1
|
Dong C, Tan D, Sun H, Li Z, Zhang L, Zheng Y, Liu S, Zhang Y, He Q. Interleukin-12 Delivery Strategies and Advances in Tumor Immunotherapy. Curr Issues Mol Biol 2024; 46:11548-11579. [PMID: 39451566 PMCID: PMC11506767 DOI: 10.3390/cimb46100686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Interleukin-12 (IL-12) is considered to be a promising cytokine for enhancing an antitumor immune response; however, recombinant IL-12 has shown significant toxicity and limited efficacy in early clinical trials. Recently, many strategies for delivering IL-12 to tumor tissues have been developed, such as modifying IL-12, utilizing viral vectors, non-viral vectors, and cellular vectors. Previous studies have found that the fusion of IL-12 with extracellular matrix proteins, collagen, and immune factors is a way to enhance its therapeutic potential. In addition, studies have demonstrated that viral vectors are a good platform, and a variety of viruses such as oncolytic viruses, adenoviruses, and poxviruses have been used to deliver IL-12-with testing previously conducted in various cancer models. The local expression of IL-12 in tumors based on viral delivery avoids systemic toxicity while inducing effective antitumor immunity and acting synergistically with other therapies without compromising safety. In addition, lipid nanoparticles are currently considered to be the most mature drug delivery system. Moreover, cells are also considered to be drug carriers because they can effectively deliver therapeutic substances to tumors. In this article, we will systematically discuss the anti-tumor effects of IL-12 on its own or in combination with other therapies based on different delivery strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qing He
- State Key Laboratory of Drug Regulatory Sciences, National Institutes for Food and Drug Control, Beijing 102629, China; (C.D.); (D.T.); (H.S.); (Z.L.); (L.Z.); (Y.Z.); (S.L.); (Y.Z.)
| |
Collapse
|
2
|
Nyati S, Stricker H, Barton KN, Li P, Elshaikh M, Ali H, Brown SL, Hwang C, Peabody J, Freytag SO, Movsas B, Siddiqui F. A phase I clinical trial of oncolytic adenovirus mediated suicide and interleukin-12 gene therapy in patients with recurrent localized prostate adenocarcinoma. PLoS One 2023; 18:e0291315. [PMID: 37713401 PMCID: PMC10503775 DOI: 10.1371/journal.pone.0291315] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/06/2023] [Indexed: 09/17/2023] Open
Abstract
In a phase I dose escalation and safety study (NCT02555397), a replication-competent oncolytic adenovirus expressing yCD, TK and hIL-12 (Ad5-yCD/mutTKSR39rep-hIL-12) was administered in 15 subjects with localized recurrent prostate cancer (T1c-T2) at increasing doses (1 × 1010, to 1 × 1012 viral particles) followed by 7-day treatment of 5-fluorocytosine (5-FC) and valganciclovir (vGCV). The primary endpoint was toxicity through day 30 while the secondary and exploratory endpoints were quantitation of IL-12, IFNγ, CXCL10 and peripheral blood mononuclear cells (PBMC). The study maximum tolerated dose (MTD) was not reached indicating 1012 viral particles was safe. Total 115 adverse events were observed, most of which (92%) were grade 1/2 that did not require any treatment. Adenoviral DNA was detected only in two patients. Increase in IL-12, IFNγ, and CXCL10 was observed in 57%, 93%, and 79% patients, respectively. Serum cytokines demonstrated viral dose dependency, especially apparent in the highest-dose cohorts. PBMC analysis revealed immune system activation after gene therapy in cohort 5. The PSA doubling time (PSADT) pre and post treatment has a median of 1.55 years vs 1.18 years. This trial confirmed that replication-competent Ad5-IL-12 adenovirus (Ad5-yCD/mutTKSR39rep-hIL-12) was well tolerated when administered locally to prostate tumors.
Collapse
Affiliation(s)
- Shyam Nyati
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, United States of America
- Department of Radiology, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Hans Stricker
- Vattikuti Urology Institute, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, United States of America
| | - Kenneth N. Barton
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, United States of America
| | - Pin Li
- Department of Public Health Sciences, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, United States of America
| | - Mohamed Elshaikh
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, United States of America
| | - Haythem Ali
- Department of Internal Medicine, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, United States of America
| | - Stephen L. Brown
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, United States of America
- College of Human Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Clara Hwang
- Department of Internal Medicine, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, United States of America
| | - James Peabody
- Vattikuti Urology Institute, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, United States of America
| | - Svend O. Freytag
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, United States of America
| | - Benjamin Movsas
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, United States of America
- College of Human Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Farzan Siddiqui
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, United States of America
| |
Collapse
|
3
|
Altwaijry N, Somani S, Parkinson JA, Tate RJ, Keating P, Warzecha M, Mackenzie GR, Leung HY, Dufès C. Regression of prostate tumors after intravenous administration of lactoferrin-bearing polypropylenimine dendriplexes encoding TNF-α, TRAIL, and interleukin-12. Drug Deliv 2018; 25:679-689. [PMID: 29493296 PMCID: PMC6058574 DOI: 10.1080/10717544.2018.1440666] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/04/2018] [Accepted: 02/11/2018] [Indexed: 12/22/2022] Open
Abstract
The possibility of using gene therapy for the treatment of prostate cancer is limited by the lack of intravenously administered delivery systems able to safely and selectively deliver therapeutic genes to tumors. Given that lactoferrin (Lf) receptors are overexpressed on prostate cancer cells, we hypothesized that the conjugation of Lf to generation 3-diaminobutyric polypropylenimine dendrimer would improve its transfection and therapeutic efficacy in prostate cancer cells. In this study, we demonstrated that the intravenous administration of Lf-bearing DAB dendriplexes encoding TNFα resulted in the complete suppression of 70% of PC-3 and 50% of DU145 tumors over one month. Treatment with DAB-Lf dendriplex encoding TRAIL led to tumor suppression of 40% of PC-3 tumors and 20% of DU145 tumors. The treatment was well tolerated by the animals. Lf-bearing generation 3-polypropylenimine dendrimer is therefore a highly promising delivery system for non-viral gene therapy of prostate cancer.
Collapse
Affiliation(s)
- Najla Altwaijry
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Sukrut Somani
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - John A. Parkinson
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Rothwelle J. Tate
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Patricia Keating
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Monika Warzecha
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Graeme R. Mackenzie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | | | - Christine Dufès
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
4
|
Abstract
Prostate cancer is the second-most widespread cancer in men worldwide. Treatment choices are limited to prostatectomy, hormonal therapy, and radiotherapy, which commonly have deleterious side effects and vary in their efficacy, depending on the stage of the disease. Among novel experimental strategies, gene therapy holds great promise for the treatment of prostate cancer. However, its use is currently limited by the lack of delivery systems able to selectively deliver the therapeutic genes to the tumors after intravenous administration without major drawbacks. To remediate this problem, a wide range of nonviral delivery approaches have been developed to specifically deliver DNA-based therapeutic agents to their site of action. This review provides an overview of the various nonviral delivery strategies and gene therapy concepts used to deliver therapeutic DNA to prostate cancer cells, and focuses on recent therapeutic advances made so far.
Collapse
Affiliation(s)
- Najla Altwaijry
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK,
| | - Sukrut Somani
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK,
| | - Christine Dufès
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK,
| |
Collapse
|
5
|
Wu CJ, Tsai YT, Lee IJ, Wu PY, Lu LS, Tsao WS, Huang YJ, Chang CC, Ka SM, Tao MH. Combination of radiation and interleukin 12 eradicates large orthotopic hepatocellular carcinoma through immunomodulation of tumor microenvironment. Oncoimmunology 2018; 7:e1477459. [PMID: 30228946 PMCID: PMC6140549 DOI: 10.1080/2162402x.2018.1477459] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/10/2018] [Accepted: 05/12/2018] [Indexed: 02/07/2023] Open
Abstract
Immunotherapies have shown promising results in certain cancer patients. For hepatocellular carcinoma (HCC), the multiplicity of an immunotolerant microenvironment within both the tumor, and the liver per se may limit the efficacy of cancer immunotherapies. Since radiation induces immunogenic cell death and inflammatory reactions within the tumor microenvironment, we hypothesized that a combination therapy of radiation and lasting local immunostimulating agents, achieved by intratumoral injection of an adenoviral vector encoding interleukin 12, may reverse the immunotolerant microenvironment within a well-established orthotopic HCC toward a state favorable for inducing antitumor immunities. Our data showed that radiation and IL-12 combination therapy (RT/IL-12) led to dramatic tumor regression in animals bearing large subcutaneous or orthotopic HCC, induced systemic effect against distant tumor, and significantly prolonged survival. Radiation monotherapy induced tumor regression at early times but afterwards most tumors regained exponential growth, while IL-12 monotherapy only delayed tumor growth. Mechanistic studies revealed that RT/IL-12 increased expression of MHC class II and co-stimulatory molecules CD40 and CD86 on tumor-infiltrating dendritic cells, suggesting an improvement of their antigen presentation activity. RT/IL-12 also significantly reduced accumulation of tumor-infiltrating myeloid-derived suppressor cells (MDSCs) and impaired their suppressive functions by reducing production of reactive oxygen species. Accordingly, tumor-infiltrating CD8+ T cells and NK cells were significantly activated toward the antitumor phenotype, as revealed by increased expression of CD107a and TNF-α. Together, our data showed that RT/IL-12 treatment could reset the intratumoral immunotolerant state and stimulate activation of antitumor cellular immunity that is capable of eliminating large established HCC tumors.
Collapse
Affiliation(s)
- Chia-Jen Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Ting Tsai
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Microbiology, National Taiwan University, Taipei, Taiwan
| | - I-Jung Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Ping-Yi Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Long-Sheng Lu
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Wen-Shan Tsao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Jou Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ching-Cheng Chang
- National Taiwan University College of Medicine, Graduate Institute of Medical Education & Bioethics, Taipei, Taiwan
| | - Shuk-Man Ka
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Mi-Hua Tao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Microbiology, National Taiwan University, Taipei, Taiwan.,Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
6
|
Brix N, Tiefenthaller A, Anders H, Belka C, Lauber K. Abscopal, immunological effects of radiotherapy: Narrowing the gap between clinical and preclinical experiences. Immunol Rev 2018; 280:249-279. [PMID: 29027221 DOI: 10.1111/imr.12573] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Radiotherapy-despite being a local therapy that meanwhile is characterized by an impressively high degree of spatial accuracy-can stimulate systemic phenomena which occasionally lead to regression and rejection of non-irradiated, distant tumor lesions. These abscopal effects of local irradiation have been observed in sporadic clinical case reports since the beginning of the 20th century, and extensive preclinical work has contributed to identify systemic anti-tumor immune responses as the underlying driving forces. Although abscopal tumor regression still remains a rare event in the radiotherapeutic routine, increasing numbers of cases are being reported, particularly since the clinical implementation of immune checkpoint inhibiting agents. Accordingly, interests to systematically exploit the therapeutic potential of radiotherapy-stimulated systemic responses are constantly growing. The present review briefly delineates the history of radiotherapy-induced abscopal effects and the activation of systemic anti-tumor immune responses by local irradiation. We discuss preclinical and clinical reports with specific focus on the corresponding controversies, and we propose issues that should be addressed in the future in order to narrow the gap between preclinical knowledge and clinical experiences.
Collapse
Affiliation(s)
- Nikko Brix
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Anna Tiefenthaller
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Heike Anders
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer' Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,German Cancer Consortium Partner Site München, Munich, Germany
| | - Kirsten Lauber
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer' Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| |
Collapse
|
7
|
Huang Y, Chen W, Teh BS, Butler EB. Combining radiotherapy and immunotherapy for prostate cancer: two decades of research from preclinical to clinical trials. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s13566-015-0240-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
8
|
Al Robaian M, Chiam KY, Blatchford DR, Dufès C. Therapeutic efficacy of intravenously administered transferrin-conjugated dendriplexes on prostate carcinomas. Nanomedicine (Lond) 2014; 9:421-34. [PMID: 24910874 DOI: 10.2217/nnm.13.25] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Improved treatments for prostate cancer are critically needed in order to overcome metastasis and lethal recurrence. Intravenously administered gene therapy would be an attractive anticancer treatment strategy; however, the lack of suitable carrier systems able to selectively deliver therapeutic genes to tumors has so far limited this investigation. Given that transferrin receptors are overexpressed on prostate cancer cells, the purpose of this study is to determine whether transferrin-conjugated dendriplexes encoding TNF-α, TNF-related apoptosis-inducing ligand and IL-12 would suppress the growth of prostate cancer cell lines in vitro and in vivo. MATERIALS & METHODS Transferrin-conjugated dendriplexes encoding TNF-α, TNF-related apoptosis-inducing ligand and IL-12 were intravenously administered to mice bearing subcutaneous PC-3 and DU145 tumors. RESULTS The administration of the transferrin-conjugated generation 3 diaminobutyric polypropylenimine dendriplex encoding TNF-a resulted in tumor suppression for 60% of PC-3 and 50% of DU145 prostate tumors. CONCLUSION These dendriplexes hold great potential as a novel approach for prostate cancer therapy.
Collapse
|
9
|
Kamensek U, Sersa G, Cemazar M. Evaluation of p21 promoter for interleukin 12 radiation induced transcriptional targeting in a mouse tumor model. Mol Cancer 2013; 12:136. [PMID: 24219565 PMCID: PMC3832904 DOI: 10.1186/1476-4598-12-136] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 11/05/2013] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Radiation induced transcriptional targeting is a gene therapy approach that takes advantage of the targeting abilities of radiotherapy by using radio inducible promoters to spatially and temporally limit the transgene expression. Cyclin dependent kinase inhibitor 1 (CDKN1A), also known as p21, is a crucial regulator of the cell cycle, mediating G1 phase arrest in response to a variety of stress stimuli, including DNA damaging agents like irradiation. The aim of the study was to evaluate the suitability of the p21 promoter for radiation induced transcriptional targeting with the objective to test the therapeutic effectiveness of the combined radio-gene therapy with p21 promoter driven therapeutic gene interleukin 12. METHODS To test the inducibility of the p21 promoter, three reporter gene experimental models with green fluorescent protein (GFP) under the control of p21 promoter were established by gene electrotransfer of plasmid DNA: stably transfected cells, stably transfected tumors, and transiently transfected muscles. Induction of reporter gene expression after irradiation was determined using a fluorescence microplate reader in vitro and by non-invasive fluorescence imaging using fluorescence stereomicroscope in vivo. The antitumor effect of the plasmid encoding the p21 promoter driven interleukin 12 after radio-gene therapy was determined by tumor growth delay assay and by quantification of intratumoral and serum levels of interleukin 12 protein and intratumoral concentrations of interleukin 12 mRNA. RESULTS Using the reporter gene experimental models, p21 promoter was proven to be inducible with radiation, the induction was not dose dependent, and it could be re-induced. Furthermore radio-gene therapy with interleukin 12 under control of the p21 promoter had a good antitumor therapeutic effect with the statistically relevant tumor growth delay, which was comparable to that of the same therapy using a constitutive promoter. CONCLUSIONS In this study p21 promoter was proven to be a suitable candidate for radiation induced transcriptional targeting. As a proof of principle the therapeutic value was demonstrated with the radio-inducible interleukin 12 plasmid providing a synergistic antitumor effect to radiotherapy alone, which makes this approach feasible for the combined treatment with radiotherapy.
Collapse
Affiliation(s)
| | - Gregor Sersa
- Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Maja Cemazar
- Institute of Oncology Ljubljana, Ljubljana, Slovenia
- University of Primorska, Faculty of Health Sciences, Izola, Slovenia
| |
Collapse
|
10
|
Freytag SO, Barton KN, Zhang Y. Efficacy of oncolytic adenovirus expressing suicide genes and interleukin-12 in preclinical model of prostate cancer. Gene Ther 2013; 20:1131-9. [PMID: 23842593 DOI: 10.1038/gt.2013.40] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/03/2013] [Accepted: 06/07/2013] [Indexed: 01/23/2023]
Abstract
Oncolytic adenovirus-mediated suicide gene therapy has been shown to improve local tumor control in preclinical tumor models and in the clinic. Although local tumor control is important, for most human cancers, new therapies must also target metastatic disease if they are to have an impact on survival. Here, we test the hypothesis that adding cytokine gene therapy to our multimodal platform improves both local and metastatic tumor control in a preclinical model of prostate cancer. An oncolytic adenovirus (Ad5-yCD/mutTKSR39rep-mIL12) expressing two suicide genes and mouse interleukin-12 (IL-12) was generated. Relative to an adenovirus lacking IL-12 (Ad5-yCD/mutTKSR39rep), Ad5-yCD/mutTKSR39rep-mIL12 improved local and metastatic tumor control in the TRAMP-C2 prostate adenocarcinoma model, resulting in a significant increase in survival. Ad5-yCD/mutTKSR39rep-mIL12 resulted in high levels of IL-12 and interferon gamma in serum and tumor, increased natural killer (NK) and cytotoxic T-lymphocyte lytic activities, and the development of tumor-specific antitumor immunity. Immune cell depletion studies indicated that both the innate and adaptive arms of immunity were required for maximal Ad5-yCD/mutTKSR39rep-mIL12 activity. The results demonstrate that the addition of IL-12 significantly improves the efficacy of oncolytic adenovirus-mediated suicide gene therapy and provide the scientific basis for future trials targeting locally aggressive cancers.
Collapse
Affiliation(s)
- S O Freytag
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA
| | | | | |
Collapse
|
11
|
Fujita T, Satoh T, Timme TL, Hirayama T, Zhu JX, Kusaka N, Naruishi K, Yang G, Goltsov A, Wang J, Vlachaki MT, Teh BS, Brian Butler E, Thompson TC. Combined therapeutic effects of adenoviral vector-mediated GLIPR1 gene therapy and radiotherapy in prostate and bladder cancer models. Urol Oncol 2013; 32:92-100. [PMID: 23433894 DOI: 10.1016/j.urolonc.2012.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/28/2012] [Accepted: 10/11/2012] [Indexed: 12/29/2022]
Abstract
OBJECTIVES The objectives of this study are to explore the potential benefits of combining AdGlipr1 (or AdGLIPR1) gene therapy with radiotherapy using subcutaneous prostate and bladder cancer models. MATERIALS AND METHODS Combination adenoviral vector-mediated gene therapy and radiotherapy were applied to 178-2 BMA and TSU-Pr1 cells in vitro and colony formation and apoptosis were analyzed. In addition, combination therapies were administered to mice bearing subcutaneous 178-2 BMA and TSU-Pr1 tumors, and tumor growth suppression and survival extension were compared with the monotherapies (AdGlipr1/AdGLIPR1 and radiotherapy) or control vector Adv/CMV/βgal, as well as single-cycle treatment with 2-cycle treatment. RESULTS Combination treatment significantly suppressed colony formation and increased apoptosis in vitro. In vivo, combination therapy produced significant 178-2 BMA and TSU-Pr1 tumor growth suppression and survival extension compared with the monotherapies or the control. Further tumor growth suppression and survival extension were observed after 2 cycles of the combination treatment. CONCLUSIONS Combining AdGlipr1 (AdGLIPR1) with radiotherapy may achieve additive or synergistic tumor control in selected prostate and bladder tumors, and additional therapeutic effects may result with repeated treatment cycles.
Collapse
Affiliation(s)
- Tetsuo Fujita
- Scott Department of Urology, Baylor College of Medicine, Houston, TX
| | - Takefumi Satoh
- Scott Department of Urology, Baylor College of Medicine, Houston, TX
| | - Terry L Timme
- Scott Department of Urology, Baylor College of Medicine, Houston, TX; Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX
| | - Takahiro Hirayama
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Julie X Zhu
- Department of Radiology, Baylor College of Medicine, Houston, TX
| | - Nobuyuki Kusaka
- Scott Department of Urology, Baylor College of Medicine, Houston, TX
| | - Koji Naruishi
- Scott Department of Urology, Baylor College of Medicine, Houston, TX
| | - Guang Yang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Alexei Goltsov
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jianxiang Wang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Maria T Vlachaki
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX; Department of Radiology, Baylor College of Medicine, Houston, TX
| | - Bin S Teh
- Department of Radiology, Baylor College of Medicine, Houston, TX
| | - E Brian Butler
- Department of Radiology, Baylor College of Medicine, Houston, TX
| | - Timothy C Thompson
- Scott Department of Urology, Baylor College of Medicine, Houston, TX; Department of Radiology, Baylor College of Medicine, Houston, TX; Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX.
| |
Collapse
|
12
|
Sedlar A, Kranjc S, Dolinsek T, Cemazar M, Coer A, Sersa G. Radiosensitizing effect of intratumoral interleukin-12 gene electrotransfer in murine sarcoma. BMC Cancer 2013; 13:38. [PMID: 23360213 PMCID: PMC3562515 DOI: 10.1186/1471-2407-13-38] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 01/24/2013] [Indexed: 11/15/2022] Open
Abstract
Background Interleukin-12 (IL-12) based radiosensitization is an effective way of tumor treatment. Local cytokine production, without systemic shedding, might provide clinical benefit in radiation treatment of sarcomas. Therefore, the aim was to stimulate intratumoral IL-12 production by gene electrotransfer of plasmid coding for mouse IL-12 (mIL-12) into the tumors, in order to explore its radiosensitizing effect after single or multiple intratumoral gene electrotransfer. Methods Solid SA-1 fibrosarcoma tumors, on the back of A/J mice, were treated intratumorally by mIL-12 gene electrotransfer and 24 h later irradiated with a single dose. Treatment effectiveness was measured by tumor growth delay and local tumor control assay (TCD50 assay). With respect to therapeutic index, skin reaction in the radiation field was scored. The tumor and serum concentrations of cytokines mIL-12 and mouse interferon γ (mIFNγ) were measured. Besides single, also multiple intratumoral mIL-12 gene electrotransfer before and after tumor irradiation was evaluated. Results Single intratumoral mIL-12 gene electrotransfer resulted in increased intratumoral but not serum mIL-12 and mIFNγ concentrations, and had good antitumor (7.1% tumor cures) and radiosensitizing effect (21.4% tumor cures). Combined treatment resulted in the radiation dose-modifying factor of 2.16. Multiple mIL-12 gene electrotransfer had an even more pronounced antitumor (50% tumor cures) and radiosensitizing (86.7% tumor cures) effect. Conclusions Single or multiple intratumoral mIL-12 gene electrotransfer resulted in increased intratumoral mIL-12 and mIFNγ cytokine level, and may provide an efficient treatment modality for soft tissue sarcoma as single or adjuvant therapy to tumor irradiation.
Collapse
Affiliation(s)
- Ales Sedlar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
13
|
Tevz G, Kranjc S, Cemazar M, Kamensek U, Coer A, Krzan M, Vidic S, Pavlin D, Sersa G. Controlled systemic release of interleukin-12 after gene electrotransfer to muscle for cancer gene therapy alone or in combination with ionizing radiation in murine sarcomas. J Gene Med 2010; 11:1125-37. [PMID: 19777440 DOI: 10.1002/jgm.1403] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The present study aimed to evaluate the antitumor effectiveness of systemic interleukin (IL)-12 gene therapy in murine sarcoma models, and to evaluate its interaction with the irradiation of tumors and metastases. To avoid toxic side-effects of IL-12 gene therapy, the objective was to achieve the controlled release of IL-12 after intramuscular gene electrotransfer. METHODS Gene electrotransfer of the plasmid pORF-mIL12 was performed into the tibialis cranialis in A/J and C57BL/6 mice. Systemic release of the IL-12 was monitored in the serum of mice after carrying out two sets of intramuscular IL-12 gene electrotransfer of two different doses of plasmid DNA. The antitumor effectiveness of IL-12 gene electrotransfer alone or in combination with local tumor or lung irradiation with X-rays, was evaluated on subcutaneous SA-1 and LPB tumors, as well as on lung metastases. RESULTS A synergistic antitumor effect of intramuscular gene electrotransfer combined with local tumor irradiation was observed as a result of the systemic distribution of IL-12. The gene electrotransfer resulted in up to 28% of complete responses of tumors. In combination with local tumor irradiation, the curability was increased by up to 100%. The same effect was observed for lung metastases, where a potentiating factor of 1.3-fold was determined. The amount of circulating IL-12 was controlled by the number of repeats of gene electrotransfer and by the amount of the injected plasmid. CONCLUSIONS The present study demonstrates the feasibility of treatment by IL-12 gene electrotransfer combined with local tumor or lung metastases irradiation on sarcoma tumors for translation into the clinical setting.
Collapse
Affiliation(s)
- Gregor Tevz
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Ljubljana, Slovenia
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
There is a critical need to develop new and effective cancer therapies that target bone, the primary metastatic site for prostate cancer and other malignancies. Among the various therapeutic approaches being considered for this application, gene-modified cell-based therapies may have specific advantages. Gene-modified cell therapy uses gene transfer and cell-based technologies in a complementary fashion to chaperone appropriate gene expression cassettes to active sites of tumor growth. In this paper, we briefly review potential cell vehicles for this approach and discuss relevant gene therapy strategies for prostate cancer. We further discuss selected studies that led to the conceptual development and preclinical testing of IL-12 gene-modified bone marrow cell therapy for prostate cancer. Finally, we discuss future directions in the development of gene-modified cell therapy for metastatic prostate cancer, including the need to identify and test novel therapeutic genes such as GLIPR1.
Collapse
Affiliation(s)
- H Wang
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
15
|
|
16
|
Pioneering innovative radiation oncology technology in clinics. Biomed Imaging Interv J 2007. [DOI: 10.2349/biij.3.3.e57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|