1
|
Santos MH, Barrios-Leal DY, Manfrin MH. Phylogeography of Drosophila buzzatii (Diptera, Drosophilidae): responses of the species to Quaternary climates in tropical and subtropical South America. AN ACAD BRAS CIENC 2023; 95:e20220846. [PMID: 37909608 DOI: 10.1590/0001-3765202320220846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/21/2023] [Indexed: 11/03/2023] Open
Abstract
Drosophila buzzatii (Diptera: Drosophilidae) is a fly that breeds exclusively on decaying tissues of cacti species widely distributed in tropical and subtropical areas of South America. This distribution includes biomes in distinct climatic regimes (e.g., seasonal rain forest, semi-arid scrubs, savannas, and grasslands), which at first glance could might give the false impression that the species is not sensitive to either climate or vegetation physiognomies. However, detection of historical demographic events within D. buzzatii reveal the interplay between climate and the population structure of the species as the Late Quaternary climate changes occurred. To understand this process, we performed a phylogeographic analysis based on sequences of the mitochondrial gene COI for 128 individuals from 43 localities. Our analyses combined coalescent methods, population genetics, and paleodistributions estimation methods. Our study reveals that the COI haplotype diversity is geographically structured, with a decreasing cline from north to south. The results suggest an ancient range expansion, dated from 610k to 550k years before present, in the northernmost region of the species distribution, the Caatinga vegetation. More recently, an intense gene flow and a population expansion were detected in the central and south portions of its distribution. The demographic events detected date back to the glacial periods of the Quaternary.
Collapse
Affiliation(s)
- Mateus Henrique Santos
- Pós-Graduação em Biologia Evolutiva. Universidade Estadual de Ponta Grossa, Departamento de Biologia Estrutural, Molecular e Genética, Av. General Carlos Cavalcanti, 4748, Uvaranas, 84030-900 Ponta Grossa, PR, Brazil
| | - Dora Yovana Barrios-Leal
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Genética, Rua Monte Alegre, Av. Bandeirantes, 3900, Subsetor Oeste - 11 (N-11), 14040-900 Ribeirão Preto, SP, Brazil
| | - Maura Helena Manfrin
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Genética, Rua Monte Alegre, Av. Bandeirantes, 3900, Subsetor Oeste - 11 (N-11), 14040-900 Ribeirão Preto, SP, Brazil
- Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Av. Bandeirantes, 3900, Subsetor Oeste - 11 (N-11), 14040-900 Ribeirão Preto, SP, Brazil
| |
Collapse
|
2
|
Reis M, Wiegleb G, Claude J, Lata R, Horchler B, Ha NT, Reimer C, Vieira CP, Vieira J, Posnien N. Multiple loci linked to inversions are associated with eye size variation in species of the Drosophila virilis phylad. Sci Rep 2020; 10:12832. [PMID: 32732947 PMCID: PMC7393161 DOI: 10.1038/s41598-020-69719-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/14/2020] [Indexed: 11/26/2022] Open
Abstract
The size and shape of organs is tightly controlled to achieve optimal function. Natural morphological variations often represent functional adaptations to an ever-changing environment. For instance, variation in head morphology is pervasive in insects and the underlying molecular basis is starting to be revealed in the Drosophila genus for species of the melanogaster group. However, it remains unclear whether similar diversifications are governed by similar or different molecular mechanisms over longer timescales. To address this issue, we used species of the virilis phylad because they have been diverging from D. melanogaster for at least 40 million years. Our comprehensive morphological survey revealed remarkable differences in eye size and head shape among these species with D. novamexicana having the smallest eyes and southern D. americana populations having the largest eyes. We show that the genetic architecture underlying eye size variation is complex with multiple associated genetic variants located on most chromosomes. Our genome wide association study (GWAS) strongly suggests that some of the putative causative variants are associated with the presence of inversions. Indeed, northern populations of D. americana share derived inversions with D. novamexicana and they show smaller eyes compared to southern ones. Intriguingly, we observed a significant enrichment of genes involved in eye development on the 4th chromosome after intersecting chromosomal regions associated with phenotypic differences with those showing high differentiation among D. americana populations. We propose that variants associated with chromosomal inversions contribute to both intra- and interspecific variation in eye size among species of the virilis phylad.
Collapse
Affiliation(s)
- Micael Reis
- Department of Developmental Biology, Göttingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Gordon Wiegleb
- Department of Developmental Biology, Göttingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany.,International Max Planck Research School for Genome Science, Am Fassberg 11, 37077, Göttingen, Germany
| | - Julien Claude
- Institut Des Sciences de l'Evolution de Montpellier, CNRS/UM2/IRD, 2 Place Eugène Bataillon, cc64, 34095, Montpellier Cedex 5, France
| | - Rodrigo Lata
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Britta Horchler
- Department of Developmental Biology, Göttingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Ngoc-Thuy Ha
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany.,Center for Integrated Breeding Research, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany
| | - Christian Reimer
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany.,Center for Integrated Breeding Research, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany
| | - Cristina P Vieira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Jorge Vieira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Nico Posnien
- Department of Developmental Biology, Göttingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany.
| |
Collapse
|
3
|
Bhumika, Singh AK. Patterns of morphological divergence in fruit fly: response to nutritional variations through changes in allometric relationships and trait sizes. J Zool (1987) 2019. [DOI: 10.1111/jzo.12680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Bhumika
- Genetics Laboratory Department of Zoology Institute of Science Banaras Hindu University Varanasi India
| | - A. K. Singh
- Genetics Laboratory Department of Zoology Institute of Science Banaras Hindu University Varanasi India
| |
Collapse
|
4
|
Serrato-Capuchina A, Matute DR. The Role of Transposable Elements in Speciation. Genes (Basel) 2018; 9:E254. [PMID: 29762547 PMCID: PMC5977194 DOI: 10.3390/genes9050254] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 01/20/2023] Open
Abstract
Understanding the phenotypic and molecular mechanisms that contribute to genetic diversity between and within species is fundamental in studying the evolution of species. In particular, identifying the interspecific differences that lead to the reduction or even cessation of gene flow between nascent species is one of the main goals of speciation genetic research. Transposable elements (TEs) are DNA sequences with the ability to move within genomes. TEs are ubiquitous throughout eukaryotic genomes and have been shown to alter regulatory networks, gene expression, and to rearrange genomes as a result of their transposition. However, no systematic effort has evaluated the role of TEs in speciation. We compiled the evidence for TEs as potential causes of reproductive isolation across a diversity of taxa. We find that TEs are often associated with hybrid defects that might preclude the fusion between species, but that the involvement of TEs in other barriers to gene flow different from postzygotic isolation is still relatively unknown. Finally, we list a series of guides and research avenues to disentangle the effects of TEs on the origin of new species.
Collapse
Affiliation(s)
- Antonio Serrato-Capuchina
- Biology Department, Genome Sciences Building, University of North Carolina, Chapel Hill, NC 27514, USA.
| | - Daniel R Matute
- Biology Department, Genome Sciences Building, University of North Carolina, Chapel Hill, NC 27514, USA.
| |
Collapse
|
5
|
Fanara JJ, Werenkraut V. Phenotypic plasticity in Drosophila cactophilic species: the effect of competition, density, and breeding sites. INSECT SCIENCE 2017; 24:675-683. [PMID: 27061856 DOI: 10.1111/1744-7917.12345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/02/2016] [Accepted: 03/17/2016] [Indexed: 06/05/2023]
Abstract
Changes in the environmental conditions experienced by naturally occurring populations are frequently accompanied by changes in adaptive traits allowing the organism to cope with environmental unpredictability. Phenotypic plasticity is a major aspect of adaptation and it has been involved in population dynamics of interacting species. In this study, phenotypic plasticity (i.e., environmental sensitivity) of morphological adaptive traits were analyzed in the cactophilic species Drosophila buzzatii and Drosophila koepferae (Diptera: Drosophilidae) considering the effect of crowding conditions (low and high density), type of competition (intraspecific and interspecific competition) and cacti hosts (Opuntia and Columnar cacti). All traits (wing length, wing width, thorax length, wing loading and wing aspect) showed significant variation for each environmental factor considered in both Drosophila species. The phenotypic plasticity pattern observed for each trait was different within and between these cactophilic Drosophila species depending on the environmental factor analyzed suggesting that body size-related traits respond almost independently to environmental heterogeneity. The effects of ecological factors analyzed in this study are discussed in order to elucidate the causal factors investigated (type of competition, crowding conditions and alternative host) affecting the election of the breeding site and/or the range of distribution of these cactophilic species.
Collapse
Affiliation(s)
- Juan Jose Fanara
- Departamento de Ecologia, Genetica y Evolucion, Instituto de Ecologia Genetica y Evolucion de Buenos Aires (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellon II, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Victoria Werenkraut
- Laboratorio Ecotono, Centro Regional Universitario Bariloche, Universidad Nacional del Comahue/INIBIOMA-CONICET, Quintral 1250, Bariloche, Rio Negro, Argentina
| |
Collapse
|
6
|
Simões P, Fragata I, Lopes-Cunha M, Lima M, Kellen B, Bárbaro M, Santos M, Matos M. Wing trait-inversion associations in Drosophila subobscura can be generalized within continents, but may change through time. J Evol Biol 2015; 28:2163-74. [PMID: 26302686 DOI: 10.1111/jeb.12739] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/28/2015] [Accepted: 08/18/2015] [Indexed: 01/14/2023]
Abstract
Clinal variation is one of the most emblematic examples of the action of natural selection at a wide geographical range. In Drosophila subobscura, parallel clines in body size and inversions, but not in wing shape, were found in Europe and South and North America. Previous work has shown that a bottleneck effect might be largely responsible for differences in wing trait-inversion association between one European and one South American population. One question still unaddressed is whether the associations found before are present across other populations of the European and South American clines. Another open question is whether evolutionary dynamics in a new environment can lead to relevant changes in wing traits-inversion association. To analyse geographical variation in these associations, we characterized three recently laboratory founded D. subobscura populations from both the European and South American latitudinal clines. To address temporal variation, we also characterized the association at a later generation in the European populations. We found that wing size and shape associations can be generalized across populations of the same continent, but may change through time for wing size. The observed temporal changes are probably due to changes in the genetic content of inversions, derived from adaptation to the new, laboratory environment. Finally, we show that it is not possible to predict clinal variation from intrapopulation associations. All in all this suggests that, at least in the present, wing traits-inversion associations are not responsible for the maintenance of the latitudinal clines in wing shape and size.
Collapse
Affiliation(s)
- P Simões
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - I Fragata
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - M Lopes-Cunha
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - M Lima
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - B Kellen
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - M Bárbaro
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - M Santos
- Departament de Genètica i de Microbiologia, Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GGBE), Universitat Autonòma de Barcelona, Bellaterra (Barcelona), Spain
| | - M Matos
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
7
|
Adaptation to aridity in the malaria mosquito Anopheles gambiae: chromosomal inversion polymorphism and body size influence resistance to desiccation. PLoS One 2012; 7:e34841. [PMID: 22514674 PMCID: PMC3325948 DOI: 10.1371/journal.pone.0034841] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 03/09/2012] [Indexed: 11/19/2022] Open
Abstract
Chromosomal inversions are thought to confer a selective advantage in alternative habitats by protecting co-adapted alleles from recombination. The frequencies of two inversions (2La and 2Rb) of the afro-tropical malaria mosquito Anopheles gambiae change gradually along geographical clines, increasing in frequency with degree of aridity. Such clines can result from gene flow and local selection acting upon alternative karyotypes along the cline, suggesting that these inversions may be associated with tolerance to xeric conditions. Since water loss represents a major challenge in xeric habitats, it can be supposed that genes inside these inversions are involved in water homeostasis. To test this hypothesis, we compared the desiccation resistance of alternative karyotypes from a colonised 2Rb/2La polymorphic population of A. gambiae from Cameroon. The strain included only the molecular form S, one of the genetic units marking incipient speciation in this taxon. Day-old mosquitoes of both sexes were assayed individually for time to death in a dry environment and the karyotype of each was determined post-mortem using molecular diagnostic assays for each inversion. In agreement with expectations based on their eco-geographical distribution, we found that 2La homokaryotypes survived significantly longer (1.3 hours) than the other karyotypes. However, there was weak support for the effect of 2Rb on desiccation resistance. Larger mosquitoes survived longer than smaller ones. Median survival of females was greater than males, but the effect of sex on desiccation resistance was weakly supported, indicating that differential survival was correlated to differences between sexes in average size. We found weak evidence for a heterotic effect of 2La karyotype on size in females. These results support the notion that genes located inside the 2La inversion are involved in water balance, contributing towards local adaptation of A. gambiae to xeric habitats, beyond the adaptive value conferred by a larger body size.
Collapse
|
8
|
Franco FF, Sene FM, Manfrin MH. Low satellite DNA variability in natural populations of Drosophila antonietae involved in different evolutionary events. J Hered 2010; 101:650-6. [PMID: 20497968 DOI: 10.1093/jhered/esq056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Drosophila antonietae is a cactophilic species that is found in the mesophilic forest of the Paraná-Paraguay river basin and in the dunes of the South Atlantic coast of Brazil. Although the genetic structure of the Paraná-Paraguay river basin populations has already been established, the relationship between these populations and those on the Atlantic coast is controversial. In this study, we compared 33 repetitive units of pBuM-2 satellite DNA isolated from individuals from 8 populations of D. antonietae in these geographic regions, including some populations found within a contact zone with the closely related D. serido. The pBuM-2 sequences showed low interpopulational variability. This result was interpreted as a consequence of both gene flow among the populations and unequal crossing over promoting homogenization of the tandem arrays. The results presented here, together with those of previous studies, highlight the use of pBuM-2 for solving taxonomic conflicts within the D. buzzatii species cluster.
Collapse
Affiliation(s)
- Fernando Faria Franco
- Campus de Sorocaba, Universidade Federal de São Carlos, CEP 18052-780 Sorocaba, Brazil.
| | | | | |
Collapse
|
9
|
Delprat A, Negre B, Puig M, Ruiz A. The transposon Galileo generates natural chromosomal inversions in Drosophila by ectopic recombination. PLoS One 2009; 4:e7883. [PMID: 19936241 PMCID: PMC2775673 DOI: 10.1371/journal.pone.0007883] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 10/01/2009] [Indexed: 11/25/2022] Open
Abstract
Background Transposable elements (TEs) are responsible for the generation of chromosomal inversions in several groups of organisms. However, in Drosophila and other Dipterans, where inversions are abundant both as intraspecific polymorphisms and interspecific fixed differences, the evidence for a role of TEs is scarce. Previous work revealed that the transposon Galileo was involved in the generation of two polymorphic inversions of Drosophila buzzatii. Methodology/Principal Findings To assess the impact of TEs in Drosophila chromosomal evolution and shed light on the mechanism involved, we isolated and sequenced the two breakpoints of another widespread polymorphic inversion from D. buzzatii, 2z3. In the non inverted chromosome, the 2z3 distal breakpoint was located between genes CG2046 and CG10326 whereas the proximal breakpoint lies between two novel genes that we have named Dlh and Mdp. In the inverted chromosome, the analysis of the breakpoint sequences revealed relatively large insertions (2,870-bp and 4,786-bp long) including two copies of the transposon Galileo (subfamily Newton), one at each breakpoint, plus several other TEs. The two Galileo copies: (i) are inserted in opposite orientation; (ii) present exchanged target site duplications; and (iii) are both chimeric. Conclusions/Significance Our observations provide the best evidence gathered so far for the role of TEs in the generation of Drosophila inversions. In addition, they show unequivocally that ectopic recombination is the causative mechanism. The fact that the three polymorphic D. buzzatii inversions investigated so far were generated by the same transposon family is remarkable and is conceivably due to Galileo's unusual structure and current (or recent) transpositional activity.
Collapse
Affiliation(s)
- Alejandra Delprat
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | | | | | | |
Collapse
|
10
|
Hatadani LM, Klaczko LB. Shape and size variation on the wing of Drosophila mediopunctata: influence of chromosome inversions and genotype-environment interaction. Genetica 2007; 133:335-42. [DOI: 10.1007/s10709-007-9217-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 10/05/2007] [Indexed: 11/28/2022]
|
11
|
Morales-Hojas R, Päällysaho S, Vieira CP, Hoikkala A, Vieira J. Comparative polytene chromosome maps of D. montana and D. virilis. Chromosoma 2006; 116:21-7. [PMID: 16906413 DOI: 10.1007/s00412-006-0075-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 06/07/2006] [Accepted: 06/11/2006] [Indexed: 10/24/2022]
Abstract
Chromosomal inversion polymorphism was characterized in Finnish Drosophila montana populations. A total of 14 polymorphic inversions were observed in Finnish D. montana of which nine had not been described before. The number of polymorphic inversions in each chromosome was not significantly different from that expected, assuming equal chance of occurrence in the euchromatic genome. There was, however, no correlation between the number of polymorphic inversions and that of fixed inversions in each chromosome. Therefore, a simple neutral model does not explain the evolutionary dynamics of inversions. Furthermore, in contrast to results obtained by others, no significant correlation was found between the two transposable elements (TEs) Penelope and Ulysses and inversion breakpoints in D. montana. This result suggests that these TEs were not involved in the creation of the polymorphic inversions seen in D. montana. A comparative analysis of D. montana and Drosophila virilis polytene chromosomes 4 and 5 was performed with D. virilis bacteriophage P1 clones, thus completing the comparative studies of the two species.
Collapse
Affiliation(s)
- Ramiro Morales-Hojas
- Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal.
| | | | | | | | | |
Collapse
|
12
|
Coghlan A, Eichler EE, Oliver SG, Paterson AH, Stein L. Chromosome evolution in eukaryotes: a multi-kingdom perspective. Trends Genet 2005; 21:673-82. [PMID: 16242204 DOI: 10.1016/j.tig.2005.09.009] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 08/08/2005] [Accepted: 09/29/2005] [Indexed: 12/15/2022]
Abstract
In eukaryotes, chromosomal rearrangements, such as inversions, translocations and duplications, are common and range from part of a gene to hundreds of genes. Lineage-specific patterns are also seen: translocations are rare in dipteran flies, and angiosperm genomes seem prone to polyploidization. In most eukaryotes, there is a strong association between rearrangement breakpoints and repeat sequences. Current data suggest that some repeats promoted rearrangements via non-allelic homologous recombination, for others the association might not be causal but reflects the instability of particular genomic regions. Rearrangement polymorphisms in eukaryotes are correlated with phenotypic differences, so are thought to confer varying fitness in different habitats. Some seem to be under positive selection because they either trap favorable allele combinations together or alter the expression of nearby genes. There is little evidence that chromosomal rearrangements cause speciation, but they probably intensify reproductive isolation between species that have formed by another route.
Collapse
Affiliation(s)
- Avril Coghlan
- Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | |
Collapse
|
13
|
Stocker AJ, Foley B, Hoffmann A. Inversion frequencies in Drosophila serrata along an eastern Australian transect. Genome 2005; 47:1144-53. [PMID: 15644973 DOI: 10.1139/g04-078] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Clinal patterns over broad geographic regions provide a way of identifying characteristics of species under selection and are increasingly being used in quantitative trait locus mapping of adaptive genetic variation in Drosophila. However, interpretations of clinal patterns can be complicated by inversions that also vary clinally and reduce recombination in some parts of the genome. Drosophila serrata (Malloch) is an Australian endemic species being used to investigate the genetic basis of geographic variation in climatic adaptation and mate recognition. Here we describe inversions in D. serrata populations from the east coast of Australia, covering tropical and temperate regions. Seven autosomal paracentric inversions and 1 apparently complex X chromosome arrangement were identified from these populations. All inverted arrangements were relatively more common in tropical populations; 2 common inversions showed clinal patterns over part of the range of D. serrata. Inversion polymorphism was relatively higher in tropical populations and almost absent in populations near the cooler southern border, in agreement with findings on other Drosophila species. While these patterns will complicate mapping of adaptive variation in D. serrata, they suggest that this species will be useful in investigatingthe dynamics of inversion-trait associations in natural populations.
Collapse
Affiliation(s)
- Ann Jacob Stocker
- Centre for Environmental Stress Research, La Trobe University, Melbourne, Victoria 3086, Australia.
| | | | | |
Collapse
|
14
|
Savkovic V, Stamenkovic-Radak M, Andjelkovic M. Diurnal variability of gene arrangement frequencies in Drosophila subobscura populations from two habitats*. J ZOOL SYST EVOL RES 2004. [DOI: 10.1111/j.1439-0469.2004.00273.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|