1
|
Harper J, Gasior D, Mathews R, Thomas A, Evans C, King J, King I, Humphreys M, Armstead I. An investigation of genotype-phenotype association in a festulolium forage grass population containing genome-spanning Festuca pratensis chromosome segments in a Lolium perenne background. PLoS One 2018; 13:e0207412. [PMID: 30427919 PMCID: PMC6235365 DOI: 10.1371/journal.pone.0207412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/30/2018] [Indexed: 11/18/2022] Open
Abstract
Alien chromosome introgression is used for the transfer of beneficial traits in plant breeding. For temperate forage grasses, much of the work in this context has focused on species within the ryegrasses (Lolium spp.) and the closely related fescues (Festuca spp.) particularly with a view to combining high forage quality with reliability and enhanced environmental services. We have analysed a L. perenne (perennial ryegrass) population containing the majority of a F. pratensis (meadow fescue) genome as introgressed chromosome segments to identify a) marker-trait associations for nutrient use and abiotic stress response across the family, and b) to assess the effects of introgression of F. pratensis genomic regions on phenotype. Using container-based assays and a system of flowing solution culture, we looked at phenotype responses, including root growth, to nitrogen and phosphorus status in the growing medium and abiotic stresses within this festulolium family. A number of significant marker/trait associations were identified across the family for root biomass on chromosomes 2, 3 and 5 and for heading date on chromosome 2. Of particular interest was a region on chromosome 2 associated with increased root biomass in phosphorus-limited conditions derived from one of the L. perenne parents. A genotype containing F. pratensis chromosome 4 as a monosomic introgression showed increased tiller number, shoot and root growth and genotypes with F. pratensis chromosome segment introgressions at different ends of chromosome 4 exhibited differential phenotypes across a variety of test conditions. There was also a general negative correlation between the extent of the F. pratensis genome that had been introgressed and root-related trait performances. We conclude that 1) the identification of alleles affecting root growth has potential application in forage grass breeding and, 2) F. pratensis introgressions can enhance quantitative traits, however, introgression can also have more general negative effects.
Collapse
Affiliation(s)
- John Harper
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Dagmara Gasior
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Ros Mathews
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Ann Thomas
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Caron Evans
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Julie King
- School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
| | - Ian King
- School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
| | - Mike Humphreys
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Ian Armstead
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| |
Collapse
|
2
|
Nuntha B, Kikuchi S, Taychasinpitak T, Sassa H, Koba T. High Genomic Affinity between Torenia baillonii and Torenia fournieri Revealed by Genome Analysis Using a Triploid Hybrid. CYTOLOGIA 2017. [DOI: 10.1508/cytologia.82.213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Buntarika Nuntha
- Laboratory of Genetics and Plant Breeding, Graduate School of Horticulture, Chiba University
| | - Shinji Kikuchi
- Laboratory of Genetics and Plant Breeding, Graduate School of Horticulture, Chiba University
| | | | - Hidenori Sassa
- Laboratory of Genetics and Plant Breeding, Graduate School of Horticulture, Chiba University
| | - Takato Koba
- Laboratory of Genetics and Plant Breeding, Graduate School of Horticulture, Chiba University
| |
Collapse
|
3
|
Abstract
In many cultivated crop species there is limited genetic variation available for the development of new higher yielding varieties adapted to climate change and sustainable farming practises. The distant relatives of crop species provide a vast and largely untapped reservoir of genetic variation for a wide range of agronomically important traits that can be exploited by breeders for crop improvement. In this paper, in what we believe to be the largest introgression programme undertaken in the monocots, we describe the transfer of the entire genome of Festuca pratensis into Lolium perenne in overlapping chromosome segments. The L. perenne/F. pratensis introgressions were identified and characterised via 131 simple sequence repeats and 1612 SNPs anchored to the rice genome. Comparative analyses were undertaken to determine the syntenic relationship between L. perenne/F. pratensis and rice, wheat, barley, sorghum and Brachypodium distachyon. Analyses comparing recombination frequency and gene distribution indicated that a large proportion of the genes within the genome are located in the proximal regions of chromosomes which undergo low/very low frequencies of recombination. Thus, it is proposed that past breeding efforts to produce improved varieties have centred on the subset of genes located in the distal regions of chromosomes where recombination is highest. The use of alien introgression for crop improvement is important for meeting the challenges of global food supply and the monocots such as the forage grasses and cereals, together with recent technological advances in molecular biology, can help meet these challenges.
Collapse
|
4
|
Harper J, Armstead I, Thomas A, James C, Gasior D, Bisaga M, Roberts L, King I, King J. Alien introgression in the grasses Lolium perenne (perennial ryegrass) and Festuca pratensis (meadow fescue): the development of seven monosomic substitution lines and their molecular and cytological characterization. ANNALS OF BOTANY 2011; 107:1313-21. [PMID: 21486927 PMCID: PMC3101149 DOI: 10.1093/aob/mcr083] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 02/11/2011] [Accepted: 03/02/2011] [Indexed: 05/04/2023]
Abstract
BACKGROUND AND AIMS To address the issues associated with food security, environmental change and bioenergy in the context of crop plants, the production, identification and evaluation of novel plant phenotypes is fundamental. One of the major routes to this end will be wide hybridization and introgression breeding. The transfer of chromosomes and chromosome segments between related species (chromosome engineering or alien introgression) also provides an important resource for determining the genetic control of target traits. However, the realization of the full potential of chromosome engineering has previously been hampered by the inability to identify and characterize interspecific introgressions accurately. METHODS Seven monosomic substitution lines have been generated comprising Festuca pratensis as the donor species and Lolium perenne as the recipient. Each of the seven lines has a different L. perenne chromosome replaced by the homoeologous F. pratensis chromosome (13 L. perenne + 1 F. pratensis chromosome). Molecular markers and genomic in situ hybridization (GISH) were used to assign the F. pratensis chromosomes introgressed in each of the monosomic substitutions to a specific linkage group. Cytological observations were also carried out on metaphase I of meiosis in each of the substitution lines. RESULTS A significant level of synteny was found at the macro-level between L. perenne and F. pratensis. The observations at metaphase I revealed the presence of a low level of interspecific chromosomal translocations between these species. DISCUSSION The isolation of the seven monosomic substitution lines provides a resource for dissecting the genetic control of important traits and for gene isolation. Parallels between the L. perenne/F. pratensis system and the Pooideae cereals such as wheat, barley, rye, oats and the model grass Brachypodium distachyon present opportunities for a comparison across the species in terms of genotype and phenotype.
Collapse
Affiliation(s)
- John Harper
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion SY23 3HS, UK
| | - Ian Armstead
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion SY23 3HS, UK
| | - Ann Thomas
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion SY23 3HS, UK
| | - Caron James
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion SY23 3HS, UK
| | - Dagmara Gasior
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion SY23 3HS, UK
| | - Maciej Bisaga
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion SY23 3HS, UK
| | - Luned Roberts
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion SY23 3HS, UK
| | - Ian King
- Division of Plant and Crop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Julie King
- Division of Plant and Crop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington LE12 5RD, UK
| |
Collapse
|
5
|
Variability of ribosomal DNA sites in Festuca pratensis, Lolium perenne, and their intergeneric hybrids, revealed by FISH and GISH. J Appl Genet 2011; 51:449-60. [PMID: 21063062 DOI: 10.1007/bf03208874] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This study focuses on the variability of chromosomal location and number of ribosomal DNA (rDNA) sites in some diploid and autotetraploid Festuca pratensis and Lolium perenne cultivars, as well as on identification of rDNA-bearing chromosomes in their triploid and tetraploid F. pratensis × L. perenne hybrids. The rDNA loci were mapped using fluorescence in situ hybridization (FISH) with 5S and 25S rDNA probes, and the origin of parental genomes was verified by genomic in situ hybridization (GISH) with L. perenne genomic DNA as a probe, and F. pratensis genomic DNA as a block. FISH detected variation in the number and chromosomal location of both 5S and 45S rDNA sites. In F. pratensis mostly additional signals of 5S rDNA loci occurred, as compared with standard F. pratensis karyotypes. Losses of 45S rDNA loci were more frequent in L. perenne cultivars and intergeneric hybrids. Comparison of the F. pratensis and L. perenne genomes approved a higher number of rDNA sites as well as variation in chromosomal rDNA location in L. perenne. A greater instability of F. pratensis-genome-like and L. perenne-genome-like chromosomes in tetraploid hybrids was revealed, indicating gains and losses of rDNA loci, respectively. Our data indicate that the rDNA loci physically mapped on chromosomes 2 and 3 in F. pratensis and on chromosome 3 in L. perenne are useful markers for these chromosomes in intergeneric Festuca × Lolium hybrids.
Collapse
|
6
|
Abbasi FM, Ahmad H, Sajid M, Inamullah, Brar DS. Detecting Nature of Chromosome Pairing in A and E Genomes of Oryza. CYTOLOGIA 2009. [DOI: 10.1508/cytologia.74.223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | | | | | - Inamullah
- Department of Genetics, Hazara University
| | | |
Collapse
|
7
|
Zwierzykowski Z, Zwierzykowska E, Taciak M, Jones N, Kosmala A, Krajewski P. Chromosome pairing in allotetraploid hybrids of Festuca pratensis x Lolium perenne revealed by genomic in situ hybridization (GISH). Chromosome Res 2008; 16:575-85. [PMID: 18409011 DOI: 10.1007/s10577-008-1198-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 01/11/2008] [Accepted: 01/11/2008] [Indexed: 10/22/2022]
Abstract
Genomic in situ hybridization (GISH) was used to make a detailed study of chromosome pairing at metaphase I (MI) of meiosis in six F(1) hybrid plants of the allotetraploid Festuca pratensis x Lolium perenne (2n = 4x = 28; genomic constitution FpFpLpLp). The mean chromosome configurations for all hybrids analysed were 1.13 univalents + 11.51 bivalents + 0.32 trivalents + 0.72 quadrivalents, and the mean chiasma frequency was 21.96 per cell. GISH showed that pairing was predominantly intragenomic, with mean numbers of L. perenne (Lp/Lp) and F. pratensis (Fp/Fp) bivalents being virtually equal at 5.41 and 5.48 per cell, respectively. Intergenomic pairing between Lolium and Festuca chromosomes was observed in 33.3% of Lp/Fp bivalents (0.62 per cell), in 79.7% of trivalents - Lp/Lp/Fp and Lp/Fp/Fp (0.25 per cell), and in 98.4% of quadrivalents - Lp/Lp/Fp/Fp and Lp/Lp/Lp/Fp (0.71 per cell). About 4.0% of the total chromosome complement analysed remained as univalents, an average 0.68 Lp and 0.45 Fp univalents per cell. It is evident that in these hybrids there is opportunity for recombination to take place between the two component genomes, albeit at a low level, and this is discussed in the context of compromising the stability of Festulolium hybrid cultivars and accounting for the drift in the balance of the genomes over generations. We speculate that genotypic differences between hybrids could permit selection for pairing control, and that preferences for homologous versus homoeologous centromeres in their spindle attachments and movement to the poles at anaphase I could form the basis of a mechanism underlying genome drift.
Collapse
Affiliation(s)
- Zbigniew Zwierzykowski
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland.
| | | | | | | | | | | |
Collapse
|
8
|
King J, Armstead IP, Donnison SI, Roberts LA, Harper JA, Skøt K, Elborough K, King IP. Comparative analyses between lolium/festuca introgression lines and rice reveal the major fraction of functionally annotated gene models is located in recombination-poor/very recombination-poor regions of the genome. Genetics 2007; 177:597-606. [PMID: 17603095 PMCID: PMC2013687 DOI: 10.1534/genetics.107.075515] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Publication of the rice genome sequence has allowed an in-depth analysis of genome organization in a model monocot plant species. This has provided a powerful tool for genome analysis in large-genome unsequenced agriculturally important monocot species such as wheat, barley, rye, Lolium, etc. Previous data have indicated that the majority of genes in large-genome monocots are located toward the ends of chromosomes in gene-rich regions that undergo high frequencies of recombination. Here we demonstrate that a substantial component of the coding sequences in monocots is localized proximally in regions of very low and even negligible recombination frequencies. The implications of our findings are that during domestication of monocot plant species selection has concentrated on genes located in the terminal regions of chromosomes within areas of high recombination frequency. Thus a large proportion of the genetic variation available for selection of superior plant genotypes has not been exploited. In addition our findings raise the possibility of the evolutionary development of large supergene complexes that confer a selective advantage to the individual.
Collapse
Affiliation(s)
- Julie King
- Plant Genetics and Breeding Department, Institute of Grassland and Environmental Research, Aberystwyth, SY23 3EB, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
King J, Armstead IP, Donnison IS, Harper JA, Roberts LA, Thomas H, Ougham H, Thomas A, Huang L, King IP. Introgression mapping in the grasses. Chromosome Res 2007; 15:105-13. [PMID: 17295130 DOI: 10.1007/s10577-006-1103-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The unique properties of Lolium/Festuca hybrids and their derivatives provide an ideal system for intergeneric introgression. At IGER a focus on the Lolium perenne/Festuca pratensis system is being exploited to elucidate genome organization in the grasses, determination of the genetic control of target traits and the isolation of markers for marker-assisted selection in breeding programmes.
Collapse
Affiliation(s)
- Julie King
- Molecular and Applied Genetics Team, Institute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth, SY23 3EB, Wales, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kosmala A, Zwierzykowska E, Zwierzykowski Z. Chromosome pairing in triploid intergeneric hybrids ofFestuca pratensis withLolium multiflorum, revealed by GISH. J Appl Genet 2006; 47:215-20. [PMID: 16877799 DOI: 10.1007/bf03194626] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Genomic in situ hybridisation (GISH) was used to reveal chromosome pairing in two partly fertile, triploid (2n = 3x = 21) hybrids obtained by crossing the diploid (2n = 2x = 14) Festuca pratensis Huds. (designated FpFp), used as a female parent, with the autotetraploid (2n = 4x = 28) Lolium multiflorum Lam. (designated LmLmLmLm), used as a male parent. The pattern of chromosome pairing calculated on the basis of the mean values of chromosome configurations identified in all 100 PMCs analysed, was: 0.71I Lm + 2.24I Fp + 2.18II Lm/Lm + 0.54II Lm/Fp + 4.18III Lm/Lm/Fp. A relatively high number of Lm/Lm bivalents and Fp univalents, and a low number of Lm/Fp bivalents and Lm univalents indicated that the pairing was preferential between L. multiflorum chromosomes. Other observations regarding chromosome pairing within the Lm/Lm/Fp trivalents also confirmed this preferential pairing in the analysed triploids, as the Fp chromosome was not randomly located in the chain- and frying-pan-shaped trivalents. The similarities and differences in chromosome pairing at metaphase I and the level of preferential pairing between Lolium chromosomes in the different triploid Lolium-Festuca hybrids are discussed.
Collapse
Affiliation(s)
- Arkadiusz Kosmala
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, 60-479 Poznan, Poland.
| | | | | |
Collapse
|
11
|
Mendes-Bonato AB, Risso-Pascotto C, Pagliarini MS, Valle CBD. Cytogenetic evidence for genome elimination during microsporogenesis in interspecific hybrid between Brachiaria ruziziensis and B. brizantha (Poaceae). Genet Mol Biol 2006. [DOI: 10.1590/s1415-47572006000400021] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
12
|
Donnison IS, O'Sullivan DM, Thomas A, Canter P, Moore B, Armstead I, Thomas H, Edwards KJ, King IP. Construction of a Festuca pratensis BAC library for map-based cloning in Festulolium substitution lines. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 110:846-51. [PMID: 15711790 DOI: 10.1007/s00122-004-1870-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Accepted: 10/30/2004] [Indexed: 05/10/2023]
Abstract
Introgression in Festulolium is a potentially powerful tool to isolate genes for a large number of traits which differ between Festuca pratensis Huds. and Lolium perenne L. Not only are hybrids between the two species fertile, but the two genomes can be distinguished by genomic in situ hybridisation and a high frequency of recombination occurs between homoeologous chromosomes and chromosome segments. By a programme of introgression and a series of backcrosses, L. perenne lines have been produced which contain small F. pratensis substitutions. This material is a rich source of polymorphic markers targeted towards any trait carried on the F. pratensis substitution not observed in the L. perenne background. We describe here the construction of an F. pratensis BAC library, which establishes the basis of a map-based cloning strategy in L. perenne. The library contains 49,152 clones, with an average insert size of 112 kbp, providing coverage of 2.5 haploid genome equivalents. We have screened the library for eight amplified fragment length polymorphism (AFLP) derived markers known to be linked to an F. pratensis gene introgressed into L. perenne and conferring a staygreen phenotype as a consequence of a mutation in primary chlorophyll catabolism. While for four of the markers it was possible to identify bacterial artificial chromosome (BAC) clones, the other four AFLPs were too repetitive to enable reliable identification of locus-specific BACs. Moreover, when the four BACs were partially sequenced, no obvious coding regions could be identified. This contrasted to BACs identified using cDNA sequences, when multiple genes were identified on the same BAC.
Collapse
Affiliation(s)
- Iain S Donnison
- Institute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth, SY23 3EB, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
King J, Roberts LA, Kearsey MJ, Thomas HM, Jones RN, Huang L, Armstead IP, Morgan WG, King IP. A demonstration of a 1:1 correspondence between chiasma frequency and recombination using a Lolium perenne/Festuca pratensis substitution. Genetics 2002; 161:307-14. [PMID: 12019244 PMCID: PMC1462085 DOI: 10.1093/genetics/161.1.307] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A single chromosome of the grass species Festuca pratensis has been introgressed into Lolium perenne to produce a diploid monosomic substitution line 2n = 2x = 14. The chromatin of F. pratensis and L. perenne can be distinguished by genomic in situ hybridization (GISH), and it is therefore possible to visualize the substituted F. pratensis chromosome in the L. perenne background and to study chiasma formation in a single marked bivalent. Recombination occurs freely in the F. pratensis/L. perenne bivalent, and chiasma frequency counts give a predicted map length for this bivalent of 76 cM. The substituted F. pratensis chromosome was also mapped with 104 EcoRI/Tru91 and HindIII/Tru91 amplified fragment length polymorphisms (AFLPs), generating a marker map of 81 cM. This map length is almost identical to the map length of 76 cM predicted from the chiasma frequency data. The work demonstrates a 1:1 correspondence between chiasma frequency and recombination and, in addition, the absence of chromatid interference across the Festuca and Lolium centromeres.
Collapse
Affiliation(s)
- J King
- Institute of Biological Sciences, University of Wales, Aberystwyth, SY23 3DA, Wales, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Zhang L, Pickering R, Murray B. Direct measurement of recombination frequency in interspecific hybrids between Hordeum vulgare and H. bulbosum using genomic in situ hybridization. Heredity (Edinb) 1999; 83 ( Pt 3):304-9. [PMID: 10504428 DOI: 10.1038/sj.hdy.6885710] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Two different genotypes of diploid Hordeum vulgare x H. bulbosum hybrids, which differ in their pattern of meiotic metaphase pairing behaviour, were investigated at MI and AI by genomic in situ hybridization (GISH). One hybrid, 102C2, showed a high frequency of bivalents at metaphase I whereas the other, 103K5, showed a high frequency of univalents. The GISH analysis of both hybrids established that pairing occurred only between chromosomes of different parental genomes and revealed that pairing frequency greatly exceeded recombination. Hybrid 102C2 had a significantly higher recombination frequency than 103K5, but in both hybrids recombination involved only distal chromosome regions. However, an interesting finding is that the ratio of recombination to pairing frequency in 103K5 (1:8.9) is twice as high compared with 102C2 (1:17). The hybrids also differed in chromosome stability; little chromosome elimination occurred in 102C2 but 103K5 showed extensive chromosome loss. It appears that the high frequency of bound arms at MI favours retention of H. bulbosum chromosomes and maintains stability of chromosome numbers in PMCs. Various ideas are put forward to explain the discrepancy between meiotic pairing frequency and recombination in these hybrids.
Collapse
Affiliation(s)
- L Zhang
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | |
Collapse
|