1
|
Shatskikh AS, Fefelova EA, Klenov MS. Functions of RNAi Pathways in Ribosomal RNA Regulation. Noncoding RNA 2024; 10:19. [PMID: 38668377 PMCID: PMC11054153 DOI: 10.3390/ncrna10020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/29/2024] Open
Abstract
Argonaute proteins, guided by small RNAs, play crucial roles in gene regulation and genome protection through RNA interference (RNAi)-related mechanisms. Ribosomal RNAs (rRNAs), encoded by repeated rDNA units, constitute the core of the ribosome being the most abundant cellular transcripts. rDNA clusters also serve as sources of small RNAs, which are loaded into Argonaute proteins and are able to regulate rDNA itself or affect other gene targets. In this review, we consider the impact of small RNA pathways, specifically siRNAs and piRNAs, on rRNA gene regulation. Data from diverse eukaryotic organisms suggest the potential involvement of small RNAs in various molecular processes related to the rDNA transcription and rRNA fate. Endogenous siRNAs are integral to the chromatin-based silencing of rDNA loci in plants and have been shown to repress rDNA transcription in animals. Small RNAs also play a role in maintaining the integrity of rDNA clusters and may function in the cellular response to rDNA damage. Studies on the impact of RNAi and small RNAs on rRNA provide vast opportunities for future exploration.
Collapse
Affiliation(s)
- Aleksei S. Shatskikh
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia;
| | - Elena A. Fefelova
- Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., 123182 Moscow, Russia
| | - Mikhail S. Klenov
- Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., 123182 Moscow, Russia
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
2
|
Dyomin A, Galkina S, Ilina A, Gaginskaya E. Single Copies of the 5S rRNA Inserted into 45S rDNA Intergenic Spacers in the Genomes of Nototheniidae (Perciformes, Actinopterygii). Int J Mol Sci 2023; 24:7376. [PMID: 37108537 PMCID: PMC10138776 DOI: 10.3390/ijms24087376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
In the vast majority of Animalia genomes, the 5S rRNA gene repeats are located on chromosomes outside of the 45S rDNA arrays of the nucleolar organiser (NOR). We analysed the genomic databases available and found that a 5S rDNA sequence is inserted into the intergenic spacer (IGS) between the 45S rDNA repeats in ten species of the family Nototheniidae (Perciformes, Actinopterigii). We call this sequence the NOR-5S rRNA gene. Along with Testudines and Crocodilia, this is the second case of a close association between four rRNA genes within one repetitive unit in deuterostomes. In both cases, NOR-5S is oriented opposite the 45S rDNA. None of the three nucleotide substitutions compared to the canonical 5S rRNA gene influenced the 5S rRNA secondary structure. In transcriptomes of the Patagonian toothfish, we only found NOR-5S rRNA reads in ovaries and early embryos, but not in testis or somatic tissues of adults. Thus, we consider the NOR-5S gene to be a maternal-type 5S rRNA template. The colocalization of the 5S and 45S ribosomal genes appears to be essential for the equimolar production of all four rRNAs in the species that show rDNA amplification during oogenesis. Most likely, the integration of 5S and NOR rRNA genes occurred prior to Nototheniidae lineage diversification.
Collapse
Affiliation(s)
| | | | | | - Elena Gaginskaya
- Biological Faculty, St. Petersburg State University, Universitetskaya Emb. 7/9, St. Petersburg 199034, Russia; (A.D.); (S.G.); (A.I.)
| |
Collapse
|
3
|
Tynkevich YO, Novikov AV, Chorney II, Volkov RA. Organization of the 5S rDNA Intergenic Spacer and Its Use in the Molecular Taxonomy of the Genus Aconitum L. CYTOL GENET+ 2022. [DOI: 10.3103/s0095452722060111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Hummel G, Liu C. Organization and epigenomic control of RNA polymerase III-transcribed genes in plants. CURRENT OPINION IN PLANT BIOLOGY 2022; 67:102199. [PMID: 35364484 DOI: 10.1016/j.pbi.2022.102199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 01/24/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
The genetic information linearly scripted in chromosomes is wrapped in a ribonucleoprotein complex called chromatin. The adaptation of its compaction level and spatiotemporal organization refines gene expression in response to developmental and environmental cues. RNA polymerase III (RNAPIII) is responsible for the biogenesis of elementary non-coding RNAs. Their genes are subjected to high duplication and mutational rates, and invade nuclear genomes. Their insertion into different epigenomic environments raises the question of how chromatin packing affects their individual transcription. In this review, we provide a unique perspective to this issue in plants. In addition, we discuss how the genomic organization of RNAPIII-transcribed loci, combined with epigenetic differences, might participate to plant trait variations.
Collapse
Affiliation(s)
- Guillaume Hummel
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany.
| | - Chang Liu
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany.
| |
Collapse
|
5
|
Hall AN, Morton E, Queitsch C. First discovered, long out of sight, finally visible: ribosomal DNA. Trends Genet 2022; 38:587-597. [PMID: 35272860 PMCID: PMC10132741 DOI: 10.1016/j.tig.2022.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 10/18/2022]
Abstract
With the advent of long-read sequencing, previously unresolvable genomic elements are being revisited in an effort to generate fully complete reference genomes. One such element is ribosomal DNA (rDNA), the highly conserved genomic region that encodes rRNAs. Genomic structure and content of the rDNA are variable in both prokarya and eukarya, posing interesting questions about the biology of rDNA. Here, we consider the types of variation observed in rDNA - including locus structure and number, copy number, and sequence variation - and their known phenotypic consequences. With recent advances in long-read sequencing technology, incorporating the full rDNA sequence into reference genomes is within reach. This knowledge will have important implications for understanding rDNA biology within the context of cell physiology and whole-organism phenotypes.
Collapse
Affiliation(s)
- Ashley N Hall
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Elizabeth Morton
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
6
|
Tynkevich YO, Shelyfist AY, Kozub LV, Hemleben V, Panchuk II, Volkov RA. 5S Ribosomal DNA of Genus Solanum: Molecular Organization, Evolution, and Taxonomy. FRONTIERS IN PLANT SCIENCE 2022; 13:852406. [PMID: 35498650 PMCID: PMC9043955 DOI: 10.3389/fpls.2022.852406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
The Solanum genus, being one of the largest among high plants, is distributed worldwide and comprises about 1,200 species. The genus includes numerous agronomically important species such as Solanum tuberosum (potato), Solanum lycopersicum (tomato), and Solanum melongena (eggplant) as well as medical and ornamental plants. The huge Solanum genus is a convenient model for research in the field of molecular evolution and structural and functional genomics. Clear knowledge of evolutionary relationships in the Solanum genus is required to increase the effectiveness of breeding programs, but the phylogeny of the genus is still not fully understood. The rapidly evolving intergenic spacer region (IGS) of 5S rDNA has been successfully used for inferring interspecific relationships in several groups of angiosperms. Here, combining cloning and sequencing with bioinformatic analysis of genomic data available in the SRA database, we evaluate the molecular organization and diversity of IGS for 184 accessions, representing 137 species of the Solanum genus. It was found that the main mechanisms of IGS molecular evolution was step-wise accumulation of single base substitution or short indels, and that long indels and multiple base substitutions, which arose repeatedly during evolution, were mostly not conserved and eliminated. The reason for this negative selection seems to be association between indels/multiple base substitutions and pseudogenization of 5S rDNA. Comparison of IGS sequences allowed us to reconstruct the phylogeny of the Solanum genus. The obtained dendrograms are mainly congruent with published data: same major and minor clades were found. However, relationships between these clades and position of some species (S. cochoae, S. clivorum, S. macrocarpon, and S. spirale) were different from those of previous results and require further clarification. Our results show that 5S IGS represents a convenient molecular marker for phylogenetic studies on the Solanum genus. In particular, the simultaneous presence of several structural variants of rDNA in the genome enables the detection of reticular evolution, especially in the largest and economically most important sect. Petota. The origin of several polyploid species should be reconsidered.
Collapse
Affiliation(s)
- Yurij O. Tynkevich
- Department of Molecular Genetics and Biotechnology, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, Ukraine
| | - Antonina Y. Shelyfist
- Department of Molecular Genetics and Biotechnology, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, Ukraine
| | - Liudmyla V. Kozub
- Department of Molecular Genetics and Biotechnology, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, Ukraine
| | - Vera Hemleben
- Center of Plant Molecular Biology (ZMBP), Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Irina I. Panchuk
- Department of Molecular Genetics and Biotechnology, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, Ukraine
- Center of Plant Molecular Biology (ZMBP), Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Roman A. Volkov
- Department of Molecular Genetics and Biotechnology, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, Ukraine
| |
Collapse
|
7
|
Thousands of high-quality sequencing samples fail to show meaningful correlation between 5S and 45S ribosomal DNA arrays in humans. Sci Rep 2021; 11:449. [PMID: 33432083 PMCID: PMC7801704 DOI: 10.1038/s41598-020-80049-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/15/2020] [Indexed: 11/08/2022] Open
Abstract
The ribosomal RNA genes (rDNA) are tandemly arrayed in most eukaryotes and exhibit vast copy number variation. There is growing interest in integrating this variation into genotype-phenotype associations. Here, we explored a possible association of rDNA copy number variation with autism spectrum disorder and found no difference between probands and unaffected siblings. Because short-read sequencing estimates of rDNA copy number are error prone, we sought to validate our 45S estimates. Previous studies reported tightly correlated, concerted copy number variation between the 45S and 5S arrays, which should enable the validation of 45S copy number estimates with pulsed-field gel-verified 5S copy numbers. Here, we show that the previously reported strong concerted copy number variation may be an artifact of variable data quality in the earlier published 1000 Genomes Project sequences. We failed to detect a meaningful correlation between 45S and 5S copy numbers in thousands of samples from the high-coverage Simons Simplex Collection dataset as well as in the recent high-coverage 1000 Genomes Project sequences. Our findings illustrate the challenge of genotyping repetitive DNA regions accurately and call into question the accuracy of recently published studies of rDNA copy number variation in cancer that relied on diverse publicly available resources for sequence data.
Collapse
|
8
|
Hummel G, Berr A, Graindorge S, Cognat V, Ubrig E, Pflieger D, Molinier J, Drouard L. Epigenetic silencing of clustered tRNA genes in Arabidopsis. Nucleic Acids Res 2020; 48:10297-10312. [PMID: 32941623 PMCID: PMC7544208 DOI: 10.1093/nar/gkaa766] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/21/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Beyond their key role in translation, cytosolic transfer RNAs (tRNAs) are involved in a wide range of other biological processes. Nuclear tRNA genes (tDNAs) are transcribed by the RNA polymerase III (RNAP III) and cis-elements, trans-factors as well as genomic features are known to influence their expression. In Arabidopsis, besides a predominant population of dispersed tDNAs spread along the 5 chromosomes, some clustered tDNAs have been identified. Here, we demonstrate that these tDNA clusters are transcriptionally silent and that pathways involved in the maintenance of DNA methylation play a predominant role in their repression. Moreover, we show that clustered tDNAs exhibit repressive chromatin features whilst their dispersed counterparts contain permissive euchromatic marks. This work demonstrates that both genomic and epigenomic contexts are key players in the regulation of tDNAs transcription. The conservation of most of these regulatory processes suggests that this pioneering work in Arabidopsis can provide new insights into the regulation of RNA Pol III transcription in other organisms, including vertebrates.
Collapse
Affiliation(s)
- Guillaume Hummel
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - Alexandre Berr
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - Stéfanie Graindorge
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - Valérie Cognat
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - Elodie Ubrig
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - David Pflieger
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - Jean Molinier
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - Laurence Drouard
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| |
Collapse
|
9
|
Tynkevich YO, Volkov RA. 5S Ribosomal DNA of Distantly Related Quercus Species: Molecular Organization and Taxonomic Application. CYTOL GENET+ 2020. [DOI: 10.3103/s0095452719060100] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Ishchenko OO, Panchuk ІІ, Andreev ІO, Kunakh VA, Volkov RA. Molecular Organization of 5S Ribosomal DNА of Deschapmpsia antarctica. CYTOL GENET+ 2018. [DOI: 10.3103/s0095452718060105] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Barros AV, Wolski MAV, Nogaroto V, Almeida MC, Moreira-Filho O, Vicari MR. Fragile sites, dysfunctional telomere and chromosome fusions: What is 5S rDNA role? Gene 2017; 608:20-27. [DOI: 10.1016/j.gene.2017.01.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/04/2017] [Accepted: 01/18/2017] [Indexed: 11/29/2022]
|
12
|
Locati MD, Pagano JFB, Ensink WA, van Olst M, van Leeuwen S, Nehrdich U, Zhu K, Spaink HP, Girard G, Rauwerda H, Jonker MJ, Dekker RJ, Breit TM. Linking maternal and somatic 5S rRNA types with different sequence-specific non-LTR retrotransposons. RNA (NEW YORK, N.Y.) 2017; 23:446-456. [PMID: 28003516 PMCID: PMC5340908 DOI: 10.1261/rna.059642.116] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/03/2016] [Indexed: 05/31/2023]
Abstract
5S rRNA is a ribosomal core component, transcribed from many gene copies organized in genomic repeats. Some eukaryotic species have two 5S rRNA types defined by their predominant expression in oogenesis or adult tissue. Our next-generation sequencing study on zebrafish egg, embryo, and adult tissue identified maternal-type 5S rRNA that is exclusively accumulated during oogenesis, replaced throughout the embryogenesis by a somatic-type, and thus virtually absent in adult somatic tissue. The maternal-type 5S rDNA contains several thousands of gene copies on chromosome 4 in tandem repeats with small intergenic regions, whereas the somatic-type is present in only 12 gene copies on chromosome 18 with large intergenic regions. The nine-nucleotide variation between the two 5S rRNA types likely affects TFIII binding and riboprotein L5 binding, probably leading to storage of maternal-type rRNA. Remarkably, these sequence differences are located exactly at the sequence-specific target site for genome integration by the 5S rRNA-specific Mutsu retrotransposon family. Thus, we could define maternal- and somatic-type MutsuDr subfamilies. Furthermore, we identified four additional maternal-type and two new somatic-type MutsuDr subfamilies, each with their own target sequence. This target-site specificity, frequently intact maternal-type retrotransposon elements, plus specific presence of Mutsu retrotransposon RNA and piRNA in egg and adult tissue, suggest an involvement of retrotransposons in achieving the differential copy number of the two types of 5S rDNA loci.
Collapse
Affiliation(s)
- Mauro D Locati
- RNA Biology & Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, The Netherlands
| | - Johanna F B Pagano
- RNA Biology & Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, The Netherlands
| | - Wim A Ensink
- RNA Biology & Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, The Netherlands
| | - Marina van Olst
- RNA Biology & Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, The Netherlands
| | - Selina van Leeuwen
- RNA Biology & Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, The Netherlands
| | - Ulrike Nehrdich
- Department of Molecular Cell Biology, Institute of Biology, Leiden University, Gorlaeus Laboratories - Cell Observatorium, Leiden 2333 CE, The Netherlands
| | - Kongju Zhu
- Department of Molecular Cell Biology, Institute of Biology, Leiden University, Gorlaeus Laboratories - Cell Observatorium, Leiden 2333 CE, The Netherlands
| | - Herman P Spaink
- Department of Molecular Cell Biology, Institute of Biology, Leiden University, Gorlaeus Laboratories - Cell Observatorium, Leiden 2333 CE, The Netherlands
| | - Geneviève Girard
- RNA Biology & Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, The Netherlands
| | - Han Rauwerda
- RNA Biology & Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, The Netherlands
| | - Martijs J Jonker
- RNA Biology & Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, The Netherlands
| | - Rob J Dekker
- RNA Biology & Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, The Netherlands
| | - Timo M Breit
- RNA Biology & Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, The Netherlands
| |
Collapse
|
13
|
Volkov RA, Panchuk II, Borisjuk NV, Hosiawa-Baranska M, Maluszynska J, Hemleben V. Evolutional dynamics of 45S and 5S ribosomal DNA in ancient allohexaploid Atropa belladonna. BMC PLANT BIOLOGY 2017; 17:21. [PMID: 28114894 PMCID: PMC5260122 DOI: 10.1186/s12870-017-0978-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 01/17/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND Polyploid hybrids represent a rich natural resource to study molecular evolution of plant genes and genomes. Here, we applied a combination of karyological and molecular methods to investigate chromosomal structure, molecular organization and evolution of ribosomal DNA (rDNA) in nightshade, Atropa belladonna (fam. Solanaceae), one of the oldest known allohexaploids among flowering plants. Because of their abundance and specific molecular organization (evolutionarily conserved coding regions linked to variable intergenic spacers, IGS), 45S and 5S rDNA are widely used in plant taxonomic and evolutionary studies. RESULTS Molecular cloning and nucleotide sequencing of A. belladonna 45S rDNA repeats revealed a general structure characteristic of other Solanaceae species, and a very high sequence similarity of two length variants, with the only difference in number of short IGS subrepeats. These results combined with the detection of three pairs of 45S rDNA loci on separate chromosomes, presumably inherited from both tetraploid and diploid ancestor species, example intensive sequence homogenization that led to substitution/elimination of rDNA repeats of one parent. Chromosome silver-staining revealed that only four out of six 45S rDNA sites are frequently transcriptionally active, demonstrating nucleolar dominance. For 5S rDNA, three size variants of repeats were detected, with the major class represented by repeats containing all functional IGS elements required for transcription, the intermediate size repeats containing partially deleted IGS sequences, and the short 5S repeats containing severe defects both in the IGS and coding sequences. While shorter variants demonstrate increased rate of based substitution, probably in their transition into pseudogenes, the functional 5S rDNA variants are nearly identical at the sequence level, pointing to their origin from a single parental species. Localization of the 5S rDNA genes on two chromosome pairs further supports uniparental inheritance from the tetraploid progenitor. CONCLUSIONS The obtained molecular, cytogenetic and phylogenetic data demonstrate complex evolutionary dynamics of rDNA loci in allohexaploid species of Atropa belladonna. The high level of sequence unification revealed in 45S and 5S rDNA loci of this ancient hybrid species have been seemingly achieved by different molecular mechanisms.
Collapse
MESH Headings
- Atropa belladonna/classification
- Atropa belladonna/genetics
- Atropa belladonna/metabolism
- Chromosomes, Plant/genetics
- Chromosomes, Plant/metabolism
- DNA, Ribosomal/genetics
- DNA, Ribosomal/metabolism
- Evolution, Molecular
- Phylogeny
- Polyploidy
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 5S/genetics
- RNA, Ribosomal, 5S/metabolism
Collapse
Affiliation(s)
- Roman A. Volkov
- Department of General Genetics, Center of Plant Molecular Biology (ZMBP), Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
- Department of Molecular Genetics and Biotechnology, Yuriy Fedkovych University of Chernivtsi, Kotsiubynski str. 2, 58012 Chernivtsi, Ukraine
| | - Irina I. Panchuk
- Department of General Genetics, Center of Plant Molecular Biology (ZMBP), Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
- Department of Molecular Genetics and Biotechnology, Yuriy Fedkovych University of Chernivtsi, Kotsiubynski str. 2, 58012 Chernivtsi, Ukraine
| | - Nikolai V. Borisjuk
- Department of General Genetics, Center of Plant Molecular Biology (ZMBP), Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
- Australian Centre for Plant Functional Genomics (ACPFG), The University of Adelaide, Hartley Grove, Urrbrae, SA 5064 Australia
- Current addres: School of Life Science, Huaiyin Normal University, 223300 Huaian, China
| | | | - Jolanta Maluszynska
- Department of Plant Anatomy and Cytology, University of Silesia, 40032 Katowice, Poland
| | - Vera Hemleben
- Department of General Genetics, Center of Plant Molecular Biology (ZMBP), Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
14
|
Gimenez MD, Yañez-Santos AM, Paz RC, Quiroga MP, Marfil CF, Conci VC, García-Lampasona SC. Assessment of genetic and epigenetic changes in virus-free garlic (Allium sativum L.) plants obtained by meristem culture followed by in vitro propagation. PLANT CELL REPORTS 2016; 35:129-41. [PMID: 26466594 DOI: 10.1007/s00299-015-1874-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 08/14/2015] [Accepted: 09/25/2015] [Indexed: 05/05/2023]
Abstract
This is the first report assessing epigenetic variation in garlic. High genetic and epigenetic polymorphism during in vitro culture was detected.Sequencing of MSAP fragments revealed homology with ESTs. Garlic (Allium sativum) is a worldwide crop of economic importance susceptible to viral infections that can cause significant yield losses. Meristem tissue culture is the most employed method to sanitize elite cultivars.Often the virus-free garlic plants obtained are multiplied in vitro (micro propagation). However, it was reported that micro-propagation frequently produces somaclonal variation at the phenotypic level, which is an undesirable trait when breeders are seeking to maintain varietal stability. We employed amplification fragment length polymorphism and methylation sensitive amplified polymorphism (MSAP) methodologies to assess genetic and epigenetic modifications in two culture systems: virus-free plants obtained by meristem culture followed by in vitro multiplication and field culture. Our results suggest that garlic exhibits genetic and epigenetic polymorphism under field growing conditions. However, during in vitro culture system both kinds of polymorphisms intensify indicating that this system induces somaclonal variation. Furthermore, while genetic changes accumulated along the time of in vitro culture, epigenetic polymorphism reached the major variation at 6 months and then stabilize, being demethylation and CG methylation the principal conversions.Cloning and sequencing differentially methylated MSAP fragments allowed us to identify coding and unknown sequences of A. sativum, including sequences belonging to LTR Gypsy retrotransposons. Together, our results highlight that main changes occur in the initial 6 months of micro propagation. For the best of our knowledge, this is the first report on epigenetic assessment in garlic.
Collapse
|
15
|
|
16
|
Epigenetic regulation of transcription by RNA polymerase III. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:1015-25. [DOI: 10.1016/j.bbagrm.2013.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/11/2013] [Accepted: 05/15/2013] [Indexed: 01/11/2023]
|
17
|
Bellavia D, Dimarco E, Naselli F, Caradonna F. DNA-methylation dependent regulation of embryo-specific 5S ribosomal DNA cluster transcription in adult tissues of sea urchin Paracentrotus lividus. Genomics 2013; 102:397-402. [PMID: 23933480 DOI: 10.1016/j.ygeno.2013.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 07/25/2013] [Accepted: 08/01/2013] [Indexed: 11/26/2022]
Abstract
We have previously reported a molecular and cytogenetic characterization of three different 5S rDNA clusters in the sea urchin Paracentrotus lividus and recently, demonstrated the presence of high heterogeneity in functional 5S rRNA. In this paper, we show some important distinctive data on 5S rRNA transcription for this organism. Using single strand conformation polymorphism (SSCP) analysis, we demonstrate the existence of two classes of 5S rRNA, one which is embryo-specific and encoded by the smallest (700 bp) cluster and the other which is expressed at every stage and encoded by longer clusters (900 and 950 bp). We also demonstrate that the embryo-specific class of 5S rRNA is expressed in oocytes and embryonic stages and is silenced in adult tissue and that this phenomenon appears to be due exclusively to DNA methylation, as indicated by sensitivity to 5-azacytidine, unlike Xenopus where this mechanism is necessary but not sufficient to maintain the silenced status.
Collapse
Affiliation(s)
- Daniele Bellavia
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Sezione di Biologia Cellulare, Ed. 16, Università degli Studi di Palermo, V.le delle Scienze, 90128 Palermo, Italy; Istituto Ortopedico Rizzoli, c/o Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi (DIBIMEF), Università degli Studi di Palermo, Via Divisi 81, 90133 Palermo, Italy.
| | | | | | | |
Collapse
|
18
|
K?í?ová K, Depicker A, Kova?ík A. Epigenetic switches of tobacco transgenes associate with transient redistribution of histone marks in callus culture. Epigenetics 2013; 8:666-76. [PMID: 23770973 PMCID: PMC3857346 DOI: 10.4161/epi.24613] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/28/2013] [Accepted: 04/08/2013] [Indexed: 11/19/2022] Open
Abstract
In plants, silencing is usually accompanied by DNA methylation and heterochromatic histone marks. We studied these epigenetic modifications in different epialleles of 35S promoter (P35S)-driven tobacco transgenes. In locus 1, the T-DNA was organized as an inverted repeat, and the residing neomycin phosphotransferase II reporter gene (P35S-nptII) was silenced at the posttranscriptional (PTGS) level. Transcriptionally silenced (TGS) epialleles were generated by trans-acting RNA signals in hybrids or in a callus culture. PTGS to TGS conversion in callus culture was accompanied by loss of the euchromatic H3K4me3 mark in the transcribed region of locus 1, but this change was not transmitted to the regenerated plants from these calli. In contrast, cytosine methylation that spread from the transcribed region into the promoter was maintained in regenerants. Also, the TGS epialleles generated by trans-acting siRNAs did not change their active histone modifications. Thus, both TGS and PTGS epialleles exhibit euchromatic (H3K4me3 and H3K9ac) histone modifications despite heavy DNA methylation in the promoter and transcribed region, respectively. However, in the TGS locus (271), abundant heterochromatic H3K9me2 marks and DNA methylation were present on P35S. Heterochromatic histone modifications are not automatically installed on transcriptionally silenced loci in tobacco, suggesting that repressive histone marks and cytosine methylation may be uncoupled. However, transient loss of euchromatic modifications may guide de novo DNA methylation leading to formation of stable repressed epialleles with recovered eukaryotic marks. Compilation of available data on epigenetic modification of inactivated P35S in different systems is provided.
Collapse
Affiliation(s)
- Kate?ina K?í?ová
- Institute of Biophysics, Academy of Sciences; Královopolská, Brno, Czech Republic
| | - Ann Depicker
- Department of Plant Systems Biology; VIB; Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics; Ghent University; Gent, Belgium
| | - Ale? Kova?ík
- Institute of Biophysics, Academy of Sciences; Královopolská, Brno, Czech Republic
| |
Collapse
|
19
|
Phillips R. Evolution of the Sex Chromosomes in Salmonid Fishes. Cytogenet Genome Res 2013; 141:177-85. [DOI: 10.1159/000355149] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
20
|
Dimarco E, Cascone E, Bellavia D, Caradonna F. Functional variants of 5S rRNA in the ribosomes of common sea urchin Paracentrotus lividus. Gene 2012; 508:21-5. [PMID: 22967708 DOI: 10.1016/j.gene.2012.07.067] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 07/30/2012] [Indexed: 11/28/2022]
Abstract
We have previously reported a molecular and cytogenetic characterization of three different 5S rDNA clusters in the sea urchin Paracentrotus lividus; this study, performed at DNA level only, lends itself as starting point to verify that these clusters could contain transcribed genes, then, to demonstrate the presence of heterogeneity at functional RNA level, also. In the present work we report in P. lividus ribosomes the existence of several transcribed variants of the 5S rRNA and we associate all transcribed variants to the cluster to which belong. Our finding is the first demonstration of the presence of high heterogeneity in functional 5S rRNA molecules in animal ribosomes, a feature that had been considered a peculiarity of some plants.
Collapse
Affiliation(s)
- Eufrosina Dimarco
- Dipartimento di Scienze e Tecnologie Molecolari e Biomolecolari (STEMBIO), Sezione di Biologia Cellulare, Università degli Studi di Palermo, V.le delle Scienze—90128 Palermo, Italy
| | | | | | | |
Collapse
|
21
|
Layat E, Cotterell S, Vaillant I, Yukawa Y, Tutois S, Tourmente S. Transcript levels, alternative splicing and proteolytic cleavage of TFIIIA control 5S rRNA accumulation during Arabidopsis thaliana development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:35-44. [PMID: 22353599 DOI: 10.1111/j.1365-313x.2012.04948.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Ribosome biogenesis is critical for eukaryotic cells and requires coordinated synthesis of the protein and rRNA moieties of the ribosome, which are therefore highly regulated. 5S ribosomal RNA, an essential component of the large ribosomal subunit, is transcribed by RNA polymerase III and specifically requires transcription factor IIIA (TFIIIA). To obtain insight into the regulation of 5S rRNA transcription, we have investigated the expression of 5S rRNA and the exon-skipped (ES) and exon-including (EI) TFIIIA transcripts, two transcript isoforms that result from alternative splicing of the TFIIIA gene, and TFIIIA protein amounts with respect to requirements for 5S rRNA during development. We show that 5S rRNA quantities are regulated through distinct but complementary mechanisms operating through transcriptional and post-transcriptional control of TFIIIA transcripts as well as at the post-translational level through proteolytic cleavage of the TFIIIA protein. During the reproductive phase, high expression of the TFIIIA gene together with low proteolytic cleavage contributes to accumulation of functional, full-length TFIIIA protein, and results in 5S rRNA accumulation in the seed. In contrast, just after germination, the levels of TFIIIA-encoding transcripts are low and stable. Full-length TFIIIA protein is undetectable, and the level of 5S rRNA stored in the embryo progressively decreases. After day 4, in correlation with the reorganization of 5S rDNA chromatin to a mature state, full-length TFIIIA protein with transcriptional activity accumulates and permits de novo transcription of 5S rRNA.
Collapse
Affiliation(s)
- Elodie Layat
- CNRS, UMR 6293 GReD, Clermont Université, INSERM U1103, 24 Avenue des Landais, BP 80026, 63171 Aubière Cedex, France
| | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Simon SA, Meyers BC. Small RNA-mediated epigenetic modifications in plants. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:148-55. [PMID: 21159545 DOI: 10.1016/j.pbi.2010.11.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 11/16/2010] [Accepted: 11/17/2010] [Indexed: 05/21/2023]
Abstract
Epigenetic modifications in plants can be directed and mediated by small RNAs (sRNAs). This regulation is composed of a highly interactive network of sRNA-directed DNA methylation, histone, and chromatin modifications, all of which control transcription. Identification and functional characterization of components of the siRNA-directed DNA methylation pathway have provided insights into epigenetic pathways that form heterochromatin and into chromatin-based pathways for gene silencing, paramutation, genetic imprinting, and epigenetic reprogramming. Next-generation sequencing technologies have facilitated new discoveries and have helped create a basic blueprint of the plant epigenome. As the multiple layers of epigenetic regulation in plants are dissected, a more comprehensive understanding of the biological importance of epigenetic marks and states has been developed.
Collapse
Affiliation(s)
- Stacey A Simon
- Department of Plant and Soil Sciences & Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | | |
Collapse
|
24
|
Incomplete homogenization of 18 S ribosomal DNA coding regions in Arabidopsis thaliana. BMC Res Notes 2011; 4:93. [PMID: 21453453 PMCID: PMC3079661 DOI: 10.1186/1756-0500-4-93] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 03/31/2011] [Indexed: 11/16/2022] Open
Abstract
Background As a result of concerted evolution, coding regions of ribosomal DNA sequences are highly conserved within species and variation is generally thought to be limited to a few nucleotides. However, rDNA sequence variation has not been systematically examined in plant genomes, including that of the model plant Arabidopsis thaliana whose genome was the first to be sequenced. Findings Both genomic and transcribed 18 S sequences were sampled and revealed that most deviation from the consensus sequence was limited to single nucleotide substitutions except for a variant with a 270 bp deletion from position 456 to 725 in Arabidopsis numbering. The deletion maps to the functionally important and highly conserved 530 loop or helix18 in the structure of E. coli 16 S. The expression of the deletion variant is tightly controlled during developmental growth stages. Transcripts were not detectable in young seedlings but could be amplified from RNA extracts of mature leaves, stems, flowers and roots of Arabidopsis thaliana ecotype Columbia. We also show polymorphism for the deletion variant among four Arabidopsis ecotypes examined. Conclusion Despite a strong purifying selection that might be expected against functionally impaired rDNAs, the newly identified variant is maintained in the Arabidopsis genome. The expression of the variant and the polymorphism displayed by Arabidopsis ecotypes suggest a transition state in concerted evolution.
Collapse
|
25
|
Vierna J, Jensen KT, Martínez-Lage A, González-Tizón AM. The linked units of 5S rDNA and U1 snDNA of razor shells (Mollusca: Bivalvia: Pharidae). Heredity (Edinb) 2011; 107:127-42. [PMID: 21364693 DOI: 10.1038/hdy.2010.174] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The linkage between 5S ribosomal DNA and other multigene families has been detected in many eukaryote lineages, but whether it provides any selective advantage remains unclear. In this work, we report the occurrence of linked units of 5S ribosomal DNA (5S rDNA) and U1 small nuclear DNA (U1 snDNA) in 10 razor shell species (Mollusca: Bivalvia: Pharidae) from four different genera. We obtained several clones containing partial or complete repeats of both multigene families in which both types of genes displayed the same orientation. We provide a comprehensive collection of razor shell 5S rDNA clones, both with linked and nonlinked organisation, and the first bivalve U1 snDNA sequences. We predicted the secondary structures and characterised the upstream and downstream conserved elements, including a region at -25 nucleotides from both 5S rDNA and U1 snDNA transcription start sites. The analysis of 5S rDNA showed that some nontranscribed spacers (NTSs) are more closely related to NTSs from other species (and genera) than to NTSs from the species they were retrieved from, suggesting birth-and-death evolution and ancestral polymorphism. Nucleotide conservation within the functional regions suggests the involvement of purifying selection, unequal crossing-overs and gene conversions. Taking into account this and other studies, we discuss the possible mechanisms by which both multigene families could have become linked in the Pharidae lineage. The reason why 5S rDNA is often found linked to other multigene families seems to be the result of stochastic processes within genomes in which its high copy number is determinant.
Collapse
Affiliation(s)
- J Vierna
- Department of Molecular and Cell Biology, Evolutionary Biology Group (GIBE), Universidade da Coruña, La Coruña, Spain.
| | | | | | | |
Collapse
|
26
|
Ciganda M, Williams N. Eukaryotic 5S rRNA biogenesis. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:523-33. [PMID: 21957041 DOI: 10.1002/wrna.74] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ribosome is a large complex containing both protein and RNA which must be assembled in a precise manner to allow proper functioning in the critical role of protein synthesis. 5S rRNA is the smallest of the RNA components of the ribosome, and although it has been studied for decades, we still do not have a clear understanding of its function within the complex ribosome machine. It is the only RNA species that binds ribosomal proteins prior to its assembly into the ribosome. Its transport into the nucleolus requires this interaction. Here we present an overview of some of the key findings concerning the structure and function of 5S rRNA and how its association with specific proteins impacts its localization and function.
Collapse
Affiliation(s)
- Martin Ciganda
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY, USA
| | | |
Collapse
|
27
|
Sáez-Vásquez J, Gadal O. Genome organization and function: a view from yeast and Arabidopsis. MOLECULAR PLANT 2010; 3:678-690. [PMID: 20601371 DOI: 10.1093/mp/ssq034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Recent progress in understanding higher-order chromatin organization in the nucleus has been considerable. From single gene to chromosome territory, realistic biophysical models can now accurately predict some of the structural feature of cell nuclei. Despite growing evidence of a deterministic nuclear organization, the physiological consequence of spatial genome organization is still unclear. In the simple eukaryotic model, Saccharomyces cerevisiae, clear correlation between gene position and transcription has been established. In this review, we will focus on higher-order chromatin organization in yeast with respect to the nuclear envelope and nucleolus. In Arabidopsis thaliana, a model plant for which we have a complete genome sequence, chromosome territory (CT) arrangement and somatic homologous pairing in interphase nuclei seem to occur randomly. Since chromosomes containing nucleolar organizer regions associate more frequently to form a single nucleolar structure, as in yeast, the nucleolus seems to play a major role in organizing nuclear space. Recent findings have begun to elucidate how plant regulatory factors, such as chromatin remodeling or histone chaperones, affect the chromatin state of ribosomal DNA genes located in two distinct CT arrangements in the nucleus. The functional outcome of yeast nuclear organization allowed us to propose how nuclear organization might contribute to a novel type of epigenetic regulation: the spatial regulation of transcription.
Collapse
Affiliation(s)
- Julio Sáez-Vásquez
- LGDP-UMR 5096 CNRS-IRD-Université de Perpignan via Domitia, 58 Av. Paul Alduy, 66860 Perpignan, France
| | | |
Collapse
|
28
|
Possible ancient origin of heterochromatic JNK sequences in chromosomes 2R of Secale vavilovii Grossh. J Appl Genet 2010; 51:1-8. [PMID: 20145294 DOI: 10.1007/bf03195704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Employing FISH analysis as well as BLAST and CUSTAL W (1.82) programs, we investigated types of DNA nucleotide sequences building an additional heterochromatic band in 2R chromosomes of 3 lines of Secale vavilovii Grossh. The probes used in FISH analysis were designed based on the reverse transcriptase sequence of Ty1-copia and Ty3-gypsy retrotransposons and the 5S rRNA gene sequence. No hybridization signals from the reverse transcriptase probes were observed in the chromosome region where the additional band occurs. On the other hand, signals were observed after hybridization with the 5S rDNA probe, clearly suggesting the presence of that type of sequences in the analyzed heterochromatin band. Using BLAST and CUSTAL W programs, we revealed high similarity of the JNK1 sequence to the 5S rRNA gene from Hordeum chilense (HCH1016, HCH1018, 88%) and to a fragment of the 5S rRNA sequence of H. marinum (HMAR003, 97%). In addition, the same fragment of JNK1 was shown to be very similar to the part of the Angela retrotransposon (92%) as well as to the SNAC 426K20-1 transposon (89%) belonging to CACTA family, both from Triticum monococcum, and to Zingeria biebersteiniana pericentromeric sequences (78%). The similarity of JNK1 to those sequences may be accidental or the JNK1 may represent an ancient mobile genetic element that caught the 5S rRNA sequence. During the evolution those sequences might have been accumulated in the particular region on the 2R chromosome. Our results suggest that the additional heterochromatin band in chromosomes 2R of S. vavilovii is a collection of defective genes and/or mobile genetic elements.
Collapse
|
29
|
Douet J, Tutois S, Tourmente S. A Pol V-mediated silencing, independent of RNA-directed DNA methylation, applies to 5S rDNA. PLoS Genet 2009; 5:e1000690. [PMID: 19834541 PMCID: PMC2754527 DOI: 10.1371/journal.pgen.1000690] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 09/17/2009] [Indexed: 12/30/2022] Open
Abstract
The plant-specific RNA polymerases Pol IV and Pol V are essential to RNA–directed DNA methylation (RdDM), which also requires activities from RDR2 (RNA–Dependent RNA Polymerase 2), DCL3 (Dicer-Like 3), AGO4 (Argonaute), and DRM2 (Domains Rearranged Methyltransferase 2). RdDM is dedicated to the methylation of target sequences which include transposable elements, regulatory regions of several protein-coding genes, and 5S rRNA–encoding DNA (rDNA) arrays. In this paper, we have studied the expression of the 5S-210 transcript, a marker of silencing release at 5S RNA genes, to show a differential impact of RNA polymerases IV and V on 5S rDNA arrays during early development of the plant. Using a combination of molecular and cytological assays, we show that Pol IV, RDR2, DRM2, and Pol V, actors of the RdDM, are required to maintain a transcriptional silencing of 5S RNA genes at chromosomes 4 and 5. Moreover, we have shown a derepression associated to chromatin decondensation specific to the 5S array from chromosome 4 and restricted to the Pol V–loss of function. In conclusion, our results highlight a new role for Pol V on 5S rDNA, which is RdDM–independent and comes specifically at chromosome 4, in addition to the RdDM pathway. In plant genomes, the RNA–directed DNA methylation (RdDM) process induces de novo methylation of cytosines at repeated sequences. The RNA polymerases Pol IV and Pol V are two key components of the RdDM pathway. Pol IV acts with RDR2 (RNA–dependent RNA polymerase 2) and DCL3 (Dicer-Like protein 3) to generate short interfering RNAs (siRNAs). Pol V, in a partnership including AGO4 (Argonaute4) and DRM2 (Domains Rearranged Methyltransferase 2), drives DNA methylation at the targeted sequence. Changes in 5S (ribosomal DNA) rDNA methylation, 5S rDNA chromatin compaction, and 5S siRNA accumulation in Pol IV/V mutants have been reported. However, 5S rDNA arrays were considered together. In the present study, we observed an overexpression of the atypic 5S-210 transcript, restricted to the 5S rDNA array from chomosome 4. This derepression is specific to the Pol V–loss of function (and not to Pol IV) and comes in addition to the RdDM pathway. The Pol V–loss of function induces also the chromatin decondensation of the derepressed 5S locus at chomosome 4. Our results highlight a new role for Pol V which, suprisingly, appears to be Pol IV– and RdDM–independent.
Collapse
Affiliation(s)
- Julien Douet
- CNRS, UMR 6247 GReD, Clermont Université, INSERM U931, Aubière, France
| | - Sylvie Tutois
- CNRS, UMR 6247 GReD, Clermont Université, INSERM U931, Aubière, France
| | - Sylvette Tourmente
- CNRS, UMR 6247 GReD, Clermont Université, INSERM U931, Aubière, France
- * E-mail:
| |
Collapse
|
30
|
Blevins T, Pontes O, Pikaard CS, Meins F. Heterochromatic siRNAs and DDM1 independently silence aberrant 5S rDNA transcripts in Arabidopsis. PLoS One 2009; 4:e5932. [PMID: 19529764 PMCID: PMC2691480 DOI: 10.1371/journal.pone.0005932] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 05/11/2009] [Indexed: 12/22/2022] Open
Abstract
5S ribosomal RNA gene repeats are arranged in heterochromatic arrays (5S rDNA) situated near the centromeres of Arabidopsis chromosomes. The chromatin remodeling factor DDM1 is known to maintain 5S rDNA methylation patterns while silencing transcription through 5S rDNA intergenic spacers (IGS). We mapped small-interfering RNAs (siRNA) to a composite 5S rDNA repeat, revealing a high density of siRNAs matching silenced IGS transcripts. IGS transcript repression requires proteins of the heterochromatic siRNA pathway, including RNA polymerase IV (Pol IV), RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) and DICER-LIKE 3 (DCL3). Using molecular and cytogenetic approaches, we show that the DDM1 and siRNA-dependent silencing effects are genetically independent. DDM1 suppresses production of the siRNAs, however, thereby limiting RNA-directed DNA methylation at 5S rDNA repeats. We conclude that DDM1 and siRNA-dependent silencing are overlapping processes that both repress aberrant 5S rDNA transcription and contribute to the heterochromatic state of 5S rDNA arrays.
Collapse
MESH Headings
- Arabidopsis/metabolism
- Arabidopsis Proteins/metabolism
- Chromatin/chemistry
- Computational Biology/methods
- Crosses, Genetic
- DNA, Intergenic
- DNA, Ribosomal/metabolism
- DNA-Binding Proteins/metabolism
- Gene Silencing
- Genes, Plant
- In Situ Hybridization, Fluorescence
- Models, Biological
- RNA, Ribosomal, 5S/metabolism
- RNA, Small Interfering/metabolism
- Transcription Factors/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Todd Blevins
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Olga Pontes
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Craig S. Pikaard
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Frederick Meins
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- * E-mail:
| |
Collapse
|
31
|
Hammond MC, Wachter A, Breaker RR. A plant 5S ribosomal RNA mimic regulates alternative splicing of transcription factor IIIA pre-mRNAs. Nat Struct Mol Biol 2009; 16:541-9. [PMID: 19377483 PMCID: PMC2680232 DOI: 10.1038/nsmb.1588] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 03/11/2009] [Indexed: 02/07/2023]
Abstract
Transcription factor IIIA (TFIIIA) is required for eukaryotic synthesis of 5S ribosomal RNA by RNA polymerase III. Here we report the discovery of a structured RNA element with striking resemblance to 5S rRNA that is conserved within TFIIIA precursor mRNAs (pre-mRNAs) from diverse plant lineages. TFIIIA protein expression is controlled by alternative splicing of the exon containing the plant 5S rRNA mimic (P5SM). P5SM triggers exon skipping upon binding of ribosomal protein L5, a natural partner of 5S rRNA, which demonstrates the functional adaptation of its structural mimicry. Since the exon-skipped splice product encodes full-length TFIIIA protein, these results reveal a ribosomal protein-mRNA interaction that is involved in 5S rRNA synthesis and has implications for cross-coordination of ribosomal components. This study also provides insight into the origin and function of a newfound class of structured RNA that regulates alternative splicing.
Collapse
Affiliation(s)
- Ming C Hammond
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | | | | |
Collapse
|
32
|
Garcia S, Lim KY, Chester M, Garnatje T, Pellicer J, Vallès J, Leitch AR, Kovarík A. Linkage of 35S and 5S rRNA genes in Artemisia (family Asteraceae): first evidence from angiosperms. Chromosoma 2008; 118:85-97. [PMID: 18779974 DOI: 10.1007/s00412-008-0179-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 07/22/2008] [Accepted: 08/20/2008] [Indexed: 10/24/2022]
Abstract
Typically in plants, the 5S and 35S ribosomal DNA (rDNA) encoding two major ribosomal RNA species occur at separate loci. However, in some algae, bryophytes and ferns, they are at the same locus (linked arranged). Southern blot hybridisation, polymerase chain reactions (PCR), fluorescent in situ hybridisation, cloning and sequencing were used to reveal 5S and 35S rDNA genomic organisation in Artemisia. We observed thousands of rDNA units at two-three loci containing 5S rDNA in an inverted orientation within the inter-genic spacer (IGS) of 35S rDNA. The sequenced clones of 26-18S IGS from Artemisia absinthium appeared to contain a conserved 5S gene insertion proximal to the 26S gene terminus (5S rDNA-1) and a second less conserved 5S insertion (5S rDNA-2) further downstream. Whilst the 5S rDNA-1 showed all the structural features of a functional gene, the 5S-rDNA-2 had a deletion in the internal promoter and probably represents a pseudogene. The linked arrangement probably evolved before the divergence of Artemisia from the rest of Asteraceae (>10 Myrs). This arrangement may have involved retrotransposons and once formed spread via mechanisms of concerted evolution. Heterogeneity in unit structure may reflect ongoing homogenisation of variant unit types without fixation for any particular variant.
Collapse
Affiliation(s)
- Sònia Garcia
- Laboratori de Botànica, Facultat de Farmàcia, Universitat de Barcelona, Catalonia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Dieci G, Fiorino G, Castelnuovo M, Teichmann M, Pagano A. The expanding RNA polymerase III transcriptome. Trends Genet 2007; 23:614-22. [PMID: 17977614 DOI: 10.1016/j.tig.2007.09.001] [Citation(s) in RCA: 388] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 09/14/2007] [Accepted: 09/17/2007] [Indexed: 11/19/2022]
Abstract
The role of RNA polymerase (Pol) III in eukaryotic transcription is commonly thought of as being restricted to a small set of highly expressed, housekeeping non-protein-coding (nc)RNA genes. Recent studies, however, have remarkably expanded the set of known Pol III-synthesized ncRNAs, suggesting that gene-specific Pol III regulation is more common than previously appreciated. Newly identified Pol III transcripts include small nucleolar RNAs, microRNAs, short interspersed nuclear element-encoded or tRNA-derived RNAs and novel classes of ncRNA that can display significant sequence complementarity to protein-coding genes and might thus regulate their expression. The extent of the Pol III transcriptome, the complexity of its regulation and its influence on cell physiology, development and disease are emerging as new areas for future research.
Collapse
Affiliation(s)
- Giorgio Dieci
- Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi di Parma, Viale G.P. Usberti 23/A, 43100 Parma, Italy.
| | | | | | | | | |
Collapse
|