades, nanomedicine has become increasingly popular in the treatment of various liver pathologies, in which nanosized biomaterials, which are inorganic, polymeric, liposomal, albumin, and other nanoparticles, play an important role. Given the need to develop environmentally safe, inexpensive, simple, and high-performance biomedical agents for theragnostic purposes and showing few side effects, special attention is being paid to nanoparticles based on the important trace element selenium (Se). It is known that the metabolism of the microelement Se occurs in the liver, and its deficiency leads to the development of several serious diseases in this organ. In addition, the liver is the depot for most selenoproteins, which can reduce oxidative stress, inhibit tumor growth, and prevent other liver damage. This review is devoted to the description of the results of recent years, revealing the important role of selenium nanoparticles in the therapy and diagnosis of several liver pathologies, depending on the dose and physicochemical properties. The possibilities of selenium nanoparticles in the treatment of liver diseases, disclosed in the review, will not only reveal the advantages of their hepatoprotective properties but also significantly supplement the data on the role of the trace element selenium in the regulation of these diseases.
Collapse
Affiliation(s)
- Michael V Goltyaev
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Russia
| | - Elena G Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Russia
| |
Collapse
|
7
|
Denieva ZG, Budanova UA, Sebyakin YL. Irregular cationic lipotetrapeptides for pharmaceutical multifunctional transport systems. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Current Transport Systems and Clinical Applications for Small Interfering RNA (siRNA) Drugs. Mol Diagn Ther 2019; 22:551-569. [PMID: 29926308 DOI: 10.1007/s40291-018-0338-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Small interfering RNAs (siRNAs) are an attractive new agent with potential as a therapeutic tool because of its ability to inhibit specific genes for many conditions, including viral infections and cancers. However, despite this potential, many challenges remain, including off-target effects, difficulties with delivery, immune responses, and toxicity. Traditional genetic vectors do not guarantee that siRNAs will silence genes in vivo. Rational design strategies, such as chemical modification, viral vectors, and non-viral vectors, including cationic liposomes, polymers, nanocarriers, and bioconjugated siRNAs, provide important opportunities to overcome these challenges. We summarize the results of research into vector delivery of siRNAs as a therapeutic agent from their design to clinical trials in ophthalmic diseases, cancers, respiratory diseases, and liver virus infections. Finally, we discuss the current state of siRNA delivery methods and the need for greater understanding of the requirements.
Collapse
|
9
|
Huang Y, Li SN, Zhou XY, Zhang LX, Chen GX, Wang TH, Xia QJ, Liang N, Zhang X. The Dual Role of AQP4 in Cytotoxic and Vasogenic Edema Following Spinal Cord Contusion and Its Possible Association With Energy Metabolism via COX5A. Front Neurosci 2019; 13:584. [PMID: 31258460 PMCID: PMC6587679 DOI: 10.3389/fnins.2019.00584] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 05/23/2019] [Indexed: 02/05/2023] Open
Abstract
Spinal cord edema, mainly including vasogenic and cytotoxic edema, influences neurological outcome after spinal cord contusion (SCC). Aquaporin 4 (AQP4) is the most ubiquitous water channel in the central nervous system (CNS), which is a rate-limiting factor in vasogenic edema expressing in brain injury, and it contributes to the formation of cytotoxic edema locating in astrocytes. However, little is known about the regulatory mechanism of AQP4 within vasogenic and cytotoxic edema in SCC, and whether the regulation mechanism of AQP4 is related to Cytochrome coxidase (COX5A) affecting energy metabolism. Therefore, the SCC model is established by Allen’s method, and the degree of edema and neuronal area is measured. The motor function of rats is evaluated by the Basso, Beattie, and Bresnahan (BBB) scoring system. Meanwhile, AQP4 and COX5A are detected by real-time quantitative PCR (qRT-PCR) and western blot (WB). The localization of targeted protein is exhibited by immunohistochemical staining (IHC) and immunofluorescence (IF). Additionally, the methodology of AQP4 lentivirus-mediated RNA interference (AQP4-RNAi) is used to reveal the effect on edema of SCC and the regulating molecular mechanism. Firstly, we observe that the tissue water content increases after SCC and decreases after the peak value of tissue water content at 3 days (P < 0.05) with abundant expression of AQP4 protein locating around vascular endothelial cells (VECs), which suggests that the increasing AQP4 promotes water reabsorption and improves vasogenic edema in the early stage of SCC. However, the neuronal area is larger than in the sham group in the 7 days (P < 0.05) with the total water content of spinal cord decrease. Meanwhile, AQP4 migrates from VECs to neuronal cytomembrane, which indicates that AQP4 plays a crucial role in aggravating the formation and development of cytotoxic edema in the middle stages of SCC. Secondly, AQP4-RNAi is used to elucidate the mechanism of AQP4 to edema of SCC. The neuronal area shrinks and the area of cytotoxic edema reduces after AQP4 downregulation. The BBB scores are significantly higher than in the vector group after AQP4-RNAi at 5, 7, and 14 (P < 0.05). There is a relationship between AQP4 and COX5A shown by bioinformatics analysis. After AQP4 inhibition, the expression of COX5A is significantly upregulated in the swelling astrocytes. Therefore, the inhibition of AQP4 expression reduces cytotoxic edema in SCC and improves motor function, which may be associated with upregulation of COX5A via affecting energy metabolism. Moreover, it is not clear how the inhibition of AQP4 directly causes the upregulation of COX5A.
Collapse
Affiliation(s)
- Yuan Huang
- Clinical Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Sheng-Nan Li
- Center for Experimental Technology of Preclinical Medicine, Chengdu Medical College, Chengdu, China
| | - Xiu-Ya Zhou
- Center for Experimental Technology of Preclinical Medicine, Chengdu Medical College, Chengdu, China
| | | | - Gang-Xian Chen
- Center for Experimental Technology of Preclinical Medicine, Chengdu Medical College, Chengdu, China
| | - Ting-Hua Wang
- Institute of Neuroscience, Kunming Medical University, Kunming, China.,Institute of Neurological Diseases, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qing-Jie Xia
- Institute of Neurological Diseases, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Nan Liang
- Center for Experimental Technology of Preclinical Medicine, Chengdu Medical College, Chengdu, China
| | - Xiao Zhang
- Center for Experimental Technology of Preclinical Medicine, Chengdu Medical College, Chengdu, China
| |
Collapse
|
10
|
Wang J, Liu S, Chang Y, Fang L, Han K, Li M. High efficient delivery of siRNA into tumor cells by positively charged carbon dots. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2019. [DOI: 10.1080/10601325.2018.1526043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Jie Wang
- Department of Neurology, The China-Japan Union Hospital of Jilin University, Changchun, China
| | - Songyan Liu
- Department of Neurology, The China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ying Chang
- Department of Neurology, The China-Japan Union Hospital of Jilin University, Changchun, China
| | - Le Fang
- Department of Neurology, The China-Japan Union Hospital of Jilin University, Changchun, China
| | - Kai Han
- Department of Neurology, The China-Japan Union Hospital of Jilin University, Changchun, China
| | - Miao Li
- Department of Neurosurgery, The China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Abstract
RNA interference (RNAi) is the biological process of mRNA degradation induced by complementary sequences double-stranded (ds) small interfering RNAs (siRNA) and suppression of target gene expression. Exogenous siRNAs (perfectly paired dsRNAs of ∼21–25 nt in length) play an important role in host defense against RNA viruses and in transcriptional and post-transcriptional gene regulation in plants and other eukaryotes. Using RNAi technology by transfecting synthetic siRNAs into eukaryotic cells to silence genes has become an indispensable tool to investigate gene functions, and siRNA-based therapy is being developed to knockdown genes implicated in diseases. Other examples of RNAi technology include method of producing highly potent and purified siRNAs directly from Escherichiacoli cells, based on an unexpected discovery that ectopic expression of p19, a plant viral siRNA-binding protein, stabilizes a cryptic siRNA-like RNA species in bacteria. Those siRNAs, named as pro-siRNA for “prokaryotic siRNA”, are bacterial RNase III products that have chemical and functional properties that like eukaryotic siRNAs.
Collapse
|
12
|
Lee CP, Ko AMS, Chiang SL, Lu CY, Tsai EM, Ko YC. Regulatory elements in vectors containing the ctEF-1α first intron and double enhancers for an efficient recombinant protein expression system. Sci Rep 2018; 8:15396. [PMID: 30337625 PMCID: PMC6193983 DOI: 10.1038/s41598-018-33500-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 09/27/2018] [Indexed: 11/21/2022] Open
Abstract
To establish a stable and scalable transient protein production system, we modified the EF-1 first intron size and verified the order of two recombinant enhancers downstream of the SV40 polyA sequence. This new vector was named pHH-Gemini (pHH-GM1) and was used to express alpha kinase 1 (ALPK1) and various other proteins, NLRP3, F-actin, Camodulin, PP2A, URAT1, Rab11a and myosin IIA. The results showed that, compared with six commercial plasmids, pHH-GM1 significantly enhanced His-HA-ALPK1 expression in a western blot analysis of transfected HEK293T cells. The expression of various other genes was also successful using the pHH-GM1 vector. In addition, we inserted turbo green florescence protein (tGFP) into the pHH-GM1 vector, and an improvement in fluorescence intensity was observed after transient transfection of HEK293T cells. For large-scale production, protein production was tested by standard supplementation with one volume of medium, and volumetric yields of 2 and 2.3 mg/L were achieved with pHH-GM1-ALPK1 in HEK293-F and CHO-S cells, respectively. We found that cell viability was more than 70% 11 days after cells were transfected with the pHH-GM1 vector. The pHH-GM1 vector with the ctEF-1α first intron and double enhancers, Simian virus 40 and Cytomegalovirus (SV40 and CMV) is an efficient CMV promoter-based gene expression system that can potentially be applied to study genes of interest and improve protein production.
Collapse
Affiliation(s)
- Chi-Pin Lee
- Environment-Omics-Diseases Research Center, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan
| | - Albert Min-Shan Ko
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, IVPP, CAS, Beijing, 100044, China
| | - Shang-Lun Chiang
- Environment-Omics-Diseases Research Center, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan.,Department of Health Risk Management, College of Public Health, China Medical University, Taichung, 40402, Taiwan
| | - Chi-Yu Lu
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Eing-Mei Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Ying-Chin Ko
- Environment-Omics-Diseases Research Center, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
13
|
Amelioration of atherosclerosis in apolipoprotein E-deficient mice by combined RNA interference of lipoprotein-associated phospholipase A2 and YKL-40. PLoS One 2018; 13:e0202797. [PMID: 30138439 PMCID: PMC6107246 DOI: 10.1371/journal.pone.0202797] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 08/09/2018] [Indexed: 01/19/2023] Open
Abstract
To test the hypothesis that combined RNA interference (RNAi) of lipoprotein-associated phospholipase A2 (Lp-PLA2) and YKL-40 is superior to RNAi of Lp-PLA2 or YKL-40 alone in ameliorating atherosclerosis. A total of 120 apolipoprotein E-deficient mice (apoE-/- mice) were randomly divided into five groups, including the vehicle alone, scrambled RNAi, Lp-PLA2 RNAi, YKL-40 RNAi, and combined Lp-PLA2 and YKL-40 RNAi groups. Constrictive collars were used to induce plaque formation. Lp-PLA2 RNAi and YKL-40 RNAi viral suspensions were transduced into carotid plaques of the mice. Carotid plaques were harvested for histological analysis four weeks after viral vector transduction. Inflammatory gene expression in the plasma and atherosclerotic plaques was determined by ELISA and real-time PCR. Four weeks after RNAi, the serum concentration and plaque mRNA expression of Lp-PLA2 and YKL-40 were remarkably attenuated, leading to reduced inflammatory gene expression. Plaques from the Lp-PLA2 or YKL-40 RNAi group showed lower lipid content, higher collagen content, increased fibrous cap thickness, and lower mRNA expressions of MCP-1 and MMP-8 than than those in the vehicle and scramble groups. When compared with the isolated Lp-PLA2 or YKL-40 RNAi group, the combined Lp-PLA2 and YKL-40 RNAi group exhibited higher collagen content and fibrous cap thickness, and lower lipid content and local inflammation. The beneficial effects of RNAi were independent of the plasma lipoprotein profile. Combined RNAi of Lp-PLA2 and YKL-40 is superior to RNAi of Lp-PLA2 or YKL-40 alone in ameliorating atherosclerosis.
Collapse
|
14
|
Barczak W, Sobecka A, Golusinski P, Masternak MM, Rubis B, Suchorska WM, Golusinski W. hTERT gene knockdown enhances response to radio- and chemotherapy in head and neck cancer cell lines through a DNA damage pathway modification. Sci Rep 2018; 8:5949. [PMID: 29654294 PMCID: PMC5899166 DOI: 10.1038/s41598-018-24503-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/04/2018] [Indexed: 12/11/2022] Open
Abstract
The aim of the study was to analyze the effect of hTERT gene knockdown in HNSCC cells by using novel in vitro models of head and neck cancer (HNSCC), as well as improving its personalized therapy. To obtain the most efficient knockdown siRNA, shRNA-bearing lentiviral vectors were used. The efficiency of hTERT silencing was verified with qPCR, Western blot, and immunofluorescence staining. Subsequently, the type of cell death and DNA repair mechanism induction after hTERT knockdown was assessed with the same methods, followed by flow cytometry. The effect of a combined treatment with hTERT gene knockdown on Double-Strand Breaks levels was also evaluated by flow cytometry. Results showed that the designed siRNAs and shRNAs were effective in hTERT knockdown in HNSCC cells. Depending on a cell line, hTERT knockdown led to a cell cycle arrest either in phase G1 or phase S/G2. Induction of apoptosis after hTERT downregulation with siRNA was observed. Additionally, hTERT targeting with lentiviruses, followed by cytostatics administration, led to induction of apoptosis. Interestingly, an increase in Double-Strand Breaks accompanied by activation of the main DNA repair mechanism, NER, was also observed. Altogether, we conclude that hTERT knockdown significantly contributes to the efficacy of HNSCC treatment.
Collapse
Affiliation(s)
- Wojciech Barczak
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, Garbary 15 Str., 61-866, Poznan, Poland. .,Radiobiology Lab, The Greater Poland Cancer Centre, Garbary 15 Str., 61-866, Poznan, Poland.
| | - Agnieszka Sobecka
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, Garbary 15 Str., 61-866, Poznan, Poland.,Radiobiology Lab, The Greater Poland Cancer Centre, Garbary 15 Str., 61-866, Poznan, Poland
| | - Pawel Golusinski
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, Garbary 15 Str., 61-866, Poznan, Poland.,Head and Neck Cancer Biology Lab, Department of Biology and Environmental Studies, Poznan University of Medical Sciences, Poznan, Poland
| | - Michal M Masternak
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, Garbary 15 Str., 61-866, Poznan, Poland.,University of Central Florida, Burnett School of Biomedical Sciences, College of Medicine, FL, 32827, Orlando, USA
| | - Blazej Rubis
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Przybyszewskiego 49 Str., 60-355, Poznan, Poland
| | - Wiktoria M Suchorska
- Radiobiology Lab, The Greater Poland Cancer Centre, Garbary 15 Str., 61-866, Poznan, Poland.,Department of Electroradiology, Poznan University of Medical Sciences, Garbary 15 Str., 61-866, Poznan, Poland
| | - Wojciech Golusinski
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, Garbary 15 Str., 61-866, Poznan, Poland
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Tauopathies represent a spectrum of incurable and progressive age-associated neurodegenerative diseases that currently are diagnosed definitively only at autopsy. Few clinical diagnoses, such as classic Richardson's syndrome of progressive supranuclear palsy, are specific for underlying tauopathy and no clinical syndrome is fully sensitive to reliably identify all forms of clinically manifest tauopathy. Thus, a major unmet need for the development and implementation of tau-targeted therapies is precise antemortem diagnosis. This article reviews new and emerging diagnostic therapies for tauopathies including novel imaging techniques and biomarkers and also reviews recent tau therapeutics. RECENT FINDINGS Building evidence from animal and cell models suggests that prion-like misfolding and propagation of pathogenic tau proteins between brain cells are central to the neurodegenerative process. These rapidly growing developments build rationale and motivation for the development of therapeutics targeting this mechanism through altering phosphorylation and other post-translational modifications of the tau protein, blocking aggregation and spread using small molecular compounds or immunotherapy and reducing or silencing expression of the MAPT tau gene. New clinical criteria, CSF, MRI, and PET biomarkers will aid in identifying tauopathies earlier and more accurately which will aid in selection for new clinical trials which focus on a variety of agents including immunotherapy and gene silencing.
Collapse
Affiliation(s)
- David Coughlin
- Frontotemporal Dementia Center (FTDC), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,University of Pennsylvania Perelman School of Medicine, Hospital of the University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA, 19104, USA
| | - David J Irwin
- Frontotemporal Dementia Center (FTDC), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
16
|
Wu H, Liu H, Zuo F, Zhang L. Adenoviruses-mediated RNA interference targeting cytosolic phospholipase A2α attenuates focal ischemic brain damage in mice. Mol Med Rep 2018; 17:5601-5610. [PMID: 29484397 PMCID: PMC5866000 DOI: 10.3892/mmr.2018.8610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 06/19/2017] [Indexed: 01/11/2023] Open
Abstract
Cerebral ischemia injury is a clinical, frequently occurring disease, which causes a heavy burden on society and families. It has been demonstrated that cytosolic phospholipase A2α (cPLA2α) is significant in neurological injury caused by ischemic brain injury, and inhibition of cPLA2α may reduce stroke injury. In the present study, the role of cPLA2α was investigated in a mouse model of middle cerebral artery occlusion and/or reperfusion (MCAO/R) using an effective cPLA2α inhibitor and adenoviruses-mediated RNA interference. The most effective recombinant adenovirus encoding cPLA2α small interfering RNA (pAd-siRNA-cPLA2α) was constructed and selected. MCAO/R surgery is used to construct the model of focal ischemic brain damage in mice. Adenoviruses-mediated RNA interference targeting cPLA2α was administered by stereotactic surgery 2 h before the MCAO/R. The expression/activity of cPLA2α and cPLA2α-derived injurious lipid mediators was assessed. pAd-siRNA-cPLA2α-treated animals (RNA interference; RNAi group) were compared with pAd-siRNA-control-treated animals (negative group) with regard to neurological deficit, motor function, pathological changes, apoptosis, and infarct volume. The RNAi group animals reduced the expression level of cPLA2α, as determined by western blotting and reverse transcription-quantitative polymerase chain reaction, the improvement of locomotor function was evaluated by rotarod test, and the decrease of apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick end-labeling staining. The decreased infarct areas were evaluated by 2,3,5-triphenyltetrazolium chloride staining. The expression levels of prostaglandin E2, leukotrienes B4, lysophosphatidylcholine and free fatty acids were reduced in the RNAi group when compared with the negative control group. Thus, the data indicates that the expression level of cPLA2α was effectively controlled by pAd-siRNA-cPLA2α treatment. pAd-siRNA-cPLA2α treatment, in reducing the levels of inflammatory factors, neurological deficit and tissue damage, represents an effective potential therapeutic strategy. pAd-siRNA-cPLA2α reduces cPLA2α expression levels with long-term efficacy, thereby improving functional deficits and effectively attenuating ischemic brain damage. Thus, pAd-siRNA-cPLA2α shows potential value for therapeutic evaluation in ischemic brain damage.
Collapse
Affiliation(s)
- Huijun Wu
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Hui Liu
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Fengtong Zuo
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Lihua Zhang
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| |
Collapse
|
17
|
Anis EA, Dhar M, Legendre AM, Wilkes RP. Transduction of hematopoietic stem cells to stimulate RNA interference against feline infectious peritonitis. J Feline Med Surg 2017; 19:680-686. [PMID: 27354226 PMCID: PMC11128816 DOI: 10.1177/1098612x16654958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objectives The goals of the study were: (1) to develop and evaluate non-replicating lentivirus vectors coding for feline coronavirus (FCoV)-specific micro (mi)RNA as a potential antiviral therapy for feline infectious peritonitis (FIP); (2) to assess the feasibility of transducing hematopoietic stem cells (HSCs) with ex vivo introduction of the miRNA-expressing lentivirus vector; and (3) to assess the ability of the expressed miRNA to inhibit FCoV replication in HSCs in vitro. Methods HSCs were obtained from feline bone marrow and replicated in vitro. Three lentiviruses were constructed, each expressing a different anti-FCoV miRNA. HSCs were stably transduced with the miRNA-expressing lentivirus vector that produced the most effective viral inhibition in a feline cell line. The effectiveness of the transduction and the expression of anti-FCoV miRNA were tested by infecting the HSCs with two different strains of FCoV. The inhibition of coronavirus replication was determined by relative quantification of the inhibition of intracellular viral genomic RNA synthesis using real-time, reverse-transcription PCR. The assessment of virus replication inhibition was determined via titration of extracellular virus using the TCID50 assay. Results Inhibition of FCoV was most significant in feline cells expressing miRNA-L2 that targeted the viral leader sequence, 48 h postinfection. miRNA-L2 expression in stably transduced HSCs resulted in 90% and 92% reductions in FIPV WSU 79-1146 genomic RNA synthesis and extracellular virus production, respectively, as well as 74% and 80% reduction in FECV WSU 79-1683 genomic RNA synthesis and extracellular virus production, respectively, as compared with an infected negative control sample producing non-targeting miRNA. Conclusions and relevance These preliminary results show that genetic modification of HSCs for constitutive production of anti-coronavirus miRNA will reduce FCoV replication.
Collapse
Affiliation(s)
- Eman A Anis
- Infectious Diseases, Veterinary Diagnostic and Investigational Laboratory, College of Veterinary Medicine, University of Georgia, Tifton, GA, USA
- Department of Virology, Faculty of Veterinary Medicine, University of Sadat, Sadat City, Egypt
| | - Madhu Dhar
- Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA
| | - Alfred M Legendre
- Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA
| | - Rebecca P Wilkes
- Infectious Diseases, Veterinary Diagnostic and Investigational Laboratory, College of Veterinary Medicine, University of Georgia, Tifton, GA, USA
| |
Collapse
|
18
|
Qin CQ, Huang DS, Zhang C, Song B, Huang JB, Ding Y. Lentivirus-mediated short hairpin RNA interference targeting TNF-alpha in macrophages inhibits particle-induced inflammation and osteolysis in vitro and in vivo. BMC Musculoskelet Disord 2016; 17:431. [PMID: 27756280 PMCID: PMC5069821 DOI: 10.1186/s12891-016-1290-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 10/11/2016] [Indexed: 11/23/2022] Open
Abstract
Background Aseptic loosening is a significant impediment to joint implant longevity. Prosthetic wear particles are postulated to play a central role in the onset and progression of periprosthetic osteolysis, leading to aseptic loosening of the prosthesis. Methods We investigated the inhibitory effects of a lentivirus-mediated short hairpin RNA that targets the TNF-alpha gene on the particle-induced inflammatory and osteolytic changes via macrophages both in vitro and in vivo. An siRNA sequence targeting the mouse TNF-alpha gene from four candidates, transcribed in vitro, was screened and identified. A lentivirus vector expressing short hairpin RNA (shRNA) was then constructed in order to facilitate efficient expression of TNF-alpha-siRNA. Lentivirus-mediated shRNA was transduced into cells of the mouse macrophage line RAW 264.7. Ceramic and titanium particles were introduced 24 h after lentivirus transduction to stimulate cells. TNF-alpha expression, represented by both mRNA and protein levels, was quantified with real-time PCR and ELISA at all time intervals. Lentivirus-mediated shRNA suspension was locally administered into the murine calvarial model, followed by local injection of particles. A multi-slice spiral CT scan was used to evaluate the osteolysis of the calvaria by detecting the width of the cranial sutures. Results Macrophages developed pseudopods when co-cultured with particles. Lentivirus-mediated shRNA was shown to effectively inhibit the expression of TNF-alpha at both the mRNA and protein levels in RAW 264.7. The multi-slice spiral CT scan showed that the lentivirus-mediated shRNA significantly suppressed osteolysis of mouse calvaria. Conclusions Our investigation highlighted the results that lentivirus-mediated shRNA targeting the TNF-alpha gene successfully inhibited particle-induced inflammatory and osteolytic changes both in vitro and in vivo. Therefore, lentivirus-mediated gene therapy may provide a novel therapeutic approach to aseptic joint loosening.
Collapse
Affiliation(s)
- Chu-Qiang Qin
- Department of Orthopaedic Surgery, The Memorial Hospital of Sun Yat-Sen University, 107 Yanjiangxi Road, 510120, Guangzhou, China
| | - Dong-Sheng Huang
- Department of Orthopaedic Surgery, The Memorial Hospital of Sun Yat-Sen University, 107 Yanjiangxi Road, 510120, Guangzhou, China
| | - Chi Zhang
- Department of Orthopaedic Surgery, The Memorial Hospital of Sun Yat-Sen University, 107 Yanjiangxi Road, 510120, Guangzhou, China
| | - Bin Song
- Department of Orthopaedic Surgery, The Memorial Hospital of Sun Yat-Sen University, 107 Yanjiangxi Road, 510120, Guangzhou, China
| | - Jian-Bin Huang
- Department of Orthopaedic Surgery, The Memorial Hospital of Sun Yat-Sen University, 107 Yanjiangxi Road, 510120, Guangzhou, China
| | - Yue Ding
- Department of Orthopaedic Surgery, The Memorial Hospital of Sun Yat-Sen University, 107 Yanjiangxi Road, 510120, Guangzhou, China.
| |
Collapse
|
19
|
Sobecka A, Barczak W, Suchorska WM. RNA interference in head and neck oncology. Oncol Lett 2016; 12:3035-3040. [PMID: 27899959 PMCID: PMC5103899 DOI: 10.3892/ol.2016.5079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 06/27/2016] [Indexed: 11/28/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth leading cause of cancer worldwide. The treatment of choice in case of head and neck cancer is surgery, followed by chemo- or/and radiotherapy. A potentially effective instrument to improve the outcome of numerous diseases, including viral infections, diabetes and cancer, is RNA interference (RNAi). It has been demonstrated that small interfering RNA and microRNA molecules are strongly involved in the regulation of various different pathological processes in cancer development. RNAi has become a valuable research tool allowing a better understanding of the mechanisms regulating cancer pathogenesis. Considering those advantages over other current therapeutics (including specificity and high efficacy), RNAi appears to be a potentially useful tool in cancer treatment. The present review discusses the current knowledge about the possibility of using RNAi in HNSCC therapy.
Collapse
Affiliation(s)
- Agnieszka Sobecka
- Department of Medical Physics, Radiobiology Laboratory, Greater Poland Cancer Centre, Poznan University of Medical Sciences, 61-866 Poznan, Poland
| | - Wojciech Barczak
- Department of Medical Physics, Radiobiology Laboratory, Greater Poland Cancer Centre, Poznan University of Medical Sciences, 61-866 Poznan, Poland; Department of Head and Neck Surgery, Greater Poland Cancer Centre, Poznan University of Medical Sciences, 61-866 Poznan, Poland
| | - Wiktoria Maria Suchorska
- Department of Medical Physics, Radiobiology Laboratory, Greater Poland Cancer Centre, Poznan University of Medical Sciences, 61-866 Poznan, Poland
| |
Collapse
|
20
|
ZHENG ZHIHUA, DU WEI, LI YANJU, GAO MEIQIN, HUANG AIMIN, LIU JINGFENG. Lentiviral-mediated short hairpin RNA silencing of APE1 suppresses hepatocellular carcinoma proliferation and migration: A potential therapeutic target for hepatoma treatment. Oncol Rep 2015; 34:95-102. [DOI: 10.3892/or.2015.3976] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/20/2015] [Indexed: 11/06/2022] Open
|
21
|
Zhang C, Chen X, Li Y, S W A H, Wu J, Shi X, Liu X, Kim S. si-RNA-Mediated Silencing of ADRBK1 Gene Attenuates Breast Cancer Cell Proliferation. Cancer Biother Radiopharm 2015; 29:303-9. [PMID: 25279970 DOI: 10.1089/cbr.2014.1653] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract Breast cancer is the most prominent cause of cancer-related deaths among women worldwide. It has been found that genetic mutations play distinct roles in the onset and progression of breast cancer. Androgenic, beta, receptor kinase 1 (ADRBK1) has been reported to possess oncogenic characteristics vital for cancer cell viability. This study was designed to investigate the effects of small interference RNA (si-RNA)-mediated ADRBK1 knockdown on breast cancer cell growth in vitro. High-expression levels of ADRBK1 were observed in all tested breast cancer cell lines (MDA-MB-231, MCF-7, T-47D, and BT-474). ADRBK1 si-RNA was delivered to breast cancer cells using lentivirus delivery system. Depletion of ADRBK1 significantly attenuated the cell viability and colony-formation ability. Flow cytometry analysis further demonstrated that ADRBK1 silencing led to MDA-MB-231 cell arrest in the G0/G1 phase. Collectively, these results indicate that knockdown of ADRBK1 gene has detrimental effects on breast cancer cell growth, which may be a potential therapeutic approach for the treatment of breast cancer.
Collapse
Affiliation(s)
- Chen Zhang
- 1 Shanghai Tenth People's Hospital, Tongji University School of Medicine , Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhou WP, Zhang H, Zhao YX, Liu GQ, Zhang JY. RNA interference of myocyte enhancer factor 2A accelerates atherosclerosis in apolipoprotein E-deficient mice. PLoS One 2015; 10:e0121823. [PMID: 25793529 PMCID: PMC4368513 DOI: 10.1371/journal.pone.0121823] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/04/2015] [Indexed: 01/07/2023] Open
Abstract
Objective Myocyte enhancer factor-2A (MEF 2A) has been shown to be involved in atherosclerotic lesion development, but its role in preexisting lesions is still unclear. In the present study we aim to assess the role of MEF 2A in the progression of pre-existing atherosclerosis. Methods Eighty apolipoprotein E-deficient mice (APOE KO) were randomly allocated to control, scramble and MEF 2A RNA interference (RNAi) groups, and constrictive collars were used to induce plaque formation. Six weeks after surgery, lentiviral shRNA construct was used to silence the expression of MEF 2A. Carotid plaques were harvested for analysis 4 weeks after viral vector transduction. Inflammatory gene expression in the plasma and carotid plaques was determined by using ELISAs and real-time RT-PCR. Results The expression level of MEF 2A was significantly reduced in plasma and plaque in the RNAi group, compared to the control and NC groups, whereas the expression level of pro-inflammatory cytokines was markedly increased. Silencing MEF 2A using lentiviral shRNA significantly reduced the plaque collagen content and fibrous cap thickness, as well as increased plaque area. However, silencing MEF 2A had no obvious effect on plaque lipid content. Conclusions Lentivirus-mediated MEF 2A shRNA accelerates inflammation and atherosclerosis in APOE KO mice, but has no effect on lipoprotein levels in plasma.
Collapse
Affiliation(s)
- Wen-ping Zhou
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Hui Zhang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Yu-xia Zhao
- Department of Medical Equipment, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Gang-qiong Liu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Jin-ying Zhang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
- * E-mail:
| |
Collapse
|
23
|
Yan Z, Li E, He L, Wang J, Zhu X, Wang H, Wang Z. Role of OATP1B3 in the transport of bile acids assessed using first-trimester trophoblasts. J Obstet Gynaecol Res 2014; 41:392-401. [PMID: 25345542 DOI: 10.1111/jog.12549] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 07/25/2014] [Indexed: 01/15/2023]
Abstract
AIMS The aim of this study was to investigate the transport of two kinds of bile acids by organic anion transporting polypeptide 1B3 (OATP1B3) using first-trimester trophoblasts. The mechanisms of damage to fetuses with intrahepatic cholestasis of pregnancy were investigated, providing new potential strategies for targeted therapies aimed at reducing fetal risk. MATERIAL AND METHODS The expression of OATP1B3 was knocked down by lentiviral vector-mediated RNA interference, and silencing efficiency was assessed using real-time polymerase chain reaction and Western blotting. The cytotoxicity of two bile acids (glycocholic acid [GCA] and glycochenodeoxycholic acid [GCDCA]) was assessed using the MTT method. Transport of bile acids was assessed by establishing an in vitro trophoblast monolayer model using polyester Transwell-clear inserts, and the concentration of bile acids in the upper compartment was assessed using high-pressure liquid chromatography. RESULTS GCA and GCDCA (10 and 20 μM) were not cytotoxic to the SWAN cell line (P > 0.05). RNAi treatment decreased the mRNA and protein expressions of OATP1B3 by 94.42% and 49.51%, respectively (P < 0.05). The bile acid transport curves were similar in the control and negative RNAi groups, whereas those in the RNAi group differed significantly from those in the control and negative RNAi groups. The concentration of GCA and GCDCA in the upper compartment was significantly lower in the RNAi group than in the control and negative RNAi groups. CONCLUSIONS OATP1B3 expression in trophoblasts was confirmed indirectly by its ability to transport the bile acids GCA and GCDCA.
Collapse
Affiliation(s)
- Ziru Yan
- School of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Ke Y, Lv Z, Yang X, Zhang J, Huang J, Wu S, Li YR. Compensatory effects of hOGG1 for hMTH1 in oxidative DNA damage caused by hydrogen peroxide. Toxicol Lett 2014; 230:62-8. [PMID: 25127756 DOI: 10.1016/j.toxlet.2014.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 08/01/2014] [Accepted: 08/10/2014] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To investigate the potential compensatory effects of hOGG1 and hMTH1 in the repair of oxidative DNA damage. METHODS The hOGG1 and hMTH1 gene knockdown human embryonic pulmonary fibroblast cell lines were established by lentivirus-mediated RNA interference. The messenger RNA (mRNA) levels of hOGG1 and hM1TH1 were analyzed by the real-time polymerase chain reaction, and 8-hydroxy-2'-deoxyguanosine (8-oxo-dG) formation was analyzed in a high-performance liquid chromatography-electrochemical detection system. RESULTS The hOGG1 and hMTH1 knockdown cells were obtained through blasticidin selection. After transfection of hOGG1 and hMTH1 small interfering RNA, the expression levels of the mRNA of hOGG1 and hMTH1 genes were decreased by 97.2% and 96.2%, respectively. The cells then were exposed to 100 μmol/L of hydrogen peroxide (H2O2) for 12 h to induce oxidative DNA damage. After H2O2 exposure, hMTH1 mRNA levels were increased by 25% in hOGG1 gene knockdown cells, whereas hOGG1 mRNA levels were increased by 52% in hMTH1 gene knockdown cells. Following the treatment with H2O2, the 8-oxo-dG levels in the DNA of hOGG1 gene knockdown cells were 3.1-fold higher than those in untreated HFL cells, and 1.67-fold higher than those in H2O2-treated wild-type cells. The 8-oxo-dG levels in hMTH1 gene knockdown cells were 2.3-fold higher than those in untreated human embryonic pulmonary fibroblast cells, but did not differ significantly from those in H2O2-treated wild-type cells. CONCLUSION Our data suggested that hOGG1 could compensate for hMTH1 during oxidative DNA damage caused by H2O2, whereas hMTH1 could not compensate sufficiently for hOGG1 during the process.
Collapse
Affiliation(s)
- Yuebin Ke
- Key Laboratory of Genetics & Molecular Medicine of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China.
| | - Ziquan Lv
- Key Laboratory of Genetics & Molecular Medicine of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xifei Yang
- Key Laboratory of Genetics & Molecular Medicine of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Jianqing Zhang
- Key Laboratory of Genetics & Molecular Medicine of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Juan Huang
- Key Laboratory of Genetics & Molecular Medicine of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Shuang Wu
- Key Laboratory of Genetics & Molecular Medicine of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Y Robert Li
- Department of Pharmacology, Campbell University School of Medicine, Buies Creek, NC 27546, USA; Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, and Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Blacksburg, VA 24061, USA
| |
Collapse
|
25
|
Gujrati M, Malamas A, Shin T, Jin E, Sun Y, Lu ZR. Multifunctional cationic lipid-based nanoparticles facilitate endosomal escape and reduction-triggered cytosolic siRNA release. Mol Pharm 2014; 11:2734-44. [PMID: 25020033 DOI: 10.1021/mp400787s] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Small interfering RNA (siRNA) has garnered much attention in recent years as a promising avenue for cancer gene therapy due to its ability to silence disease-related genes. Effective gene silencing is contingent upon the delivery of siRNA into the cytosol of target cells and requires the implementation of delivery systems possessing multiple functionalities to overcome delivery barriers. The present work explores the multifunctional properties and biological activity of a recently developed cationic lipid carrier, (1-aminoethyl)iminobis[N-(oleicylcysteinyl-1-amino-ethyl)propionamide]) (ECO). The physicochemical properties and biological activity of ECO/siRNA nanoparticles were assessed over a range of N/P ratios to optimize the formulation. Potent and sustained luciferase silencing in a U87 glioblastoma cell line was observed, even in the presence of serum proteins. ECO/siRNA nanoparticles exhibited pH-dependent membrane disruption at pH levels corresponding to various stages of the intracellular trafficking pathway. It was found that disulfide linkages created during nanoparticle formation enhanced the protection of siRNA from degradation and facilitated site-specific siRNA release in the cytosol by glutathione-mediated reduction. Confocal microscopy confirmed that ECO/siRNA nanoparticles readily escaped from late endosomes prior to cytosolic release of the siRNA cargo. These results demonstrate that the rationally designed multifunctionality of ECO/siRNA nanoparticles is critical for intracellular siRNA delivery and the continuing development of safe and effective delivery systems.
Collapse
Affiliation(s)
- Maneesh Gujrati
- Department of Biomedical Engineering, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | | | | | | | | | | |
Collapse
|
26
|
Silence of NLRP3 suppresses atherosclerosis and stabilizes plaques in apolipoprotein E-deficient mice. Mediators Inflamm 2014; 2014:507208. [PMID: 24999295 PMCID: PMC4066943 DOI: 10.1155/2014/507208] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/20/2014] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES The role of the NLRP3 inflammasome in atherosclerosis remains controversial. The aim of this study was to determine whether inhibition of NLRP3 signaling by lentivirus-mediated RNA interference could reduce atherosclerosis and stabilizes plaques. We also tried to explore the mechanisms of the impact of NLRP3 inflammasome on atherosclerosis. METHODS Apolipoprotein E-deficient mice aged 8 weeks were fed a high-fat diet and were injected with NLRP3 interfering or mock viral suspension after 4 weeks. Lentivirus transfer was repeated in 2 weeks. Four weeks after the first lentivirus injection, we evaluated the effects of NLRP3 gene silencing on plaque composition and stability and on cholesterol efflux and collagen metabolism, by histopathologic analyses and real-time PCR. RESULTS Gene silence of NLRP3 prevented plaques progression and inhibited inductions of proinflammatory cytokines. Moreover, this RNA interference reduced plaque content of macrophages and lipid, and increased plaque content of smooth muscle cells and collagen, leading to the stabilizing of atherosclerotic plaques. CONCLUSIONS NLRP3 inflammasomes may play a vital role in atherosclerosis, and lentivirus-mediated NLRP3 silencing would be a new strategy to inhibit plaques progression and to reduce local inflammation.
Collapse
|
27
|
Increased expression of chitinase 3-like 1 in aorta of patients with atherosclerosis and suppression of atherosclerosis in apolipoprotein E-knockout mice by chitinase 3-like 1 gene silencing. Mediators Inflamm 2014; 2014:905463. [PMID: 24729664 PMCID: PMC3960764 DOI: 10.1155/2014/905463] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 11/27/2013] [Accepted: 01/23/2014] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION The purpose of this study was to investigate the changes of chitinase 3-like 1 (CHI3L1) in the aorta of patients with coronary atherosclerosis and to determine whether inhibition of CHI3L1 by lentivirus-mediated RNA interference could stabilize atherosclerotic plaques in apolipoprotein E-knockout (ApoE(-/-)) mice. METHODS We collected discarded aortic specimens from patients undergoing coronary artery bypass graft surgery and renal arterial tissues from kidney donors. A lentivirus carrying small interfering RNA targeting the expression of CHI3L1 was constructed. Fifty ApoE(-/-) mice were divided into control group and CHI3L1 gene silenced group. A constrictive collar was placed around carotid artery to induce plaques formation. Then lentivirus was transfected into carotid plaques. RESULTS We found that CHI3L1 was overexpressed in aorta of patients with atherosclerosis and its expression was correlated with the atherosclerotic risk factors. After lentivirus transduction, mRNA and protein expression of CHI3L1 were attenuated in carotid plaques, leading to reduced plaque content of lipids and macrophages, and increased plaque content of collagen and smooth muscle cells. Moreover, CHI3L1 gene silencing downregulated the expression of local proinflammatory mediators. CONCLUSIONS CHI3L1 is overexpressed in aorta from patients with atherosclerosis and the lentivirus-mediated CHI3L1 gene silencing could represent a new strategy to inhibit plaques progression.
Collapse
|
28
|
Ghanbari JA, Salehi M, Zadeh AK, Zadeh SM, Beigi VB, Ahmad HK, Mahaki B, Beiraghdar M. A preliminary step of a novel strategy in suicide gene therapy with lentiviral vector. Adv Biomed Res 2014; 3:7. [PMID: 24592361 PMCID: PMC3928841 DOI: 10.4103/2277-9175.124634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 07/08/2013] [Indexed: 12/23/2022] Open
Abstract
Background: One of the challenges in lentiviral vector–based suicide gene therapy by toxin or apoptosis-inducing genes is death of packaging cells. Therefore, the process of production of these lentiviral particles would be stopped in this step. We proposed that insertion of a reverse promoter between R and U5 regions of 5′ long terminal repeat (LTR) in transfer plasmid could be considered as a solution for this problem. But it is not known, whether the insertion of RΔU3 sequence between the promoter and target gene in proviral genome during the life-cycle of lentivirus may interfere whit gene expression in target cells. Materials and Methods: These following methods were performed in this study: insertion of RΔU3 sequence in pEGFP-N1 plasmid, evaluation of the expression of eGFP gene after calcium phosphate co-precipitation transfection of pCMV-RΔU3-GFP construction in 293T cells, and quantitative assay of eGFP gene by flow cytometry technique. Results: Our results from flow cytometry technique analysis showed that there was no significant difference between the expression of eGFP gene in transfected cells with pEGFP-N1 and pCMV-RΔU3-GFP plasmids (P > 0.05). Conclusion: In this step of our strategy, we demonstrated that modification of orientation and location of promoter may overcome some issues in lentiviral suicide gene therapy, especially when toxin or apoptosis-inducing genes are used.
Collapse
Affiliation(s)
- Jahan Afrooz Ghanbari
- Department of Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mansoor Salehi
- Department of Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arezoo Karam Zadeh
- Department of Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Vahid Bahram Beigi
- Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Khan Ahmad
- Department of Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Behzad Mahaki
- Department of Biostatistics of Public Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Beiraghdar
- MS in Botanical Biology, Department of Biology, Payamnoor University, Isfahan, Iran
| |
Collapse
|
29
|
Qin J, Xu Y, Li X, Wu Y, Zhou J, Wang G, Chen L. Effects of lentiviral-mediated Foxp1 and Foxq1 RNAi on the hepatocarcinoma cell. Exp Mol Pathol 2013; 96:1-8. [PMID: 24211718 DOI: 10.1016/j.yexmp.2013.10.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 10/26/2013] [Accepted: 10/28/2013] [Indexed: 11/26/2022]
Abstract
Foxp1 and Foxq1 are two multifunctional molecules of "forkhead box (Fox)" family. The objective of this paper was to construct the lentiviral vectors expressing RNA interference (RNAi) against Foxp1 or Foxq1 genes, and the effects of both vectors with two RNAis on the proliferation, migration and apoptosis of 7721 hepatocarcinoma cell line were evaluated. Six target sequences against human Foxp1/Foxq1 mRNA were designed respectively and six pairs of their corresponding double-strand DNA oligo (siRNA) were synthesized prior to being transfected into 7721 cells with lipo2000, then a most efficient siRNA were selected to be subcloned into pLL3.7-GFP/Lenti plasmids. These plasmids were transfected into 293T cells to package lentiviral particles for subsequent transfection into 7721 cells after their sequences were confirmed. The expression of Foxp1and Foxq1 genes in the transfected cells were identified by real-time PCR. The migration, infiltration, viability and apoptosis of the transfected cells were assessed by wound healing assay, Transwell assay, CCK-8 assay and flow cytometry. Sequencing results showed that lentiviral vectors contained Foxp1 or Foxq1 gene. After being transfected into 7721 cells, Foxp1 and Foxq1 expression were significantly down-regulated by siRNA-823 and siRNA-834. The migration and infiltration ability, and the viability of 7721 cells transfected with two siRNAs were significantly suppressed; flow cytometry assay exhibited the apoptosis rate of transfected 7721 cells with the lentivirus RNAi vector of Foxp1 or Foxq1 was increased. All the results showed that the lentivirus RNAi vectors of Foxp1 and Foxq1 were able to inhibit the expression of Foxp1 and Foxq1 in 7721 cells efficiently, and the down-regulation of either Foxp1 or Foxq1 resulted in suppression of migration, infiltration and viability of 7721 cells and an increase in cell apoptosis. Our data indicated that both Foxp1 and Foxq1 genes played an oncogenic role in hepatocarcinoma cells, which proposed the two genes as new therapeutic targets for the cancer.
Collapse
Affiliation(s)
- Jing Qin
- Department of Pathological Anatomy, Nantong University, Nantong, China
| | - Yuyin Xu
- Affiliated Hospital of Nantong University, Nantong, China
| | - Xingyu Li
- Department of Pathological Anatomy, Nantong University, Nantong, China
| | - Yuanyuan Wu
- Department of Pathological Anatomy, Nantong University, Nantong, China
| | - Jiaming Zhou
- Department of Pathological Anatomy, Nantong University, Nantong, China
| | - Guilan Wang
- Department of Pathological Anatomy, Nantong University, Nantong, China
| | - Li Chen
- Department of Pathological Anatomy, Nantong University, Nantong, China.
| |
Collapse
|
30
|
siRNA-mediated knockdown of SMC1A expression suppresses the proliferation of glioblastoma cells. Mol Cell Biochem 2013; 381:209-15. [PMID: 23754617 DOI: 10.1007/s11010-013-1704-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 05/24/2013] [Indexed: 01/01/2023]
Abstract
SMC1A is a member of cohesin complex which has essential functions in cell cycle progression and DNA repair. Therefore, we choose SMC1A as a target gene therapy of glioblastoma. It is well known that glioblastoma has very low survival rate because of ineffectiveness of conventional treatments. This study was designed to explore the possibilities of small interfering RNA (siRNA)-mediated SMC1A silencing as alternative method of treatment. We found that the lentivirus-mediated RNAi system efficiently decreased the expression level of SMC1A. Inhibiting SMC1A expression efficiently (P < 0.001) resulted in inhibiting the proliferation and colony formation of U251 and U87MG cells. Moreover, we found that SMC1A silencing led to S cell-cycle arresting. Collectively, these results demonstrated the possibility of siRNA-mediated silencing of SMC1A as a therapeutic tool for the treatment of glioblastoma.
Collapse
|
31
|
Synthesis of oligonucleotides with glucosamine at the 3'-position and evaluation of their biological activity. Bioorg Med Chem Lett 2013; 23:4157-61. [PMID: 23743279 DOI: 10.1016/j.bmcl.2013.05.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/01/2013] [Accepted: 05/10/2013] [Indexed: 11/21/2022]
Abstract
Short interfering RNA (siRNA) has been proven to be an utilizable tool for post-transcriptional gene silencing research. In this study, we designed and synthesized two glucosamine analogues and tried to modify the siRNA using these two glucosamine analogues at the 3'-overhang region of siRNAs to improve the nuclease resistance and to overcome some other weak points. The siRNAs modified with glucosamine analogues had almost no effect of the thermal stability and showed strong resistance to nuclease degradation. Some of them kept the same gene silencing activity level as unmodified siRNA.
Collapse
|
32
|
Alkane-modified low-molecular-weight polyethylenimine with enhanced gene silencing for siRNA delivery. Int J Pharm 2013; 450:44-52. [PMID: 23608201 DOI: 10.1016/j.ijpharm.2013.04.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/23/2013] [Accepted: 04/08/2013] [Indexed: 11/23/2022]
Abstract
Small interfering RNA (siRNA) has tremendous potential as a therapeutic agent for diverse diseases; however, due to its susceptibility to degradation and poor cellular uptake, the low efficiency of administration has been the most important limiting factor for clinical applications of siRNA. Herein, we synthesized alkyl chain modified low-molecular-weight polyethylenimines (LMW PEIs) and found that hydrophobically modified PEIs displayed enhanced efficiency in siRNA-mediated knockdown of target genes. To elucidate the mechanism for increased delivery, we characterized the polymers' physicochemical properties and bioactivity via nuclear magnetic resonance (NMR), gel retardation assay, dynamic laser scattering (DLS) analysis, confocal laser scanning microscopy and flow cytometry. The hydrophobic modification reduced siRNA binding affinity but facilitated the formation of nanoparticles in contrast to the original PEI. The PEIs with eight and thirteen alkyl tails were able to self-assemble into nanoparticles and yielded higher cellular uptake, which leaded to even similar efficiencies of 80-90% knockdown as Lipofectamine™ 2000 control. These results suggested that the status of polymers in aqueous solution, which depended on the degree of hydrophobic modification, played an important role in the uptake of siRNA. Therefore, we provided new information on the role of hydrophobic content in the enhanced gene silencing activity.
Collapse
|
33
|
Lebedev TD, Spirin PV, Prassolov VS. Transfer and Expression of Small Interfering RNAs in Mammalian Cells Using Lentiviral Vectors. Acta Naturae 2013; 5:7-18. [PMID: 23819033 PMCID: PMC3695350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
RNA interference is a convenient tool for modulating gene expression. The widespread application of RNA interference is made difficult because of the imperfections of the methods used for efficient target cell delivery of whatever genes are under study. One of the most convenient and efficient gene transfer and expression systems is based on the use of lentiviral vectors, which direct the synthesis of small hairpin RNAs (shRNAs), the precursors of siRNAs. The application of these systems enables one to achieve sustainable and long-term shRNA expression in cells. This review considers the adaptation of the processing of artificial shRNA to the mechanisms used by cellular microRNAs and simultaneous expression of several shRNAs as potential approaches for producing lentiviral vectors that direct shRNA synthesis. Approaches to using RNA interference for the treatment of cancer, as well as hereditary and viral diseases, are under active development today. The improvement made to the methods for constructing lentiviral vectors and the investigation into the mechanisms of processing of small interfering RNA allow one to now consider lentiviral vectors that direct shRNA synthesis as one of the most promising tools for delivering small interfering RNAs.
Collapse
Affiliation(s)
- T. D. Lebedev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str., 32, Moscow, Russia, 119991
| | - P. V. Spirin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str., 32, Moscow, Russia, 119991
| | - V. S. Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str., 32, Moscow, Russia, 119991
| |
Collapse
|
34
|
Wang W, Peng H, Li J, Zhao X, Zhao F, Hu K. Controllable inhibition of hepatitis B virus replication by a DR1-targeting short hairpin RNA (shRNA) expressed from a DOX-inducible lentiviral vector. Virus Genes 2013; 46:393-403. [PMID: 23397077 PMCID: PMC7089079 DOI: 10.1007/s11262-013-0886-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 01/22/2013] [Indexed: 12/14/2022]
Abstract
As a highly efficient delivery system, lentiviral vectors (LVs) have become a powerful tool to assess the antiviral efficacy of RNA drugs such as short hairpin RNA (shRNA) and decoys. Furthermore, recent advanced systems allow controlled expression of the effector RNA via coexpression of a tetracycline/doxycycline (DOX) responsive repressor (tTR-KRAB). Herein, this system was utilized to assess the antiviral effects of LV-encoded shRNAs targeting three conserved regions on the pregenomic RNA of hepatitis B virus (HBV), namely the region coding for the reverse transcriptase (RT) domain of the viral polymerase (LV-HBV-shRNA1), the core promoter (CP; LV-HBV-shRNA2), and the direct repeat 1 (DR1; LV-HBV-shRNA3). Transduction of just the LV-HBV-shRNA vectors into the stably HBV expressing HepG2.2.15 cell line showed significant reductions in secreted HBsAg and HBeAg, intracellular HBcAg as well as HBV RNA and DNA replicative intermediates for all vectors, however, most pronouncedly for the DR1-targeting shRNA3. The corresponding vector was therefore applied in the DOX-controlled system. Notably, strong interference with HBV replication was found in the presence of the inducer DOX whereas the antiviral effect was essentially ablated in its absence; hence, the silencing effect of the shRNA and consequently HBV replication could be strictly regulated by DOX. This newly established system may therefore provide a valuable platform to study the antiviral efficacy of RNA drugs against HBV in a regulated manner, and even be applicable in vivo.
Collapse
Affiliation(s)
- Weiwei Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | | | | | | | | | | |
Collapse
|
35
|
Zhang H, Zhang J, Shen D, Zhang L, He F, Dang Y, Li L. Lentiviral-mediated RNA interference of lipoprotein-associated phospholipase A2 ameliorates inflammation and atherosclerosis in apolipoprotein E-deficient mice. Int J Mol Med 2013; 31:651-9. [PMID: 23338278 DOI: 10.3892/ijmm.2013.1248] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 12/04/2012] [Indexed: 11/05/2022] Open
Abstract
Lipoprotein associated phospholipase A2 (Lp-PLA2) overexpression is implicated in athero-sclerosis. In the present study, we evaluated the effects of lentiviral-mediated RNA interference (RNAi) of Lp-PLA2 on inflammation and atherosclerosis in apolipoprotein E-deficient mice. Apolipoprotein E-deficient mice were randomly allocated to control and experimental groups, and constrictive collars were used to induce plaque formation. Eight weeks after surgery, the lentiviral-mediated RNAi construct was used to silence expression of Lp-PLA2. Control and experimental lentivirus was transfected directly into carotid plaques or administered systemically. Tissues were collected for analysis 7 weeks after transfection. Inflammatory gene expression in the plasma and atherosclerotic lesions was then determined at the mRNA and protein levels. We observed no differences in body weight and plasma lipid levels at the end of the investigation. However, the expression levels of Lp-PLA2 and pro-inflammatory cytokines were significantly reduced in the RNAi groups, compared to the controls, whereas the plasma concentration of anti-inflammatory cytokines was markedly increased. Moreover, our results demonstrated a significant reduction in plaque area and lipid content, as well as a rise in collagen content following RNAi treatment. Importantly, when comparing the two methods of viral delivery, we found that transluminal local transfection exhibited enhanced improvement of plaque stability as compared to systemic administration. Inhibition of Lp-PLA2 by lentiviral-mediated RNAi ameliorates inflammation and atherosclerosis in apolipoprotein E-deficient mice. In addition, transluminal local delivery of Lp-PLA2 shRNA is superior to systemic administration for stabilizing atherosclerotic plaques.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Cardiology, The First Affliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | | | | | | | | | | | | |
Collapse
|
36
|
Zhang H, Zhang J, Shen D, Zhang L, He F, Dang Y, Li L. Regression of atherosclerosis in apolipoprotein E-deficient mice by lentivirus-mediated gene silencing of lipoprotein-associated phospholipase A2. Biochem Biophys Res Commun 2012; 427:557-62. [PMID: 23022183 DOI: 10.1016/j.bbrc.2012.09.096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 09/18/2012] [Indexed: 11/17/2022]
Abstract
Overexpression of lipoprotein-associated phospholipase A(2) (Lp-PLA(2)) is implicated in atherosclerosis. We tested the hypothesis that lentivirus-mediated Lp-PLA(2) silencing could inhibit atherosclerosis in apolipoprotein E-deficient mice. Sixty eight apolipoprotein E-deficient mice were fed a high-fat diet and a constrictive collar was placed around the left carotid artery to induce plaque formation. The mice were randomly divided into control, negative control (NC) and RNA interference (RNAi) groups. Lp-PLA(2) RNAi or scrambled NC lentivirus viral suspensions were constructed and transfected into the carotid plaques 8 weeks after surgery; the control group was administered saline. The carotid plaques were assessed 7 weeks later using hematoxylin and eosin, Masson's trichrome and oil red O staining; plasma and lesion inflammatory gene expression were examined using ELISAs and real-time PCR. Seven weeks after transfection, the serum concentration and plaque mRNA expression of Lp-PLA(2) was significantly lower in the RNAi group, and lead to reduced local and systemic inflammatory gene expression. Lp-PLA(2) RNAi also ameliorated plaque progression, reduced the plaque lipid content and increased the plaque collagen content. The effects of Lp-PLA(2) RNAi were independent of serum lipoprotein levels, as the triglyceride and total cholesterol levels of the control, NC and RNAi groups were not significantly different. These findings support the hypothesis that lentivirus-mediated Lp-PLA(2) gene silencing has therapeutic potential to inhibit atherosclerosis and increase plaque stability, without altering the plasma lipoprotein profile.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Cardiology, The First Affliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | | | | | | | | | | | | |
Collapse
|
37
|
Hoyer J, Neundorf I. Knockdown of a G protein-coupled receptor through efficient peptide-mediated siRNA delivery. J Control Release 2012; 161:826-34. [DOI: 10.1016/j.jconrel.2012.05.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 05/05/2012] [Accepted: 05/08/2012] [Indexed: 12/18/2022]
|
38
|
Raghunathan S, Patel BM. Therapeutic implications of small interfering RNA in cardiovascular diseases. Fundam Clin Pharmacol 2012; 27:1-20. [DOI: 10.1111/j.1472-8206.2012.01051.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 04/17/2012] [Accepted: 06/01/2012] [Indexed: 01/07/2023]
Affiliation(s)
- Suchi Raghunathan
- Institute of Pharmacy; Nirma University; Ahmedabad; 382 481; Gujarat; India
| | - Bhoomika M. Patel
- Institute of Pharmacy; Nirma University; Ahmedabad; 382 481; Gujarat; India
| |
Collapse
|
39
|
Sindhu A, Arora P, Chaudhury A. Illuminating the gateway of gene silencing: perspective of RNA interference technology in clinical therapeutics. Mol Biotechnol 2012; 51:289-302. [PMID: 21947958 PMCID: PMC7091241 DOI: 10.1007/s12033-011-9456-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A novel laboratory revolution for disease therapy, the RNA interference (RNAi) technology, has adopted a new era of molecular research as the next generation "Gene-targeted prophylaxis." In this review, we have focused on the chief technological challenges associated with the efforts to develop RNAi-based therapeutics that may guide the biomedical researchers. Many non-curable maladies, like neurodegenerative diseases and cancers have effectively been cured using this technology. Rapid advances are still in progress for the development of RNAi-based technologies that will be having a major impact on medical research. We have highlighted the recent discoveries associated with the phenomenon of RNAi, expression of silencing molecules in mammals along with the vector systems used for disease therapeutics.
Collapse
Affiliation(s)
- Annu Sindhu
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, 125001 Haryana India
| | - Pooja Arora
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, 125001 Haryana India
| | - Ashok Chaudhury
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, 125001 Haryana India
- Present Address: Crop Science Department, NC State University, Raleigh, NC 27606 USA
| |
Collapse
|
40
|
Xu Y, Zhang J, Liu QS, Dong WG. Knockdown of liver-intestine cadherin decreases BGC823 cell invasiveness and metastasis in vivo. World J Gastroenterol 2012; 18:3129-37. [PMID: 22791949 PMCID: PMC3386327 DOI: 10.3748/wjg.v18.i24.3129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 05/06/2011] [Accepted: 05/12/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To assess BGC823 gastric cancer (GC) cell metastasis after knockdown of liver-intestine cadherin (CDH17) and the therapeutic value of CDH17-RNAi-lentivirus in vivo.
METHODS: We evaluated primary tumor growth and assessed local infiltration and systemic tumor dissemination using an orthotopic implantation technique. The therapeutic value of CDH17 knockdown was examined by intratumoral administration of CDH17-RNA interference (RNAi)-lentivirus in an established GC tumor xenograft mouse model. Furthermore, a comparative proteomic approach was utilized to identify differentially expressed proteins in BGC823 and lenti-CDH17-miR-neg cells following CDH17 knockdown.
RESULTS: Metastases in the liver and lung appeared earlier and more frequently in animals with tumors derived from BGC823 or lenti-CDH17-miR-neg cells than in tumors derived from lenti-CDH17-miR-B cells. Average tumor weight and volume in the CDH17-RNAi-lentivirus-treated group were significantly lower than those in the control group (tumor volume: 0.89 ± 0.04 cm3vs 1.16 ± 0.06 cm3, P < 0.05; tumor weight: 1.15 ± 0.58 g vs 2.09 ± 0.08 g, P < 0.05). Fifteen differentially expressed proteins were identified after CDH17 silencing in BGC823 cells, including a variety of cytoskeletal and chaperone proteins as well as proteins involved in metabolism, immunity/defense, cell proliferation and differentiation, cell cycle, and signal transduction.
CONCLUSION: Our data establish a foundation for future studies of the comprehensive protein expression patterns and effects of CDH17 in GC.
Collapse
|
41
|
Zhang ZX, Min WP, Jevnikar AM. Use of RNA interference to minimize ischemia reperfusion injury. Transplant Rev (Orlando) 2012; 26:140-55. [PMID: 22000663 DOI: 10.1016/j.trre.2011.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 03/22/2011] [Indexed: 12/21/2022]
|
42
|
Aliabadi HM, Landry B, Sun C, Tang T, Uludağ H. Supramolecular assemblies in functional siRNA delivery: Where do we stand? Biomaterials 2012; 33:2546-69. [DOI: 10.1016/j.biomaterials.2011.11.079] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 11/26/2011] [Indexed: 12/14/2022]
|
43
|
Zhang R, Wang Y, Song B, Han ZQ, Xu YM. Recombinant cell lines expressing shRNA targeting herpes simplex virus 2 VP16 inhibit virus replication. Intervirology 2012; 55:426-34. [PMID: 22286011 DOI: 10.1159/000335663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 12/01/2011] [Indexed: 01/15/2023] Open
Abstract
AIMS To establish HSV2 VP16 targeting shRNA-expressing cell lines and investigate the antiviral effect of shRNA targeting HSV2 VP16. METHODS The cell lines Vero-shRNAs and negative-control Vero-shCON were established. Their inhibition effects on VP16 mRNA expression were tested by real-time fluorescent quantitative polymerase chain reaction (PCR) and their antiviral effects were evaluated by yield reduction assay. The influence of passage numbers on the inhibition ability of cell lines was researched. RESULTS Vero-shRNA24 targeting the upper stream, Vero-shRNA642 targeting the lower stream and Vero-shCON were established. Vero-shRNA24, Vero-shRNA642 and Vero-shRNA24 + 642 could reduce the VP16 mRNA significantly. Vero-shRNA24 was the most efficient. The HSV2 titers in Vero and Vero-shCON were the highest at 72 h after infection, and started decreasing thereafter. The viral titers of the Vero-shRNA groups reached a peak after 84 h and the highest titers were lower than in the Vero group. The inhibiting effect on VP16 mRNA expression and viral replication of Vero-shRNA24 cell lines of passages 10 and 20 were not significantly different from the primary cell line. Although of no statistical significance, the passage 50 cell line showed decreased inhibiting ability. CONCLUSIONS Recombinant cell lines expressing shRNA targeting HSV2 VP16 were established. They can stably inhibit HSV2 VP16 mRNA expression and viral replication within passage 50.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | | | | | | | | |
Collapse
|
44
|
Yang JM, Wang Y, Qi LH, Wang Y, Gao F, Ding SF, Ni M, Liu CX, Zhang C, Zhang Y. Combinatorial interference of toll-like receptor 2 and 4 synergistically stabilizes atherosclerotic plaque in apolipoprotein E-knockout mice. J Cell Mol Med 2011; 15:602-11. [PMID: 20132416 PMCID: PMC3922382 DOI: 10.1111/j.1582-4934.2010.01028.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
To test the hypothesis that combinatorial interference of toll-like receptor 2 (TLR2) and TLR4 is superior to isolated interference of TLR2 or TLR4 in stabilizing atherosclerotic plaques, lentiviruses carrying small interfering RNA of TLR2 or TLR4 were constructed and proved efficacious for knocking down mRNA and protein expression of TLR2 or TLR4 significantly in vitro. One hundred and fifty apolipoprotein E(-/-) mice fed a high-fat diet were divided into the control, mock, TLR2i, TLR4i and TLR2 + 4i subgroups and a constrictive collar was placed around carotid artery of these mice to induce plaque formation. TLR2i and TLR4i viral suspension was transfected into carotid plaques, respectively, in TLR2i and TLR4i subgroups, or in combination in TLR2 + 4i subgroup. Four weeks after lentivirus transfection, mRNA and protein expression of TLR2 or TLR4 was attenuated markedly in carotid plaques, leading to reduced local inflammatory cytokine expression and plaque content of lipid and macrophages, increased plaque content of collagen and lowered plaque vulnerability index. Factorial ANOVA analysis revealed that there was a synergistic effect between TLR4i and TLR2i in stabilizing plaques. In conclusion, combinatorial interference of TLR2 and TLR4 reduces local inflammation and stabilizes plaques more effectively than interference of TLR2 or TLR4 alone.
Collapse
Affiliation(s)
- Jian Min Yang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Regression of atherosclerosis plaques in apolipoprotein E-/- mice after lentivirus-mediated RNA interference of CD40. Int J Cardiol 2011; 163:34-9. [PMID: 21640399 DOI: 10.1016/j.ijcard.2011.05.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 03/22/2011] [Accepted: 05/13/2011] [Indexed: 01/04/2023]
Abstract
BACKGROUND A role of CD40 (cluster of differentiation 40) is suggested in development of atherosclerosis plaques, especially in advanced plaques. However, the role of lentiviruses carrying small interfering RNA (siRNA) of CD40 in progression and destabilization of advanced atherosclerotic plaques remains unknown. The aim of this study was to determine whether inhibition of CD40 signaling by lentivirus-mediated RNA interference (RNAi) could inhibit progression of atherosclerotic plaques and increase collagen production. METHODS Apolipoprotein E-deficient (ApoE-/-) mice aged 10 weeks were fed a high-fat diet and a constrictive collar was placed around right carotid arteries of these mice to induce plaques formation. The recombinant CD40-RNAi-Lentivirus (CD40-RNAi-LV) or negative control-green fluorescent protein-Lentivirus (NC-GFP-LV) were constructed and transfected into right carotid plaques respectively eight weeks after surgery. RESULTS CD40-RNAi-LV not only prevented plaques progression but also decreased plaques content of lipid, increased plaques content of collagen 6 weeks after lentivirus transfection. This effect reflected a marked decrease in the intima/media ratios (0.31 ± 0.04 vs 0.68 ± 0.05, P<0.05) and a diminished degree of lumen stenosis (intima/lumen ratios, 0.17 ± 0.04 vs 0.33 ± 0.40, P<0.05). Moreover, real-time polymerase chain reaction (RT-PCR) analysis of CD40-RNAi-LV group downregulated expressions of proinflammatory cytokines, chemokines and matrix metalloproteinases. CONCLUSIONS Lentivirus-mediated CD40 silencing by siRNA treatment would be a new strategy to inhibit plaques progression and to reduce local inflammation through the antiinflammatory effects.
Collapse
|
46
|
Mcintyre GJ, Arndt AJ, Gillespie KM, Mak WM, Fanning GC. A comparison of multiple shRNA expression methods for combinatorial RNAi. GENETIC VACCINES AND THERAPY 2011; 9:9. [PMID: 21496330 PMCID: PMC3098768 DOI: 10.1186/1479-0556-9-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 04/17/2011] [Indexed: 01/09/2023]
Abstract
RNAi gene therapies for HIV-1 will likely need to employ multiple shRNAs to counter resistant strains. We evaluated 3 shRNA co-expression methods to determine their suitability for present use; multiple expression vectors, multiple expression cassettes and single transcripts comprised of several dsRNA units (aka domains) with each being designed to a different target. Though the multiple vector strategy was effective with 2 shRNAs, the increasing number of vectors required is a major shortcoming. With single transcript configurations we only saw adequate activity from 1 of 10 variants tested, the variants being comprised of 2 - 3 different target domains. Whilst single transcript configurations have the most advantages on paper, these configurations can not yet be rapidly and reliably re-configured for new targets. However, our multiple cassette combinations of 2, 3 and 4 (29 bp) shRNAs were all successful, with suitable activity maintained in all positions and net activities comparable to that of the corresponding single shRNAs. We conclude that the multiple cassette strategy is the most suitably developed for present use as it is easy to design, assemble, is directly compatible with pre-existing shRNA and can be easily expanded.
Collapse
Affiliation(s)
- Glen J Mcintyre
- Johnson and Johnson Research Pty Ltd, Level 4 Biomedical Building, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW, 1430, Australia
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Allison J Arndt
- Johnson and Johnson Research Pty Ltd, Level 4 Biomedical Building, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW, 1430, Australia
| | - Kirsten M Gillespie
- Johnson and Johnson Research Pty Ltd, Level 4 Biomedical Building, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW, 1430, Australia
| | - Wendy M Mak
- Johnson and Johnson Research Pty Ltd, Level 4 Biomedical Building, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW, 1430, Australia
| | - Gregory C Fanning
- Johnson and Johnson Research Pty Ltd, Level 4 Biomedical Building, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW, 1430, Australia
- Tibotec BVBA, Gen De Wittelaan L 11 B3, 2800 Mechelen, Belgium
| |
Collapse
|
47
|
Tsunetsugu-Yokota Y, Yamamoto T. Mammalian MicroRNAs: Post-Transcriptional Gene Regulation in RNA Virus Infection and Therapeutic Applications. Front Microbiol 2010; 1:108. [PMID: 21607080 PMCID: PMC3095394 DOI: 10.3389/fmicb.2010.00108] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 08/10/2010] [Indexed: 12/21/2022] Open
Abstract
RNA silencing mediated by microRNAs (miRNAs) is a recently discovered gene regulatory mechanism involved in various aspects of biology, such as development, cell differentiation and proliferation, and innate immunity against viral infections. miRNAs, which are a class of small (21–25 nucleotides) RNAs, target messenger RNA (mRNA) through incomplete base-pairing with their target sequences resulting in mRNA degradation or translational repression. Although studies of miRNAs have led to numerous sensational discoveries in biology, many fundamental questions about their expression and function still remain. In this review, we discuss the dynamics of the mammalian miRNA machinery and the biological function of miRNAs, focusing on RNA viruses and the various therapeutic applications of miRNAs against viral infections.
Collapse
|
48
|
Sliva K, Schnierle BS. Selective gene silencing by viral delivery of short hairpin RNA. Virol J 2010; 7:248. [PMID: 20858246 PMCID: PMC2949849 DOI: 10.1186/1743-422x-7-248] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 09/21/2010] [Indexed: 12/15/2022] Open
Abstract
RNA interference (RNAi) technology has not only become a powerful tool for functional genomics, but also allows rapid drug target discovery and in vitro validation of these targets in cell culture. Furthermore, RNAi represents a promising novel therapeutic option for treating human diseases, in particular cancer. Selective gene silencing by RNAi can be achieved essentially by two nucleic acid based methods: i) cytoplasmic delivery of short double-stranded (ds) interfering RNA oligonucleotides (siRNA), where the gene silencing effect is only transient in nature, and possibly not suitable for all applications; or ii) nuclear delivery of gene expression cassettes that express short hairpin RNA (shRNA), which are processed like endogenous interfering RNA and lead to stable gene down-regulation. Both processes involve the use of nucleic acid based drugs, which are highly charged and do not cross cell membranes by free diffusion. Therefore, in vivo delivery of RNAi therapeutics must use technology that enables the RNAi therapeutic to traverse biological membrane barriers in vivo. Viruses and the vectors derived from them carry out precisely this task and have become a major delivery system for shRNA. Here, we summarize and compare different currently used viral delivery systems, give examples of in vivo applications, and indicate trends for new developments, such as replicating viruses for shRNA delivery to cancer cells.
Collapse
Affiliation(s)
- Katja Sliva
- Paul-Ehrlich-Institute, Paul-Ehrlich-Str, 51-59, 63225 Langen, Germany.
| | | |
Collapse
|
49
|
Shukla S, Sumaria CS, Pradeepkumar PI. Exploring chemical modifications for siRNA therapeutics: a structural and functional outlook. ChemMedChem 2010; 5:328-49. [PMID: 20043313 DOI: 10.1002/cmdc.200900444] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
RNA interference (RNAi) is a post-transcriptional gene silencing mechanism induced by small interfering RNAs (siRNAs) and micro-RNAs (miRNAs), and has proved to be one of the most important scientific discoveries made in the last century. The robustness of RNAi has opened up new avenues in the development of siRNAs as therapeutic agents against various diseases including cancer and HIV. However, there had remained a lack of a clear mechanistic understanding of messenger RNA (mRNA) cleavage mediated by Argonaute2 of the RNA-induced silencing complex (RISC), due to inadequate structural data. The X-ray crystal structures of the Argonaute (Ago)-DNA-RNA complexes reported recently have proven to be a breakthrough in this field, and the structural details can provide guidelines for the design of the next generation of siRNA therapeutics. To harness siRNAs as therapeutic agents, the prudent use of various chemical modifications is warranted to enhance nuclease resistance, prevent immune activation, decrease off-target effects, and to improve pharmacokinetic and pharmacodynamic properties. The focus of this review is to interpret the tolerance of various chemical modifications employed in siRNAs toward RNAi by taking into account the crystal structures and biochemical studies of Ago-RNA complexes. Moreover, the challenges and recent progress in imparting druglike properties to siRNAs along with their delivery strategies are discussed.
Collapse
Affiliation(s)
- Siddharth Shukla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | | | | |
Collapse
|
50
|
Mamo T, Moseman EA, Kolishetti N, Salvador-Morales C, Shi J, Kuritzkes DR, Langer R, von Andrian U, Farokhzad OC. Emerging nanotechnology approaches for HIV/AIDS treatment and prevention. Nanomedicine (Lond) 2010; 5:269-85. [PMID: 20148638 DOI: 10.2217/nnm.10.1] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Currently, there is no cure and no preventive vaccine for HIV/AIDS. Combination antiretroviral therapy has dramatically improved treatment, but it has to be taken for a lifetime, has major side effects and is ineffective in patients in whom the virus develops resistance. Nanotechnology is an emerging multidisciplinary field that is revolutionizing medicine in the 21st century. It has a vast potential to radically advance the treatment and prevention of HIV/AIDS. In this review, we discuss the challenges with the current treatment of the disease and shed light on the remarkable potential of nanotechnology to provide more effective treatment and prevention for HIV/AIDS by advancing antiretroviral therapy, gene therapy, immunotherapy, vaccinology and microbicides.
Collapse
Affiliation(s)
- Tewodros Mamo
- Laboratory of Nanomedicine and Biomaterials, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|