1
|
Tao HY, Zhao CY, Wang Y, Sheng WJ, Zhen YS. Targeting Telomere Dynamics as an Effective Approach for the Development of Cancer Therapeutics. Int J Nanomedicine 2024; 19:3805-3825. [PMID: 38708177 PMCID: PMC11069074 DOI: 10.2147/ijn.s448556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/14/2024] [Indexed: 05/07/2024] Open
Abstract
Telomere is a protective structure located at the end of chromosomes of eukaryotes, involved in maintaining the integrity and stability of the genome. Telomeres play an essential role in cancer progression; accordingly, targeting telomere dynamics emerges as an effective approach for the development of cancer therapeutics. Targeting telomere dynamics may work through multifaceted molecular mechanisms; those include the activation of anti-telomerase immune responses, shortening of telomere lengths, induction of telomere dysfunction and constitution of telomerase-responsive drug release systems. In this review, we summarize a wide variety of telomere dynamics-targeted agents in preclinical studies and clinical trials, and reveal their promising therapeutic potential in cancer therapy. As shown, telomere dynamics-active agents are effective as anti-cancer chemotherapeutics and immunotherapeutics. Notably, these agents may display efficacy against cancer stem cells, reducing cancer stem levels. Furthermore, these agents can be integrated with the capability of tumor-specific drug delivery by the constitution of related nanoparticles, antibody drug conjugates and HSA-based drugs.
Collapse
Affiliation(s)
- Hong-yu Tao
- Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Chun-yan Zhao
- Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Ying Wang
- Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Wei-jin Sheng
- Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yong-su Zhen
- Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Anti-cancer Immunotherapies Targeting Telomerase. Cancers (Basel) 2020; 12:cancers12082260. [PMID: 32806719 PMCID: PMC7465444 DOI: 10.3390/cancers12082260] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023] Open
Abstract
Telomerase is a reverse transcriptase that maintains telomeres length, compensating for the attrition of chromosomal ends that occurs during each replication cycle. Telomerase is expressed in germ cells and stem cells, whereas it is virtually undetectable in adult somatic cells. On the other hand, telomerase is broadly expressed in the majority of human tumors playing a crucial role in the replicative behavior and immortality of cancer cells. Several studies have demonstrated that telomerase-derived peptides are able to bind to HLA (human leukocyte antigen) class I and class II molecules and effectively activate both CD8+ and CD4+ T cells subsets. Due to its broad and selective expression in cancer cells and its significant immunogenicity, telomerase is considered an ideal universal tumor-associated antigen, and consequently, a very attractive target for anti-cancer immunotherapy. To date, different telomerase targeting immunotherapies have been studied in pre-clinical and clinical settings, these approaches include peptide vaccination and cell-based vaccination. The objective of this review paper is to discuss the role of human telomerase in cancer immunotherapy analyzing recent developments and future perspectives in this field.
Collapse
|
3
|
Fernandes SG, Dsouza R, Pandya G, Kirtonia A, Tergaonkar V, Lee SY, Garg M, Khattar E. Role of Telomeres and Telomeric Proteins in Human Malignancies and Their Therapeutic Potential. Cancers (Basel) 2020; 12:E1901. [PMID: 32674474 PMCID: PMC7409176 DOI: 10.3390/cancers12071901] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/19/2022] Open
Abstract
Telomeres are the ends of linear chromosomes comprised of repetitive nucleotide sequences in humans. Telomeres preserve chromosomal stability and genomic integrity. Telomere length shortens with every cell division in somatic cells, eventually resulting in replicative senescence once telomere length becomes critically short. Telomere shortening can be overcome by telomerase enzyme activity that is undetectable in somatic cells, while being active in germline cells, stem cells, and immune cells. Telomeres are bound by a shelterin complex that regulates telomere lengthening as well as protects them from being identified as DNA damage sites. Telomeres are transcribed by RNA polymerase II, and generate a long noncoding RNA called telomeric repeat-containing RNA (TERRA), which plays a key role in regulating subtelomeric gene expression. Replicative immortality and genome instability are hallmarks of cancer and to attain them cancer cells exploit telomere maintenance and telomere protection mechanisms. Thus, understanding the role of telomeres and their associated proteins in cancer initiation, progression and treatment is very important. The present review highlights the critical role of various telomeric components with recently established functions in cancer. Further, current strategies to target various telomeric components including human telomerase reverse transcriptase (hTERT) as a therapeutic approach in human malignancies are discussed.
Collapse
Affiliation(s)
- Stina George Fernandes
- Sunandan Divatia School of Science, SVKM’s NMIMS (Deemed to be University), Vile Parle West, Mumbai 400056, India; (S.G.F.); (R.D.)
| | - Rebecca Dsouza
- Sunandan Divatia School of Science, SVKM’s NMIMS (Deemed to be University), Vile Parle West, Mumbai 400056, India; (S.G.F.); (R.D.)
| | - Gouri Pandya
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida 201313, India; (G.P.); (A.K.)
| | - Anuradha Kirtonia
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida 201313, India; (G.P.); (A.K.)
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; (V.T.); (S.Y.L.)
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore
| | - Sook Y. Lee
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; (V.T.); (S.Y.L.)
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida 201313, India; (G.P.); (A.K.)
| | - Ekta Khattar
- Sunandan Divatia School of Science, SVKM’s NMIMS (Deemed to be University), Vile Parle West, Mumbai 400056, India; (S.G.F.); (R.D.)
| |
Collapse
|
4
|
Telomerase based anticancer immunotherapy and vaccines approaches. Vaccine 2017; 35:5768-5775. [DOI: 10.1016/j.vaccine.2017.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/26/2017] [Accepted: 09/01/2017] [Indexed: 12/11/2022]
|
5
|
Wang Y, Zhang J, Wu Y, Ding ZY, Luo XM, Liu J, Zhong WN, Deng GH, Xia XY, Deng YT, Wei YQ, Jiang Y. Mannan-modified adenovirus targeting TERT and VEGFR-2: A universal tumour vaccine. Sci Rep 2015; 5:11275. [PMID: 26085010 PMCID: PMC4471666 DOI: 10.1038/srep11275] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 05/14/2015] [Indexed: 02/05/2023] Open
Abstract
Antigen-presenting cells including dendritic cells (DCs) express mannan receptors (MR) on their surface, which can be exploited in cancer therapy by designing immune-stimulatory viruses coated with mannan-modified capsids that then bind to DCs and initiate a potent immune response. Although the combination of anti-angiogenesis and cancer immunotherapy agents has a synergistic antitumor effect, more effective strategies for delivering such combinations are still required. Here we report the design and application of mannan-modified adenovirus that expresses both telomerase reverse transcriptase (TERT) and vascular endothelial growth factor receptor-2 (VEGFR-2). Cytotoxic T lymphocytes that are reactive to TERT and VEGFR-2 are capable of mounting an anti-tumour response in murine breast and colon tumour models and in a lung metastatic model. Compared with mannan-modified TERT adenovirus vaccine or mannan-modified VEGFR-2 adenovirus vaccine alone, the combined vaccine showed remarkably synergistic anti-tumour immunity in these models. Both TERT- and VEGFR-2-specific cytotoxic T lymphocytes (CTL) were identified in an in vitro cytotoxicity assay, and the CTL activity against tumour cells was significantly elevated in the combined vaccine group. Furthermore, CTL-mediated toxicity was blocked by anti-CD8 monoclonal antibodies. Thus, the combined mannan-modified TERT and VEGFR-2 adenovirus confers potent anti-tumour immunity by targeting both tumour cells and intratumoural angiogenesis.
Collapse
Affiliation(s)
- Ying Wang
- 1] Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China [2] Department of East Ward Oncology, Sichuan Academy of Medical Sciences &Sichuan Provincial People's Hospital, Chengdu 610072, People's Republic of China
| | - Jie Zhang
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yang Wu
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Zhen-Yu Ding
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xin-Mei Luo
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Jie Liu
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Wu-Ning Zhong
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Guo-Hua Deng
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xiang-Yu Xia
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yao-Tiao Deng
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yu-Quan Wei
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yu Jiang
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
6
|
Zhang J, Wang Y, Wu Y, Ding ZY, Luo XM, Zhong WN, Liu J, Xia XY, Deng GH, Deng YT, Wei YQ, Jiang Y. Mannan-modified adenovirus encoding VEGFR-2 as a vaccine to induce anti-tumor immunity. J Cancer Res Clin Oncol 2014; 140:701-12. [PMID: 24525706 DOI: 10.1007/s00432-014-1606-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 02/02/2014] [Indexed: 02/05/2023]
Abstract
PURPOSE Dendritic cell (DC) vaccines are a promising immunotherapeutic approach for treatment and prevention of cancer. While this methodology is widely accepted, it also has some limitations. Antigen-presenting cells including DCs express the mannan receptor (MR). The delivery of a mannan-modified tumor antigen to the MR has been demonstrated to be efficient. Vascular endothelial growth factor receptor-2 (VEGFR-2) is mainly responsible for angiogenesis and tumor growth. The goal of our study was to deliver VEGFR-2 to DCs by means of mannan-modified adenovirus. METHODS VEGFR-2 recombinant adenovirus modified with oxidized mannan was constructed as a tumor vaccine to immunize mice in vivo. IFN-γ in mouse sera and spleen was detected by ELISA and ELISPOT. The killing activity of cytotoxic T lymphocyte (CTL) against VEGFR-2 was measured with a lactate dehydrogenase assay. Vessel densities in tumor tissues were detected by immunohistochemistry. Flow cytometry was used to test CD4(+) and CD8(+) T-cell counts in tumor tissues. RESULTS The vaccine exhibited both protective and therapeutic efficacy in the inhibition of tumor growth and markedly prolonged survival in mice. Protection against metastasis was also observed. Furthermore, vaccination led to greater IFN-γ and VEGFR-2-specific CTLs. The specific immunity resulted in the suppression of angiogenesis and an increase in CD8(+) cells in tumor tissues. CONCLUSION Oxidized mannan-modified adenovirus expressing VEGFR-2 could extraordinarily stimulate both protective and therapeutic immune response in a mice model. Our data suggest that the combination of cancer immunity and anti-angiogenesis via modified mannan is a promising strategy in tumor prophylaxis and therapy.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo-Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Viral vectors have been developed as vaccine platforms for a number of pathogens and tumors. In particular, adenovirus (Ad)-based vectors expressing genes coding for pathogen or tumor antigens have proven efficacious to induce protective immunity. Major challenges in the use of Ad vectors are the high prevalence of anti-Ad immunity and the recent observation during an Ad-based HIV vaccine trial that led to increased HIV-1 acquisition in the presence of circulating anti-Ad5 neutralizing antibodies. In this review we summarize strategies to address these challenges and focus on modifications of the Ad capsid to enhance the adjuvant effect of anti-Ad immunogenicity and to circumvent pre-existing immunity. In addition, we summarize the current status and potential of other viral vector vaccines based on adeno-associated viruses, lentiviruses and poxviruses.
Collapse
|
8
|
Abstract
Progress in vector design and an increased knowledge of mechanisms underlying tumor-induced immune suppression have led to a new and promising generation of Adenovirus (Ad)-based immunotherapies, which are discussed in this review. As vaccine vehicles Ad vectors (AdVs) have been clinically evaluated and proven safe, but a major limitation of the commonly used Ad5 serotype is neutralization by preexistent or rapidly induced immune responses. Genetic modifications in the Ad capsid can reduce intrinsic immunogenicity and facilitate escape from antibody-mediated neutralization. Further modification of the Ad hexon and fiber allows for liver and scavenger detargeting and selective targeting of, for example, dendritic cells. These next-generation Ad vaccines with enhanced efficacy are now becoming available for testing as tumor vaccines. In addition, AdVs encoding immune-modulating products may be used to convert the tumor microenvironment from immune-suppressive and proinvasive to proinflammatory, thus facilitating cell-mediated effector functions that can keep tumor growth and invasion in check. Oncolytic AdVs, that selectively replicate in tumor cells and induce an immunogenic form of cell death, can also be armed with immune-activating transgenes to amplify primed antitumor immune responses. These novel immunotherapy strategies, employing highly efficacious AdVs in optimized configurations, show great promise and warrant clinical exploration.
Collapse
|
9
|
Singh R, Kostarelos K. Designer adenoviruses for nanomedicine and nanodiagnostics. Trends Biotechnol 2009; 27:220-9. [DOI: 10.1016/j.tibtech.2009.01.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 01/02/2009] [Accepted: 01/07/2009] [Indexed: 01/15/2023]
|
10
|
Kuramoto Y, Hashida M. [Immunotherapy against peritoneal dissemination by immunostimulatory CpG DNA]. YAKUGAKU ZASSHI 2008; 127:1533-40. [PMID: 17917415 DOI: 10.1248/yakushi.127.1533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peritoneal dissemination is one of the most common causes of metastasis from malignancies in the abdominal cavity. However, the treatment of peritoneal dissemination is difficult; patients receiving normal chemotherapy have a 0-1% chance of surviving for 5 years. Milky spots in the greater omentum are considered to facilitate the adhesion and invasion of abdominal free cancer cells, and subsequently lymph node metastasis occurs. Since immune cells such as macrophages and lymphocytes are present in the greater omentum and lymph nodes, the activation of immune cells would be a promising strategy for treatment. Single-stranded oligonucleotides containing CpG dinucleotides (CpG DNA) are recognized by Toll-like receptor-9 on antigen-presenting cells such as macrophages to stimulate Th-1-type immune responses. However, a delivery system for CpG DNA to immune cells is essential to develop effective therapy against peritoneal dissemination. Here we review the pathophysiologic basis of peritoneal dissemination and introduce our approach that employs cationic liposomes as a carrier for CpG DNA as a new approach in the treatment of peritoneal dissemination.
Collapse
Affiliation(s)
- Yukari Kuramoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | | |
Collapse
|