1
|
Xiong Y, Zhang Y, Zhang F, Wu C, Qin F, Yuan J. Applications of artificial intelligence in the diagnosis and prediction of erectile dysfunction: a narrative review. Int J Impot Res 2022; 35:95-102. [PMID: 35027721 DOI: 10.1038/s41443-022-00528-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/24/2021] [Accepted: 01/06/2022] [Indexed: 02/05/2023]
Abstract
Despite the high prevalence of erectile dysfunction, patients are reluctant to seek medical advice, which leads to low diagnostic rates in clinical practice. Artificial intelligence has been widely applied in the diagnosis of many diseases and may alleviate the situation. However, the applications of artificial intelligence in erectile dysfunction have not been reviewed to date. Therefore, the assistance from artificial intelligence needs to be summarized. In this review, 418 publications before January 10, 2021, regarding artificial intelligence applications in diagnosing and predicting erectile dysfunction, were retrieved from five databases, including PubMed, EMBASE, the Cochrane Library, and two Chinese databases (WANFANG and CNKI). In addition, the reference lists of the included studies or relevant reviews were checked to avoid bias. Finally, 30 articles were reviewed to summarize the current status, merits, and limitations of applying artificial intelligence in diagnosing and predicting erectile dysfunction. The results showed that artificial intelligence contributed to developing novel diagnostic questionnaires, equipment, expert systems, classifiers by images and predictive models. However, most of the included studies were not subjected to external validations, resulting in doubt on the generalizability. In the future, more rigorously designed studies with high-quality datasets for erectile dysfunction are required.
Collapse
Affiliation(s)
- Yang Xiong
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, China.,Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yangchang Zhang
- Department of Epidemiology and Health Statistics, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Fuxun Zhang
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, China.,Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Changjing Wu
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Feng Qin
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Jiuhong Yuan
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, China. .,Department of Urology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Ng EYK, Tan HM, Ooi EH. Prediction and parametric analysis of thermal profiles within heated human skin using the boundary element method. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2010; 368:655-678. [PMID: 20047944 DOI: 10.1098/rsta.2009.0224] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In this paper, an axisymmetric model of the human skin is developed to simulate the steady-state temperature distribution during contact with a hot solid. Simulations are carried out using the boundary element method. This study seeks to investigate the feasibility of using the boundary element method in the studies of burn. A sensitivity analysis is carried out to examine the effects of various parameters on the temperature distribution inside the skin during burn. Furthermore, a statistical analysis based on the Taguchi method is performed to determine the combination of factors that produce the desired outcome (least increase in temperature). In order to validate the accuracy of the numerical scheme, results obtained using the boundary element method are compared with the solutions obtained using the more established finite-element method.
Collapse
Affiliation(s)
- E Y K Ng
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Republic of Singapore.
| | | | | |
Collapse
|
3
|
Ng EYK, Tan HM, Ooi EH. Boundary element method with bioheat equation for skin burn injury. Burns 2009; 35:987-97. [PMID: 19427127 DOI: 10.1016/j.burns.2009.01.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 01/16/2009] [Accepted: 01/19/2009] [Indexed: 11/16/2022]
Abstract
Burns are second to vehicle crashes as the leading cause of non-intentional injury deaths in the United States. The survival of a burn patient actually depends on the seriousness of the burn. It is important to understand the physiology of burns for a successful treatment of a burn patient. This has prompted researchers to conduct investigations both numerically and experimentally to understand the thermal behaviour of the human skin when subjected to heat injury. In this study, a model of the human skin is developed where the steady state temperature during burns is simulated using the boundary element method (BEM). The BEM is used since it requires boundary only discretion and thus, reduces the requirement of high computer memory. The skin is modeled as three layered in axisymmetric coordinates. The three layers are the epidermis (uppermost), dermis (middle) and subcutaneous fat. Burning is applied via a heating disk which is assumed to be at constant temperature. The results predicted by the BEM model showed very good agreement with the results obtained using the finite element method (FEM). The good agreement despite using only linear elements as compared to quadratic elements in the FEM model shows the versatility of the BEM. A sensitivity analysis was conducted to investigate how changes in the values of certain skin variables such as the thermal conductivity and environmental conditions like the ambient convection coefficient affect the temperature distribution inside the skin. The Taguchi method was also applied to identify the combination of parameters which produces the largest increase in skin temperature during burns.
Collapse
Affiliation(s)
- E Y K Ng
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore.
| | | | | |
Collapse
|