1
|
Duderstadt S, Distl O. Influence of Sires on Population Substructure in Dülmen Wild Horses. Animals (Basel) 2024; 14:2904. [PMID: 39409853 PMCID: PMC11475081 DOI: 10.3390/ani14192904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
The objectives of the present study were to analyze the influence of the stallions employed in the Dülmen wild horses on the genetic diversity and population substructure using Bayesian cluster analysis. The Dülmen wild horse is maintained as a unique horse population exposed to the natural conditions all year round in the Merfelder Bruch near Dülmen in Westphalia, Germany. Stallions selected for breeding have to prove their abilities to survive under this harsh environment. We used multilocus genotypic information from a set of 29 autosomal microsatellites to determine the paternity of 185 male foals sired by nine stallions. As females could not be sampled, we could not make inferences on all yearlings and test whether there are differences in the genetic population parameters between both sexes. The mean number of progeny was 19.92 with a range of 2-32, caused by the length of the service period per stallion. The average observed and unbiased expected heterozygosity was 0.688 and 0.631, the mean number of alleles was 4.448, and Wright's FIS was -0.173. Pairwise genetic distances (FST and Nei's unbiased genetic distances) were significant and varied between 0.038 to 0.091 and 0.085 to 0.290, respectively. Neighbor-joining dendrogram plots clustered a large proportion of the paternal progeny groups in different branches. Posterior Bayesian analyses using seven paternal half-sib groups with 10-74 members supported a maximum of six clusters, with two paternal progeny groups not differing, and a median of five clusters, with two groups of two sires each falling into the same clusters. When sires were employed in non-consecutive years, progeny from these different years of the same sires were grouped in the same cluster, whereas the progeny of one sire from two consecutive years were in different clusters. We were able to distinguish male progeny from Dülmen wild horse stallions and to show the effects of stallion use on the genetic substructure in the Dülmen wild horse herd. In conclusion, the analyses showed the genetic potential of the Dülmen wild horse stallions to maintain a high genetic diversity and also the effects in which breeding seasons and for how long stallions are used to sire foals. The selection of stallions may be sensitive for the further development of genetic diversity and preserve this closed population as a valuable resource for further studies on the evolution of the horse.
Collapse
Affiliation(s)
| | - Ottmar Distl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Hannover (Foundation), 30559 Hannover, Germany;
| |
Collapse
|
2
|
Duderstadt S, Distl O. Genetic Diversity and Population Structure of Dülmen Wild, Liebenthal and Polish Konik Horses in Comparison with Przewalski, Sorraia, German Draught and Riding Horses. Animals (Basel) 2024; 14:2221. [PMID: 39123746 PMCID: PMC11311111 DOI: 10.3390/ani14152221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The objective of the present study was to analyze the genetic diversity, individual-based assessment of population structure, and admixture in the Dülmen wild horse population in comparison to warmblood, coldblood, and primitive horse populations. The Dülmen wild horse is kept as a unique horse population in the Merfelder Bruch near Dülmen in Westphalia, Germany, and since 1856 has been managed by the Dukes of Croÿ. The Dülmen wild horse population is exposed to the natural conditions of the Merfelder Bruch all year round without human interventions for feeding and veterinary care. In the present study, genetic diversity was estimated for 101 Dülmen wild horses using multilocus genotypic information from a set of 29 autosomal microsatellites and compared with 587 horses from 17 different horse populations. Dülmen wild horses maintained a high degree of genetic diversity, with an average observed heterozygosity of 0.68, a mean number of 6.17 alleles, and heterozygote deficit of -0.035. Pairwise genetic distances (FST, Nei's standard, and Cavalli-Sforza distances) were closest to German coldblood breeds, Polish Konik, and Icelandic horses and most divergent from Sorraia and Przewalski's horses. Neighbor joining dendrogram and PCA plots showed a clear distinction of Dülmen wild horses from other populations, particularly from Przewalski horses. Posterior Bayesian analysis confirmed clear differentiation from other horse populations without an admixture pattern and a high membership index (0.92). It was possible to distinguish Dülmen wild horses from Dülmen and Polish Konik horses. In conclusion, Dülmen wild horses show a notable separation from other German horse breeds and primitive horse populations and may serve as a resource to study evolution of equine domestication.
Collapse
Affiliation(s)
| | - Ottmar Distl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Hannover (Foundation), 30559 Hannover, Germany;
| |
Collapse
|
3
|
Ajibaye O, Olukosi YA, Oriero EC, Oboh MA, Iwalokun B, Nwankwo IC, Nnam CF, Adaramoye OV, Chukwemeka S, Okanazu J, Gabriel E, Balogun EO, Amambua-Ngwa A. Detection of novel Plasmodium falciparum coronin gene mutations in a recrudescent ACT-treated patient in South-Western Nigeria. Front Cell Infect Microbiol 2024; 14:1366563. [PMID: 38716192 PMCID: PMC11074373 DOI: 10.3389/fcimb.2024.1366563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/28/2024] [Indexed: 05/12/2024] Open
Abstract
Background Routine surveillance for antimalarial drug resistance is critical to sustaining the efficacy of artemisinin-based Combination Therapies (ACTs). Plasmodium falciparum kelch-13 (Pfkelch-13) and non-Pfkelch-13 artemisinin (ART) resistance-associated mutations are uncommon in Africa. We investigated polymorphisms in Plasmodium falciparum actin-binding protein (Pfcoronin) associated with in vivo reduced sensitivity to ART in Nigeria. Methods Fifty-two P. falciparum malaria subjects who met the inclusion criteria were followed up in a 28-day therapeutic efficacy study of artemether-lumefantrine in Lagos, Nigeria. Parasite detection was done by microscopy and molecular diagnostic approaches involving PCR amplification of genes for Pf18S rRNA, varATS, telomere-associated repetitive elements-2 (TARE-2). Pfcoronin and Pfkelch-13 genes were sequenced bi-directionally while clonality of infections was determined using 12 neutral P. falciparum microsatellite loci and msp2 analyses. Antimalarial drugs (sulfadoxine-pyrimethamine, amodiaquine, chloroquine and some quinolones) resistance variants (DHFR_51, DHFR_59, DHFR_108, DHFR_164, MDR1_86, MDR1_184, DHPS_581 and DHPS_613) were genotyped by high-resolution melting (HRM) analysis. Results A total of 7 (26.92%) cases were identified either as early treatment failure, late parasitological failure or late clinical failure. Of the four post-treatment infections identified as recrudescence by msp2 genotypes, only one was classified as recrudescence by multilocus microsatellites genotyping. Microsatellite analysis revealed no significant difference in the mean allelic diversity, He, (P = 0.19, Mann-Whitney test). Allele sizes and frequency per locus implicated one isolate. Genetic analysis of this isolate identified two new Pfcoronin SNVs (I68G and L173F) in addition to the P76S earlier reported. Linkage-Disequilibrium as a standardized association index, IAS, between multiple P. falciparum loci revealed significant LD (IAS = 0.2865, P=0.02, Monte-Carlo simulation) around the neutral microsatellite loci. The pfdhfr/pfdhps/pfmdr1 drug resistance-associated haplotypes combinations, (108T/N/51I/164L/59R/581G/86Y/184F), were observed in two samples. Conclusion Pfcoronin mutations identified in this study, with potential to impact parasite clearance, may guide investigations on emerging ART tolerance in Nigeria, and West African endemic countries.
Collapse
Affiliation(s)
- Olusola Ajibaye
- Malaria Genomics Research and Training Centre, Department of Biochemistry & Nutrition, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
- Medical Research Council Unit, the Gambia – The London School of Hygiene and Tropical Medicine, Fajara, Banjul, Gambia
| | - Yetunde Adeola Olukosi
- Malaria Genomics Research and Training Centre, Department of Biochemistry & Nutrition, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
| | - Eniyou C. Oriero
- Medical Research Council Unit, the Gambia – The London School of Hygiene and Tropical Medicine, Fajara, Banjul, Gambia
| | - Mary Aigbiremo Oboh
- Medical Research Council Unit, the Gambia – The London School of Hygiene and Tropical Medicine, Fajara, Banjul, Gambia
| | - Bamidele Iwalokun
- Malaria Genomics Research and Training Centre, Department of Biochemistry & Nutrition, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
| | - Ikechukwu Chidiebere Nwankwo
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Chinaza Favour Nnam
- Malaria Genomics Research and Training Centre, Department of Biochemistry & Nutrition, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
| | - Olawunmi Victoria Adaramoye
- Department of Obstetrics and Gynaecology, Lagos University Teaching Hospital, Idi-araba, Surulere, Lagos, Nigeria
| | - Somadina Chukwemeka
- Malaria Genomics Research and Training Centre, Department of Biochemistry & Nutrition, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
| | - Judith Okanazu
- Malaria Genomics Research and Training Centre, Department of Biochemistry & Nutrition, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
| | - Eniafe Gabriel
- Malaria Genomics Research and Training Centre, Department of Biochemistry & Nutrition, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
| | - Emmanuel Oluwadare Balogun
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, Gilman Drive, La Jolla, CA, United States
| | - Alfred Amambua-Ngwa
- Medical Research Council Unit, the Gambia – The London School of Hygiene and Tropical Medicine, Fajara, Banjul, Gambia
| |
Collapse
|
4
|
Hall SJG. Genetic Differentiation among Livestock Breeds-Values for F st. Animals (Basel) 2022; 12:1115. [PMID: 35565543 PMCID: PMC9103131 DOI: 10.3390/ani12091115] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 12/02/2022] Open
Abstract
(1) Background: The Fst statistic is widely used to characterize between-breed relationships. Fst = 0.1 has frequently been taken as indicating genetic distinctiveness between breeds. This study investigates whether this is justified. (2) Methods: A database was created of 35,080 breed pairs and their corresponding Fst values, deduced from microsatellite and SNP studies covering cattle, sheep, goats, pigs, horses, and chickens. Overall, 6560 (19%) of breed pairs were between breeds located in the same country, 7395 (21%) between breeds of different countries within the same region, 20,563 (59%) between breeds located far apart, and 562 (1%) between a breed and the supposed wild ancestor of the species. (3) Results: General values for between-breed Fst were as follows, cattle: microsatellite 0.06-0.12, SNP 0.08-0.15; sheep: microsatellite 0.06-0.10, SNP 0.06-0.17; horses: microsatellite 0.04-0.11, SNP 0.08-0.12; goats: microsatellite 0.04-0.14, SNP 0.08-0.16; pigs: microsatellite 0.06-0.27, SNP 0.15-0.22; chickens: microsatellite 0.05-0.28, SNP 0.08-0.26. (4) Conclusions: (1) Large amounts of Fst data are available for a substantial proportion of the world's livestock breeds, (2) the value for between-breed Fst of 0.1 is not appropriate owing to its considerable variability, and (3) accumulated Fst data may have value for interdisciplinary research.
Collapse
Affiliation(s)
- Stephen J G Hall
- Department of Environmental Protection and Landscape, Estonian University of Life Sciences, Kreutzwaldi 5, 51014 Tartu, Estonia
| |
Collapse
|
5
|
Poyato-Bonilla J, Laseca N, Demyda-Peyrás S, Molina A, Valera M. 500 years of breeding in the Carthusian Strain of Pura Raza Español horse: An evolutional analysis using genealogical and genomic data. J Anim Breed Genet 2021; 139:84-99. [PMID: 34363624 DOI: 10.1111/jbg.12641] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/19/2021] [Accepted: 07/25/2021] [Indexed: 01/19/2023]
Abstract
The Carthusian horse is a Pura Raza Español (PRE) strain (CS), bred as a closed population since its creation more than 500 years ago. The aim of this study was to analyse for the first time its population structure and situation of variability combining both genealogical (GEL) and genomic (GEN) data. The GEL data comprised 348,429 pedigree records (56,105 CS horses), while the GEN analysis included the high-density genotypes (670,804 SNPs) of 287 horses. Pedigree completeness demonstrated its accuracy, showing a good correlation of GEL (F) and GEN (FROH ) inbreeding coefficient in the case of PRE subpopulations partially related and non-related to Carthusian strain (0.68) but a lower value in the 100% Carthusian horses (0.42), due to the high weight of founders not detected by GEL analysis. GEN (PCA, AMOVA, and Admixture) and GEL analysis showed a good differentiation of subpopulations, but also a high level of introgression of the CS in the breed during past decades. A recent change in this trend was noteworthy, with a considerable reduction in CS variability and a genetic bottleneck (effective population sizes of 31.57 and 30.20 in GEL and GEN analysis, respectively, in last generation). The PRE has maintained its variability, and a considerable difference in estimated Ne by GEL (60.77) and GEN (188.0) data was observed. Using two sources of complementary information, it was found the existence of an ancient PRE strain with a unique genetic landmark, practically free from the influence of other equine populations.
Collapse
Affiliation(s)
- Julia Poyato-Bonilla
- Dpto. Agronomía. Escuela Técnica Superior de Ingeniería Agronómica, Universidad de Sevilla, Sevilla, Spain
| | - Nora Laseca
- Dpto. Genética. Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - Sebastián Demyda-Peyrás
- Departamento de Producción Animal, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Buenos Aires, Argentina.,CONICET, CCT La Plata, La Plata, Argentina
| | - Antonio Molina
- Dpto. Genética. Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - Mercedes Valera
- Dpto. Agronomía. Escuela Técnica Superior de Ingeniería Agronómica, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
6
|
Genetic Diversity and Signatures of Selection in a Native Italian Horse Breed Based on SNP Data. Animals (Basel) 2020; 10:ani10061005. [PMID: 32521830 PMCID: PMC7341496 DOI: 10.3390/ani10061005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 12/31/2022] Open
Abstract
Simple Summary The Bardigiano horse is a native Italian breed bred for living in rural areas, traditionally used in agriculture. The breed counts about 3000 horses, and it is nowadays mainly used for recreational purposes. The relatively small size and the closed status of the breed raise the issue of monitoring genetic diversity. We therefore characterized the breed’s genetic diversity based on molecular data. We showed a critical reduction of genetic variability mainly driven by past bottlenecks. We also highlighted homozygous genomic regions that might be the outcome of directional selection in recent years, in line with the conversion of Bardigiano horses from agricultural to riding purposes. Abstract Horses are nowadays mainly used for sport and leisure activities, and several local breeds, traditionally used in agriculture, have been exposed to a dramatic loss in population size and genetic diversity. The loss of genetic diversity negatively impacts individual fitness and reduces the potential long-term survivability of a breed. Recent advances in molecular biology and bioinformatics have allowed researchers to explore biodiversity one step further. This study aimed to evaluate the loss of genetic variability and identify genomic regions under selection pressure in the Bardigiano breed based on GGP Equine70k SNP data. The effective population size based on Linkage Disequilibrium (Ne) was equal to 39 horses, and it showed a decline over time. The average inbreeding based on runs of homozygosity (ROH) was equal to 0.17 (SD = 0.03). The majority of the ROH were relatively short (91% were ≤2 Mbp long), highlighting the occurrence of older inbreeding, rather than a more recent occurrence. A total of eight ROH islands, shared among more than 70% of the Bardigiano horses, were found. Four of them mapped to known quantitative trait loci related to morphological traits (e.g., body size and coat color) and disease susceptibility. This study provided the first genome-wide scan of genetic diversity and selection signatures in an Italian native horse breed.
Collapse
|
7
|
Lancioni H, Cardinali I, Giontella A, Antognoni MT, Miglio A. Mitochondrial DNA variation in the Italian Heavy Draught Horse. PeerJ 2020; 8:e8996. [PMID: 32461825 PMCID: PMC7233276 DOI: 10.7717/peerj.8996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/26/2020] [Indexed: 12/28/2022] Open
Abstract
Background In the last decades, Italy as well as other developed countries have registered a decrease in the population size of many local horse breeds. The continuous crossbreeding has determined the dilution of genetic heritage of several native breeds. The Italian Heavy Draught Horse (IHD) is the only autochthonous Italian coldblooded horse among these breeds; therefore, it represents a resource to be preserved. In 1927, the first generation of this breed was officially created by crossing different Heavy Draught horses with local mares and recorded in a Studbook. Methodology To provide the first comprehensive overview of the genetic diversity of Italian Heavy Draught horses from Central Italy, we produced and phylogenetically analysed 52 mitochondrial DNA (mtDNA) control-region sequences. Furthermore, we evaluated data available from GenBank (N = 568) to have a more complete scenario and to understand the relationships with other European Heavy Draught horse breeds. Results Among the IHD samples that were analysed, we identified ten of the 17 haplogroups described in modern horses. Most of these sequences fell into L, G, and M lineages, thus showing the overall mtDNA legacy of the ancestral mares that were probably used at the initial stages of breeding selections a long time ago. The high mitochondrial haplotype diversity (Hd = 0.969) found in our samples reflected the multiple maternal origins of the horses. Our results highlighted a considerable percentage of haplotypes shared especially with Bardigiano and Hungarian Heavy Draught breeds. Furthermore, both the presence of four unique haplotypes detected in our samples and their absence among all equine mitochondrial published data demonstrate a mitochondrial peculiarity that needs to be further investigated and preserved with careful breeding practices.
Collapse
Affiliation(s)
- Hovirag Lancioni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Irene Cardinali
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Andrea Giontella
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | | | - Arianna Miglio
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
8
|
The Genomic Makeup of Nine Horse Populations Sampled in the Netherlands. Genes (Basel) 2019; 10:genes10060480. [PMID: 31242710 PMCID: PMC6627704 DOI: 10.3390/genes10060480] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/11/2019] [Accepted: 06/22/2019] [Indexed: 11/16/2022] Open
Abstract
The spectrum of modern horse populations encompasses populations with a long history of development in isolation and relatively recently formed types. To increase our understanding of the evolutionary history and provide information on how to optimally conserve or improve these populations with varying development and background for the future, we analyzed genotype data of 184 horses from 9 Dutch or common horse populations in the Netherlands: The Belgian draft horse, Friesian horse, Shetland pony, Icelandic horse, Gelder horse, Groninger horse, harness horse, KWPN sport horse and the Lipizzaner horse population. Various parameters were estimated (e.g., runs of homozygosity and FST values) to gain insight into genetic diversity and relationships within and among these populations. The identified genomic makeup and quantified relationships did mostly conform to the development of these populations as well as past and current breeding practices. In general, populations that allow gene-flow showed less inbreeding and homozygosity. Also, recent bottlenecks (e.g., related to high selective pressure) caused a larger contribution of long ROHs to inbreeding. Maintaining genetic diversity through tailor-made breeding practices is crucial for a healthy continuation of the investigated, mostly inbred and (effectively) small sized horse populations, of which several already experience inbreeding related issues.
Collapse
|
9
|
Genetic diversity of Estonian horse breeds and their genetic affinity to northern European and some Asian breeds. Livest Sci 2019. [DOI: 10.1016/j.livsci.2018.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Lai FY, Ding ST, Tu PA, Chen R, Lin DY, Lin EC, Wang PH. Population structure and phylogenetic analysis of laboratory rabbits in Taiwan based on microsatellite markers. WORLD RABBIT SCIENCE 2018. [DOI: 10.4995/wrs.2018.7362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Laboratory rabbits used in Taiwan are primarily supplied by the Livestock Research Institute (LRI) and the Animal Drugs Inspection Branch (ADIB) of the Animal Health Research Institute. An analysis of the genetic characteristics and structure of these populations would thus be a fundamental step in building a long-term management programme for maintaining stable animal quality and preserving the genetic variation among the populations. In this study, DNA samples were isolated from founders of 5 populations: New Zealand White rabbits (NZW) and Japanese White rabbits (JPN) from the ADIB, NZW and Rex rabbits (REX) from the LRI, and NZW from a private rabbit breeding farm in Ban Ciao (BC). A set of microsatellite markers, 18 in total, was designed for genetic analysis. The average values for the allele number (Na), effective number of alleles (Ne), observed heterozygosity (Ho), expected heterozygosity (H<sub>E</sub>), and Wright’s fixation index (F<sub>IS</sub>) were 5.50, 2.437, 0.442, 0.568 and 0.232, respectively. These results revealed that this set of microsatellite markers has high diversity and that the major local populations have a tendency toward inbreeding. At the same time, analysis of molecular variance results showed that the laboratory rabbits used in Taiwan have maintained a high level of within-population genetic differentiation (83%). The genetic differentiation among clusters was moderate (F<sub>ST</sub>=0.18), and Bayesian cluster analysis showed that the most likely number of groups was 4 (K=4). Principal component analysis (PCA) also showed 4 divergent clusters. The LRI and BC NZW populations were not separated when K=4 was used in a Structure software analysis and were also hard to split until principal component 3 in PCA. The individual unrooted phylogenetic tree showed that the 5 populations were separated, except that some individuals from the LRI NZW population overlapped with the ADIB NZW and BC NZW populations. As such, in order to counteract the reduced F<sub>IS</sub> (0.232) and maximise heterozygosity, the 3 NZW populations could be interbred or have new genes introduced into them. The set of microsatellite markers used herein was useful for studying the relationships and genetic diversities among these rabbit populations of Taiwan. Based on the resulting data, rabbit farms in Taiwan could select parental stocks for planned mating in the future as part of strategies to preserve and restore the rational breeding of laboratory rabbits.
Collapse
|
11
|
Williams J, Randle H. Is the expression of stereotypic behavior a performance-limiting factor in animals? J Vet Behav 2017. [DOI: 10.1016/j.jveb.2017.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
12
|
Jemmali B, Haddad MM, Barhoumi N, Tounsi S, Lasfer F, Trabelsi A, Ben Aoun B, Gritli I, Ezzar S, Ben Younes A, Ezzaouia MH, Rekik B, Ouled Ahmed H. Genetic diversity in Tunisian horse breeds. Arch Anim Breed 2017. [DOI: 10.5194/aab-60-153-2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract. This study aimed at screening genetic diversity and differentiation in four horse breeds raised in Tunisia, the Barb, Arab-Barb, Arabian, and English Thoroughbred breeds. A total of 200 blood samples (50 for each breed) were collected from the jugular veins of animals, and genomic DNA was extracted. The analysis of the genetic structure was carried out using a panel of 16 microsatellite loci. Results showed that all studied microsatellite markers were highly polymorphic in all breeds. Overall, a total of 147 alleles were detected using the 16 microsatellite loci. The average number of alleles per locus was 7.52 (0.49), 7.35 (0.54), 6.3 (0.44), and 6 (0.38) for the Arab-Barb, Barb, Arabian, and English Thoroughbred breeds, respectively. The observed heterozygosities ranged from 0.63 (0.03) in the English Thoroughbred to 0.72 in the Arab-Barb breeds, whereas the expected heterozygosities were between 0.68 (0.02) in the English Thoroughbred and 0.73 in the Barb breeds. All FST values calculated by pairwise breed combinations were significantly different from zero (p < 0.05) and an important genetic differentiation among breeds was revealed. Genetic distances, the factorial correspondence, and principal coordinate analyses showed that the important amount of genetic variation was within population. These results may facilitate conservation programs for the studied breeds and enhance preserve their genetic diversity.
Collapse
|
13
|
Vázquez-Armijo JF, Parra-Bracamonte GM, Velazquez MA, Sifuentes-Rincón AM, Tinoco-Jaramillo JL, Ambriz-Morales P, Arellano-Vera W, Moreno-Medina VR. Diversity and effective population size of four horse breeds from microsatellite DNA markers in South-Central Mexico. Arch Anim Breed 2017. [DOI: 10.5194/aab-60-137-2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract. The South-Central region of Mexico has experienced a sizeable introduction of purebred horses for recreational aims. A study was designed to assess effective population sizes and genetic diversity and to verify the genetic integrity of four horse breeds. Using a 12-microsatellite panel, Quarter Horse, Azteca, Thoroughbred and Creole (CRL) horses were sampled and analysed for diversity and genetic structure. Genetic diversity parameters showed high numbers of heterozygous horses but small effective population sizes in all breeds. Population structure results suggested some degree of admixture of CRL with the other reference breeds. The highly informative microsatellite panel allowed the verification of diversity in introduced horse populations and the confirmation of small effective population sizes, which suggests a risk for future breed integrity.
Collapse
|
14
|
Negro S, Solé M, Pelayo R, Gómez M, Azor P, Valera M. Molecular diversity between two cohorts of six Spanish riding-horse breeds: Impact of selection in Crossbred vs Purebred populations. Livest Sci 2016. [DOI: 10.1016/j.livsci.2016.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Arbanasic H, Galov A, Salajpal K, Curik I. Diversity of equine major histocompatiblity complex class II DRA locus in Posavina and Croatian Coldblood horse: a new polymorphism detected. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2009.s3.77] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Ana Galov
- University of ZagrebUniversity of Zagreb, Croatia
| | | | - Ino Curik
- Department of Animal ScienceUniversity of Zagreb, Croatia
| |
Collapse
|
16
|
Maretto F, Mantovani R. Genetic variability of Italian Heavy Draught Horse. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2009.s3.95] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Fabio Maretto
- Dipartimento di Scienze AnimaliUniversità di Padova, Italy
| | | |
Collapse
|
17
|
Ivanković A, Ramljak J, Dovč P, Kelava N, Konjačić M. Genetic structure of three Croatian horse breeds: implications for their conservation strategy. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2009.677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Felicetti M, Lopes MS, Verini-Supplizi A, Machado ADC, Silvestrelli M, Mendonça D, Distl O. Genetic diversity in the Maremmano horse and its relationship with other European horse breeds. Anim Genet 2015; 41 Suppl 2:53-5. [PMID: 21070276 DOI: 10.1111/j.1365-2052.2010.02102.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Maremmano is an Italian warmblood horse breed from central Italy. We characterized the genetic diversity and the degree of admixture in Maremmano in comparison to 14 other European horse breeds using 30 microsatellites. Between-breed diversity explained about 9 per cent of the total genetic diversity. Cluster analysis, genetic distances and genetic differentiation coefficients showed a close relationship of Maremmano with Hanoverian and Lusitano in accordance with breed history.
Collapse
Affiliation(s)
- M Felicetti
- Department of Pathology, Diagnostic and Veterinary Clinic, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | | | | | | | | | | | | |
Collapse
|
19
|
Broxham ET, Kugler W, Medugorac I. A case study on strains of Buša cattle structured into a metapopulation to show the potential for use of single-nucleotide polymorphism genotyping in the management of small, cross-border populations of livestock breeds and varieties. Front Genet 2015; 6:73. [PMID: 25798144 PMCID: PMC4350423 DOI: 10.3389/fgene.2015.00073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 02/12/2015] [Indexed: 11/30/2022] Open
Affiliation(s)
| | | | - Ivica Medugorac
- Chair of Animal Genetics and Husbandry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich Munich, Germany
| |
Collapse
|
20
|
Tu PA, Lin DY, Li GF, Huang JC, Wang DC, Wang PH. Characterization of the Genetic Diversity and Population Structure for the Yellow Cattle in Taiwan Based on Microsatellite Markers. Anim Biotechnol 2014; 25:234-49. [DOI: 10.1080/10495398.2013.865641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Pirault P, Danvy S, Verrier E, Leroy G. Genetic structure and gene flows within horses: a genealogical study at the french population scale. PLoS One 2013; 8:e61544. [PMID: 23630596 PMCID: PMC3632587 DOI: 10.1371/journal.pone.0061544] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 03/11/2013] [Indexed: 11/21/2022] Open
Abstract
Since horse breeds constitute populations submitted to variable and multiple outcrossing events, we analyzed the genetic structure and gene flows considering horses raised in France. We used genealogical data, with a reference population of 547,620 horses born in France between 2002 and 2011, grouped according to 55 breed origins. On average, individuals had 6.3 equivalent generations known. Considering different population levels, fixation index decreased from an overall species FIT of 1.37%, to an average of −0.07% when considering the 55 origins, showing that most horse breeds constitute populations without genetic structure. We illustrate the complexity of gene flows existing among horse breeds, a few populations being closed to foreign influence, most, however, being submitted to various levels of introgression. In particular, Thoroughbred and Arab breeds are largely used as introgression sources, since those two populations explain together 26% of founder origins within the overall horse population. When compared with molecular data, breeds with a small level of coancestry also showed low genetic distance; the gene pool of the breeds was probably impacted by their reproducer exchanges.
Collapse
Affiliation(s)
- Pauline Pirault
- AgroParisTech, Unité Mixte de Recherche 1313 Génétique Animale et Biologie Intégrative, Paris, France
| | - Sophy Danvy
- Institut Français du Cheval et de l'Equitation, Le Pin au Haras, France
| | - Etienne Verrier
- AgroParisTech, Unité Mixte de Recherche 1313 Génétique Animale et Biologie Intégrative, Paris, France
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1313 Génétique Animale et Biologie Intégrative, Domaine de Vilvert, Jouy-en-Josas, France
| | - Grégoire Leroy
- AgroParisTech, Unité Mixte de Recherche 1313 Génétique Animale et Biologie Intégrative, Paris, France
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1313 Génétique Animale et Biologie Intégrative, Domaine de Vilvert, Jouy-en-Josas, France
- * E-mail:
| |
Collapse
|
22
|
Warmuth V, Manica A, Eriksson A, Barker G, Bower M. Autosomal genetic diversity in non-breed horses from eastern Eurasia provides insights into historical population movements. Anim Genet 2012; 44:53-61. [PMID: 22607477 DOI: 10.1111/j.1365-2052.2012.02371.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2012] [Indexed: 12/22/2022]
Abstract
Many events in the history of eastern Eurasia, including the process of domestication itself, the initial spread of domestic horses and subsequent movements, are believed to have affected the genetic structure of domestic horse populations in this area. We investigated levels of within- and between-population genetic diversity in 'non-breed horses' (working horses sampled in remote areas) from 17 locations in Asia and parts of Eastern Europe, using 26 autosomal microsatellite loci. Non-breed horses have not been subject to the same intensity of artificial selection and closed breeding as have most breed animals and are thus expected to better reflect the population history of domestic horses. Despite geographic distances of between 300 and 7000 km between sampling locations, pairwise F (ST) was very low (range: <0.001 to -0.033), suggesting historically high levels of gene flow. Our analyses of non-breed horses revealed a pattern of isolation by distance and a significant decline in genetic diversity (expected heterozygosity and allelic richness) from east to west, consistent with a westward expansion of horses out of East Asia. Although the timing of this putative expansion is unclear, our results highlight the benefit of studying animals that do not belong to particular breeds when investigating aspects of a population's history.
Collapse
Affiliation(s)
- Vera Warmuth
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK.
| | | | | | | | | |
Collapse
|
23
|
Bigi D, Perrotta G. Genetic structure and differentiation of the Italian catria horse. ACTA ACUST UNITED AC 2012; 103:134-9. [PMID: 22156056 DOI: 10.1093/jhered/esr121] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Catria is 1 of the 22 native Italian horse breeds that now survive from a larger number. Thirty individuals, representative of the Catria horse, were analyzed for 11 microsatellites and compared with data of 10 breeds reared in Italy. Three different approaches, genetic distances, correspondence analysis, and clustering methods, were considered to study genetic relationships among Catria and the other horse populations. Genetic differentiation among breeds was highly significant (P < 0.01) for all loci. Average F(ST) values indicate that around 10% of the total genetic variation was explained by the between-breed differences and the 3 approaches utilized gave similar results. Italian native breeds are clearly separated from the other examined breeds. However, by the correspondence analysis, the Catria appears closer to Maremmano and Murgese. The results of Bayesian approaches give further information showing for Catria a common origin with Maremmano and Italian Heavy Draught. Genetic relationships among Catria and the other breeds are consistent with the breed's documented history. The data and information found here can be utilized in the organization of conservation programmes planned to reduce inbreeding and to minimize loss of genetic variability.
Collapse
Affiliation(s)
- Daniele Bigi
- Dipartimento di Protezione e Valorizzazione Agroalimentare(DIPROVAL)-Sezione Allevamenti Zootecnici, Faculty of Agriculture, University of Bologna, Via F.lli Rosselli 107, 42123 Reggio Emilia, Italy.
| | | |
Collapse
|
24
|
Gómez M, Azor P, Alonso M, Jordana J, Valera M. Morphological and genetic characterization of Spanish heavy horse breeds: Implications for their conservation. Livest Sci 2012. [DOI: 10.1016/j.livsci.2011.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
European domestic horses originated in two holocene refugia. PLoS One 2011; 6:e18194. [PMID: 21479181 PMCID: PMC3068172 DOI: 10.1371/journal.pone.0018194] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 02/28/2011] [Indexed: 12/01/2022] Open
Abstract
The role of European wild horses in horse domestication is poorly understood. While the fossil record for wild horses in Europe prior to horse domestication is scarce, there have been suggestions that wild populations from various European regions might have contributed to the gene pool of domestic horses. To distinguish between regions where domestic populations are mainly descended from local wild stock and those where horses were largely imported, we investigated patterns of genetic diversity in 24 European horse breeds typed at 12 microsatellite loci. The distribution of high levels of genetic diversity in Europe coincides with the distribution of predominantly open landscapes prior to domestication, as suggested by simulation-based vegetation reconstructions, with breeds from Iberia and the Caspian Sea region having significantly higher genetic diversity than breeds from central Europe and the UK, which were largely forested at the time the first domestic horses appear there. Our results suggest that not only the Eastern steppes, but also the Iberian Peninsula provided refugia for wild horses in the Holocene, and that the genetic contribution of these wild populations to local domestic stock may have been considerable. In contrast, the consistently low levels of diversity in central Europe and the UK suggest that domestic horses in these regions largely derive from horses that were imported from the Eastern refugium, the Iberian refugium, or both.
Collapse
|
26
|
Druml T, Baumung R, Sölkner J. Pedigree analysis in the Austrian Noriker draught horse: genetic diversity and the impact of breeding for coat colour on population structure. J Anim Breed Genet 2010; 126:348-56. [PMID: 19765161 DOI: 10.1111/j.1439-0388.2008.00790.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The pedigree of the current Austrian Noriker draught horse population comprising 2808 horses was traced back to the animals considered as founders of this breed. In total, the number of founders was 1991, the maximum pedigree length was 31 generations, with an average of 12.3 complete generations. Population structure in this autochthonous Austrian draught horse breed is defined by seven breeding regions (Carinthia, Lower Austria, Salzburg, Styria, Tyrol, Upper Austria and Vorarlberg) or through six coat colour groups (Bay, Black, Chestnut, Roan, Leopard, Tobiano). Average inbreeding coefficients within the breeding regions ranged from 4.5% to 5.5%; for the colour groups, the coefficients varied from 3.5% to 5.9%. Other measures of genetic variability like the effective number of founders, ancestors and founder genomes revealed a slightly different genetic background of the subpopulations. Average co-ancestries between and within breeding areas showed that the Salzburg population may be considered as the nucleus or original stock whereas all other subpopulations showed high relationship to horses from Salzburg. The target of draught horse breeding in the 21st century does not meet the breeding concept of maximizing genetic gains any more. Stabilizing selection takes place. In this study, we show that demographic factors as well as structure given by different coat colours helped to maintain genetic diversity in this endangered horse breed.
Collapse
Affiliation(s)
- T Druml
- Institute of Livestock Sciences, Department for Sustainable Agricultural Systems, University of Natural Resources and Applied Life Sciences-Vienna, Gregor Mendel Strasse 33, Vienna, Austria
| | | | | |
Collapse
|
27
|
Traoré A, Álvarez I, Tambourá H, Fernández I, Kaboré A, Royo L, Gutiérrez J, Sangaré M, Ouédraogo-Sanou G, Toguyeni A, Sawadogo L, Goyache F. Genetic characterisation of Burkina Faso goats using microsatellite polymorphism. Livest Sci 2009. [DOI: 10.1016/j.livsci.2008.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Leroy G, Callède L, Verrier E, Mériaux JC, Ricard A, Danchin-Burge C, Rognon X. Genetic diversity of a large set of horse breeds raised in France assessed by microsatellite polymorphism. Genet Sel Evol 2009; 41:5. [PMID: 19284689 PMCID: PMC3225878 DOI: 10.1186/1297-9686-41-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 01/05/2009] [Indexed: 11/10/2022] Open
Abstract
The genetic diversity and structure of horses raised in France were investigated using 11 microsatellite markers and 1679 animals belonging to 34 breeds. Between-breed differences explained about ten per cent of the total genetic diversity (Fst = 0.099). Values of expected heterozygosity ranged from 0.43 to 0.79 depending on the breed. According to genetic relationships, multivariate and structure analyses, breeds could be classified into four genetic differentiated groups: warm-blooded, draught, Nordic and pony breeds. Using complementary maximisation of diversity and aggregate diversity approaches, we conclude that particular efforts should be made to conserve five local breeds, namely the Boulonnais, Landais, Merens, Poitevin and Pottok breeds.
Collapse
Affiliation(s)
- Grégoire Leroy
- AgroParisTech, UMR1236 Génétique et Diversité Animales, 16 rue Claude Bernard, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
29
|
Thirstrup JP, Pertoldi C, Loeschcke V. Genetic analysis, breed assignment and conservation priorities of three native Danish horse breeds. Anim Genet 2008; 39:496-505. [PMID: 18840148 DOI: 10.1111/j.1365-2052.2008.01767.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A genetic analysis was performed on three indigenous Danish horse breeds using 12 microsatellite markers from a standard kit for parental testing. These three breeds are all considered endangered based on their small population sizes. Genetic variation in these three breeds was comparable to other horse breeds in Europe, and they do not seem to be at immediate danger of extinction caused by genetic deterioration. The Knabstrupper breed had more genetic variation, as measured by expected heterozygosity and allelic richness, than the other two breeds (Frederiksborg and Jutland). F(ST) statistics and population assignments confirmed population differentiation into three distinct breeds. The Frederiksborg and Knabstrupper breeds were closer to each other than to the Jutland breed. When establishing conservation priorities for the breeds, the priorities will depend on the conservation goals. Different methods for establishing conservation priorities are also discussed.
Collapse
Affiliation(s)
- J P Thirstrup
- Department of Biological Science, University of Aarhus, Ny Munkegade, DK, Denmark
| | | | | |
Collapse
|
30
|
Dadi H, Tibbo M, Takahashi Y, Nomura K, Hanada H, Amano T. Microsatellite analysis reveals high genetic diversity but low genetic structure in Ethiopian indigenous cattle populations. Anim Genet 2008; 39:425-31. [DOI: 10.1111/j.1365-2052.2008.01748.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|