1
|
Drozdova P, Gurkov A, Saranchina A, Vlasevskaya A, Zolotovskaya E, Indosova E, Timofeyev M, Borvinskaya E. Transcriptional response of Saccharomyces cerevisiae to lactic acid enantiomers. Appl Microbiol Biotechnol 2024; 108:121. [PMID: 38229303 DOI: 10.1007/s00253-023-12863-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 01/18/2024]
Abstract
The model yeast, Saccharomyces cerevisiae, is a popular object for both fundamental and applied research, including the development of biosensors and industrial production of pharmaceutical compounds. However, despite multiple studies exploring S. cerevisiae transcriptional response to various substances, this response is unknown for some substances produced in yeast, such as D-lactic acid (DLA). Here, we explore the transcriptional response of the BY4742 strain to a wide range of DLA concentrations (from 0.05 to 45 mM), and compare it to the response to 45 mM L-lactic acid (LLA). We recorded a response to 5 and 45 mM DLA (125 and 113 differentially expressed genes (DEGs), respectively; > 50% shared) and a less pronounced response to 45 mM LLA (63 DEGs; > 30% shared with at least one DLA treatment). Our data did not reveal natural yeast promoters quantitatively sensing DLA but provide the first description of the transcriptome-wide response to DLA and enrich our understanding of the LLA response. Some DLA-activated genes were indeed related to lactate metabolism, as well as iron uptake and cell wall structure. Additional analyses showed that at least some of these genes were activated only by acidic form of DLA but not its salt, revealing the role of pH. The list of LLA-responsive genes was similar to those published previously and also included iron uptake and cell wall genes, as well as genes responding to other weak acids. These data might be instrumental for optimization of lactate production in yeast and yeast co-cultivation with lactic acid bacteria. KEY POINTS: • We present the first dataset on yeast transcriptional response to DLA. • Differential gene expression was correlated with yeast growth inhibition. • The transcriptome response to DLA was richer in comparison to LLA.
Collapse
Affiliation(s)
- Polina Drozdova
- Irkutsk State University, Karl-Marx Str. 1, Irkutsk, 664025, Russian Federation.
- Baikal Research Centre, Rabochaya Str. 5V, Irkutsk, 664011, Russian Federation.
| | - Anton Gurkov
- Irkutsk State University, Karl-Marx Str. 1, Irkutsk, 664025, Russian Federation
- Baikal Research Centre, Rabochaya Str. 5V, Irkutsk, 664011, Russian Federation
| | | | | | - Elena Zolotovskaya
- Irkutsk State University, Karl-Marx Str. 1, Irkutsk, 664025, Russian Federation
| | - Elizaveta Indosova
- Irkutsk State University, Karl-Marx Str. 1, Irkutsk, 664025, Russian Federation
| | - Maxim Timofeyev
- Irkutsk State University, Karl-Marx Str. 1, Irkutsk, 664025, Russian Federation
| | | |
Collapse
|
2
|
Chitnis AV, Dhoble AS. Non-sterile cultivation of Yarrowia lipolytica in fed-batch mode for the production of lipids and biomass. Biotechnol Prog 2024; 40:e3498. [PMID: 39073019 DOI: 10.1002/btpr.3498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/30/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
A reduction in the cost of production and energy requirement is necessary for developing sustainable commercial bioprocesses. Bypassing sterilization, which is an energy and cost-intensive part of bioprocesses could be a way to achieve this. In this study, nonsterile cultivation of Yarrowia lipolytica was done on a synthetic medium containing acetic acid as the sole carbon source using two different strategies in the fed-batch mode. The contamination percentages throughout the process were measured using flow cytometry and complemented using brightfield microscopy. Maximum biomass and lipid yields of 0.57 (g biomass/g substrate) and 0.17 (g lipids/g substrate), respectively, and maximum biomass and lipid productivities of 0.085 and 0.023 g/L/h, respectively, were obtained in different fed-batch strategies. Feeding at the point of stationary phase resulted in better biomass yield and productivity with less than 2% contamination till 48 h. Feeding to maintain a minimum acetic level resulted in better lipid yield and productivity with less than 2% contamination during the complete process. The results of this study demonstrate the potential for cultivating Y. lipolytica in nonsterile conditions and monitoring the contamination throughout the process using flow cytometry.
Collapse
Affiliation(s)
- Atith V Chitnis
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India
| | - Abhishek S Dhoble
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India
| |
Collapse
|
3
|
Tingirikari JMR, Sharma A, Lee HJ. Ethnic foods: impact of probiotics on human health and disease treatment. JOURNAL OF ETHNIC FOODS 2024; 11:31. [DOI: 10.1186/s42779-024-00243-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/17/2024] [Indexed: 01/05/2025]
Abstract
AbstractThe human gut is inhabited by approximately 100 trillion of microflora, and there exists a reciprocal relationship between human health and the gut microbiota. The major reasons for the dysbiosis in the population of gut microbiota are attributed to changes in lifestyle, medication, and the intake of junk foods. In addition, the proportion of beneficial bacteria in the intestine decreases gradually with age and causes physiological disturbances, malfunctions of the immune system, and several metabolic disorders. Thus, finding safe solutions to improve the diversity of microflora is a big challenge. With an increase in health consciousness among the population, the demand for healthy and nutraceutical food products is growing gradually. Recent research has proved that consumption of probiotics promotes gut health and prevents from several metabolic and other diseases. Hence, in this present review, we will discuss the various probiotic bacteria present in ethnic foods. The importance of these probiotics in the prevention and treatment of gastrointestinal, respiratory, cancer, and metabolic disorders will be elucidated. In addition, we will highlight the importance of the development of new-generation probiotics to cater the needs of the current market.
Collapse
|
4
|
Yang P, Xi B, Han Y, Li J, Luo L, Qu C, Li J, Liu S, Kang L, Bai B, Zhang B, Zhao S, Zhen P, Zhang L. Interactions of Saccharomyces cerevisiae and Lactiplantibacillus plantarum Isolated from Light-Flavor Jiupei at Various Fermentation Temperatures. Foods 2024; 13:2884. [PMID: 39335813 PMCID: PMC11431660 DOI: 10.3390/foods13182884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/31/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Chinese Baijiu is a famous fermented alcoholic beverage in China. Interactions between key microorganisms, i.e., Saccharomyces cerevisiae and Lactiplantibacillus plantarum, have recently been reported at specific temperatures. However, empirical evidence of their interactions at various temperatures during fermentation is lacking. The results of this study demonstrated that S. cerevisiae significantly suppressed the viability and lactic acid yield of L. plantarum when they were cocultured above 15 °C. On the other hand, L. plantarum had no pronounced effect on the growth and ethanol yield of S. cerevisiae in coculture systems. S. cerevisiae was the main reducing sugar consumer. Inhibition of lactic acid production was also observed when elevated cell density of L. plantarum was introduced into the coculture system. A proteomic analysis indicated that the enzymes involved in glycolysis, lactate dehydrogenase, and proteins related to phosphoribosyl diphosphate, ribosome, and aminoacyl-tRNA biosynthesis in L. plantarum were less abundant in the coculture system. Collectively, our data demonstrated the antagonistic effect of S. cerevisiae on L. plantarum and provided insights for effective process management in light-flavor Baijiu fermentation.
Collapse
Affiliation(s)
- Pu Yang
- School of Xinghuacun, Shanxi University, Taiyuan 030006, China
- Shanxi Province Key Lab. of Plant Extraction and Health of Lujiu, Shanxi Xinghuacun Fenjiu Distillery Co., Ltd., Lvliang 032205, China
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Bo Xi
- School of Xinghuacun, Shanxi University, Taiyuan 030006, China
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Ying Han
- Shanxi Province Key Lab. of Plant Extraction and Health of Lujiu, Shanxi Xinghuacun Fenjiu Distillery Co., Ltd., Lvliang 032205, China
| | - Jiayang Li
- School of Xinghuacun, Shanxi University, Taiyuan 030006, China
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Lujun Luo
- Shanxi Province Key Lab. of Plant Extraction and Health of Lujiu, Shanxi Xinghuacun Fenjiu Distillery Co., Ltd., Lvliang 032205, China
| | - Chaofan Qu
- School of Xinghuacun, Shanxi University, Taiyuan 030006, China
- School of Life Science, Shanxi University, Taiyuan 030006, China
- Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Junfang Li
- School of Xinghuacun, Shanxi University, Taiyuan 030006, China
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Shuai Liu
- Shanxi Province Key Lab. of Plant Extraction and Health of Lujiu, Shanxi Xinghuacun Fenjiu Distillery Co., Ltd., Lvliang 032205, China
| | - Le Kang
- Shanxi Province Science and Technology Resources and Large-Scale Instrument Open Sharing Center, Taiyuan 030000, China
| | - Baoqing Bai
- School of Xinghuacun, Shanxi University, Taiyuan 030006, China
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Ben Zhang
- School of Xinghuacun, Shanxi University, Taiyuan 030006, China
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Shaojie Zhao
- School of Xinghuacun, Shanxi University, Taiyuan 030006, China
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Pan Zhen
- Shanxi Province Key Lab. of Plant Extraction and Health of Lujiu, Shanxi Xinghuacun Fenjiu Distillery Co., Ltd., Lvliang 032205, China
| | - Lizhen Zhang
- School of Xinghuacun, Shanxi University, Taiyuan 030006, China
- School of Life Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
5
|
Dutoit A, Decourcelle N, Mathot AG, Coroller L. Relationships between the inhibitory efficacy and physicochemical properties of six organic acids and monolaurin against Bacillus weihenstephanensis KBAB4 growth in liquid medium. Food Microbiol 2024; 121:104498. [PMID: 38637069 DOI: 10.1016/j.fm.2024.104498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 04/20/2024]
Abstract
Organic acids are widely used in foodstuffs to inhibit pathogen and spoiler growth. In this study, six organic acids (acetic, lactic, propionic, phenyllactic, caprylic, and lauric acid) and monolaurin were selected based on their physicochemical properties: their molecular structure (carbon chain length), their lipophilicity (logP), and their ability to dissociate in a liquid environment (pKa). The relation between these physicochemical properties and the inhibitory efficacy against B. weihenstephanensis KBAB4 growth was evaluated. After assessing the active form of these compounds against the strain (undissociated, dissociated or both forms), their MIC values were estimated in nutrient broth at pH 6.0 and 5.5 using two models (Lambert & Pearson, 2000; Luong, 1985). The use of two models highlighted the mode of action of an antibacterial compound in its environment, thanks to the additional estimation of the curve shape α or the Non-Inhibitory Concentration (NIC). The undissociated form of the tested acids is responsible for growth inhibition, except for lauric acid and monolaurin. Moreover, long-carbon chain acids have lower estimated MICs, compared to short-chain acids. Thus, the inhibitory efficacy of organic acids is strongly related to their carbon chain length and lipophilicity. Lipophilicity is the main mechanism of action of a membrane-active compound, it can be favored by long chain structure or high pKa in an acid environment like food.
Collapse
Affiliation(s)
- Agathe Dutoit
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29000 Quimper, France
| | - Nicolas Decourcelle
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29000 Quimper, France
| | - Anne-Gabrielle Mathot
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29000 Quimper, France
| | - Louis Coroller
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29000 Quimper, France.
| |
Collapse
|
6
|
de Oliveira Lino FS, Garg S, Li SS, Misiakou MA, Kang K, Vale da Costa BL, Beyer-Pedersen TSA, Giacon TG, Basso TO, Panagiotou G, Sommer MOA. Strain dynamics of contaminating bacteria modulate the yield of ethanol biorefineries. Nat Commun 2024; 15:5323. [PMID: 38909053 PMCID: PMC11193817 DOI: 10.1038/s41467-024-49683-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 06/16/2024] [Indexed: 06/24/2024] Open
Abstract
Bioethanol is a sustainable energy alternative and can contribute to global greenhouse-gas emission reductions by over 60%. Its industrial production faces various bottlenecks, including sub-optimal efficiency resulting from bacteria. Broad-spectrum removal of these contaminants results in negligible gains, suggesting that the process is shaped by ecological interactions within the microbial community. Here, we survey the microbiome across all process steps at two biorefineries, over three timepoints in a production season. Leveraging shotgun metagenomics and cultivation-based approaches, we identify beneficial bacteria and find improved outcome when yeast-to-bacteria ratios increase during fermentation. We provide a microbial gene catalogue which reveals bacteria-specific pathways associated with performance. We also show that Limosilactobacillus fermentum overgrowth lowers production, with one strain reducing yield by ~5% in laboratory fermentations, potentially due to its metabolite profile. Temperature is found to be a major driver for strain-level dynamics. Improved microbial management strategies could unlock environmental and economic gains in this US $ 60 billion industry enabling its wider adoption.
Collapse
Affiliation(s)
- Felipe Senne de Oliveira Lino
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Shilpa Garg
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Simone S Li
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, 4072, Australia
| | - Maria-Anna Misiakou
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Kang Kang
- Leibniz Institute for Natural Product Research and Infection Biology, Jena, 07745, Germany
| | | | | | - Thamiris Guerra Giacon
- Departamento de Engenharia Química da Escola Politécnica da Universidade de São Paulo. Universidade de São Paulo, 05508-000, São Paulo, SP, Brazil
| | - Thiago Olitta Basso
- Departamento de Engenharia Química da Escola Politécnica da Universidade de São Paulo. Universidade de São Paulo, 05508-000, São Paulo, SP, Brazil
| | - Gianni Panagiotou
- Leibniz Institute for Natural Product Research and Infection Biology, Jena, 07745, Germany
| | - Morten Otto Alexander Sommer
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark.
| |
Collapse
|
7
|
Lahmamsi H, Ananou S, Lahlali R, Tahiri A. Lactic acid bacteria as an eco-friendly approach in plant production: Current state and prospects. Folia Microbiol (Praha) 2024; 69:465-489. [PMID: 38393576 DOI: 10.1007/s12223-024-01146-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/31/2024] [Indexed: 02/25/2024]
Abstract
Since the late nineteenth century, the agricultural sector has experienced a tremendous increase in chemical use in response to the growing population. Consequently, the intensive and indiscriminate use of these substances caused serious damage on several levels, including threatening human health, disrupting soil microbiota, affecting wildlife ecosystems, and causing groundwater pollution. As a solution, the application of microbial-based products presents an interesting and ecological restoration tool. The use of Plant Growth-Promoting Microbes (PGPM) affected positive production, by increasing its efficiency, reducing production costs, environmental pollution, and chemical use. Among these microbial communities, lactic acid bacteria (LAB) are considered an interesting candidate to be formulated and applied as effective microbes. Indeed, these bacteria are approved by the European Food Safety Authority (EFSA) and Food and Drug Administration (FDA) as Qualified Presumption of Safety statute and Generally Recognized as Safe for various applications. To do so, this review comes as a road map for future research, which addresses the different steps included in LAB formulation as biocontrol, bioremediation, or plant growth promoting agents from the isolation process to their field application passing by the different identification methods and their various uses. The plant application methods as well as challenges limiting their use in agriculture are also discussed.
Collapse
Affiliation(s)
- Haitam Lahmamsi
- Laboratoire de Biotechnologie Microbienne et Molécules Bioactives, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdellah, Route Immouzer BP 2202, Fez, Morocco
- Unité de Phytopathologie, Département de Protection des Plantes, Ecole Nationale d'Agriculture, Km10, Rt Haj Kaddour, BP S/40, 50001, Meknes, Morocco
| | - Samir Ananou
- Laboratoire de Biotechnologie Microbienne et Molécules Bioactives, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdellah, Route Immouzer BP 2202, Fez, Morocco
| | - Rachid Lahlali
- Unité de Phytopathologie, Département de Protection des Plantes, Ecole Nationale d'Agriculture, Km10, Rt Haj Kaddour, BP S/40, 50001, Meknes, Morocco.
| | - Abdessalem Tahiri
- Unité de Phytopathologie, Département de Protection des Plantes, Ecole Nationale d'Agriculture, Km10, Rt Haj Kaddour, BP S/40, 50001, Meknes, Morocco.
| |
Collapse
|
8
|
Nakimera E, Cancio LPM, Sullivan GA, Sadat R, Chaves BD. Antimicrobial efficacy of a citric acid/hydrochloric acid blend, peroxyacetic acid, and sulfuric acid against Salmonella and background microbiota on chicken hearts and livers. J Food Sci 2024; 89:2933-2942. [PMID: 38534201 DOI: 10.1111/1750-3841.17037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/17/2024] [Accepted: 03/02/2024] [Indexed: 03/28/2024]
Abstract
This study aimed at evaluating the efficacy of a blend of citric acid and hydrochloric acid (CP), peroxyacetic acid (PAA), and sulfuric acid (SA) against Salmonella and mesophilic aerobic plate counts (APC) on chicken hearts and livers. Samples were inoculated with a five-serovar cocktail of Salmonella at ca. 4.8 log CFU/g and treated by immersion with a water control (90 s), CP (5% v/v, 30 s), PAA (0.05% v/v or 500 ppm, 90 s), or SA (2% v/v, 30 s), all at 4°C and with mechanical agitation. Samples were vacuum packed and stored for up to 3 days at 4°C. Three independent replications were performed for each product, treatment, and time combination. The average Salmonella reductions in chicken hearts after 3 days were 1.33 ± 0.25, 1.40 ± 0.04, and 1.32 ± 0.12 log CFU/g for PAA, SA, and CP, respectively. For chicken livers, the values were 1.10 ± 0.12, 1.09 ± 0.19, and 0.96 ± 0.27 for PAA, SA, and CP, respectively. All antimicrobials reduced Salmonella counts in both chicken hearts and livers by more than one log, in contrast to the water control. All treatments effectively minimized the growth of APC for up to 3 days of refrigerated storage, and no differences in objective color values (L, a, or b) were observed. The poultry industry may use these antimicrobials as components of a multifaceted approach to mitigate Salmonella in nonconventional chicken parts.
Collapse
Affiliation(s)
- Emma Nakimera
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Leslie Pearl M Cancio
- Department of Science and Technology (DOST) XI, Technical Services Division, Davao, Philippines
| | - Gary A Sullivan
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Raziya Sadat
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Byron D Chaves
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
9
|
Jin G, Boeschoten S, Hageman J, Zhu Y, Wijffels R, Rinzema A, Xu Y. Identifying Variables Influencing Traditional Food Solid-State Fermentation by Statistical Modeling. Foods 2024; 13:1317. [PMID: 38731688 PMCID: PMC11083392 DOI: 10.3390/foods13091317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/09/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Solid-state fermentation is widely used in traditional food production, but most of the complex processes involved were designed and are carried out without a scientific basis. Often, mathematical models can be established to describe mass and heat transfer with the assistance of chemical engineering tools. However, due to the complex nature of solid-state fermentation, mathematical models alone cannot explain the many dynamic changes that occur during these processes. For example, it is hard to identify the most important variables influencing product yield and quality fluctuations. Here, using solid-state fermentation of Chinese liquor as a case study, we established statistical models to correlate the final liquor yield with available industrial data, including the starting content of starch, water and acid; starting temperature; and substrate temperature profiles throughout the process. Models based on starting concentrations and temperature profiles gave unsatisfactory yield predictions. Although the most obvious factor is the starting month, ambient temperature is unlikely to be the direct driver of differences. A lactic-acid-inhibition model indicates that lactic acid from lactic acid bacteria is likely the reason for the reduction in yield between April and December. Further integrated study strategies are necessary to confirm the most crucial variables from both microbiological and engineering perspectives. Our findings can facilitate better understanding and improvement of complex solid-state fermentations.
Collapse
Affiliation(s)
- Guangyuan Jin
- The Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi 214122, China;
| | - Sjoerd Boeschoten
- Bioprocess Engineering, Wageningen University and Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands; (S.B.); (Y.Z.); (R.W.); (A.R.)
| | - Jos Hageman
- Biometris, Wageningen University and Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands;
| | - Yang Zhu
- Bioprocess Engineering, Wageningen University and Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands; (S.B.); (Y.Z.); (R.W.); (A.R.)
| | - René Wijffels
- Bioprocess Engineering, Wageningen University and Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands; (S.B.); (Y.Z.); (R.W.); (A.R.)
| | - Arjen Rinzema
- Bioprocess Engineering, Wageningen University and Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands; (S.B.); (Y.Z.); (R.W.); (A.R.)
| | - Yan Xu
- The Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi 214122, China;
| |
Collapse
|
10
|
van Dyk J, Görgens JF, van Rensburg E. Enhanced ethanol production from paper sludge waste under high-solids conditions with industrial and cellulase-producing strains of Saccharomyces cerevisiae. BIORESOURCE TECHNOLOGY 2024; 394:130163. [PMID: 38070577 DOI: 10.1016/j.biortech.2023.130163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023]
Abstract
Reported ethanol titres from hydrolysis-fermentation of the degraded fibres in paper sludge (PS) waste, generally obtained under fed-batch submerged conditions, can be improved through fermentation processes at high solids loadings, as demonstrated in the present study with two industrial PS wastes at enzyme dosages appropriate for solids loadings up to 40% (w/w). The industrial yeast,Saccharomyces cerevisiaestrain Ethanol Red®, was compared to two genetically engineeredS. cerevisiaestrains, namely Cellusec® 1.0 and Cellusec® 2.0, capable of xylose utilisation, and xylose utilisation and cellulase production, respectively. High-solids batch fermentations were conducted in 3 L horizontal rotating reactors and ethanol titres of 100.8 and 73.3 g/L were obtained for virgin pulp and corrugated recycle PS, respectively, at 40% (w/w) solids loading using Ethanol Red®. Xylose utilisation by Cellusec® 1.0 improved ethanol titres by up to 10.3%, while exogenous cellulolytic enzyme requirements were reduced by up to 50% using cellulase-producing Cellusec® 2.0.
Collapse
Affiliation(s)
- Janke van Dyk
- Dept. of Chemical Engineering, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | - Johann F Görgens
- Dept. of Chemical Engineering, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | - Eugéne van Rensburg
- Dept. of Chemical Engineering, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
11
|
Choi D, Bedale W, Chetty S, Yu JH. Comprehensive review of clean-label antimicrobials used in dairy products. Compr Rev Food Sci Food Saf 2024; 23:e13263. [PMID: 38284580 DOI: 10.1111/1541-4337.13263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/04/2023] [Accepted: 10/15/2023] [Indexed: 01/30/2024]
Abstract
Consumers expect safe, healthy, natural, and sustainable food. Within the food industry, ingredient use is changing due to these consumer demands. While no single agreed-upon definition of clean label exists, a "clean label" in the context of food refers to a product that has a simplified and transparent ingredient list, with easily recognizable and commonly understood components to the general public. Clean-label products necessitate and foster a heightened level of transparency between companies and consumers. Dairy products are vulnerable to being contaminated by both pathogens and spoilage microorganisms. These microorganisms can be effectively controlled by replacing conventional antimicrobials with clean-label ingredients such as protective cultures or bacterial/fungal fermentates. This review summarizes the perspectives of consumers and the food industry regarding the definition of "clean label," and the current and potential future use of clean-label antimicrobials in dairy products. A key goal of this review is to make the concept of clean-label antimicrobial agents better understood by both manufacturers and researchers.
Collapse
Affiliation(s)
- Dasol Choi
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Food Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Wendy Bedale
- Food Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Suraj Chetty
- Food Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jae-Hyuk Yu
- Food Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
12
|
Woo SH, Park J, Sung JM, Choi EJ, Choi YS, Park JD. Characterization of Lactic Acid Bacteria and Yeast from Grains as Starter Cultures for Gluten-Free Sourdough. Foods 2023; 12:4367. [PMID: 38231883 DOI: 10.3390/foods12234367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 01/19/2024] Open
Abstract
With the increasing number of people affected by gluten consumption-related diseases, adhering to a gluten-free (GF) diet is the most effective preventive measure. Herein, we aimed to isolate and characterize the functional properties of autochthonous lactic acid bacteria (LAB) and yeast from various GF sourdoughs to determine their suitability in starter cultures for sourdough preparation. Three LAB, Weissella confusa BAQ2, Lactobacillus brevis AQ2, Leuconostoc citreum YC2, and Saccharomyces cerevisiae BW1, were identified. The isolated LAB exhibited greater TTA, faster acidification rates, and higher acid tolerance than commercial LAB. W. confusa BAQ2 exhibited the highest EPS production, W. confusa BAQ2 and L. brevis AQ2 showed high maltose utilization, and S. cerevisiae BW1 exhibited the highest CO2 production rate. Accordingly, all four microbial strains were mixed for the starter culture. The sourdough prepared with starter cultures exhibited differences in gas production depending on fermentation time, which influenced the volume of GF bread dough. GF bread prepared with fermented sourdough exhibited a 16% higher specific volume and enhanced crumb firmness and elasticity than that prepared using non-fermented sourdough. Thus, autochthonous LAB strains isolated from various GF sourdoughs can be used together to improve the quality of sourdough bread, demonstrating their potential for use in starter cultures for GF sourdough production.
Collapse
Affiliation(s)
- Seung-Hye Woo
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jiwoon Park
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Jung Min Sung
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Eun-Ji Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Jong-Dae Park
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| |
Collapse
|
13
|
Sánchez-Adriá IE, Sanmartín G, Prieto JA, Estruch F, Fortis E, Randez-Gil F. Adaptive laboratory evolution for acetic acid-tolerance matches sourdough challenges with yeast phenotypes. Microbiol Res 2023; 277:127487. [PMID: 37713908 DOI: 10.1016/j.micres.2023.127487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
Acetic acid tolerance of Saccharomyces cerevisiae is an important trait in sourdough fermentation processes, where the accumulation of acid by the growth of lactic acid bacteria reduces the yeast metabolic activity. In this work, we have carried out adaptive laboratory evolution (ALE) experiments in two sourdough isolates of S. cerevisiae exposed to acetic acid, or alternatively to acetic acid and myriocin, an inhibitor of sphingolipid biosynthesis that sped-up the evolutionary adaptation. Evolution approaches resulted in acetic tolerance, and surprisingly, increased lactic susceptibility. Four evolved clones, one from each parental strain and evolutionary scheme, were selected on the basis of their potential for CO2 production in sourdough conditions. Among them, two showed phenotypic instability characterized by strong lactic sensitivity after several rounds of growth under unstressed conditions, while two others, displayed increased constitutive acetic tolerance with no loss of growth in lactic medium. Genome sequencing and ploidy level analysis of all strains revealed aneuploidies, which could account for phenotypic heterogeneity. In addition, copy number variations (CNVs), affecting specially to genes involved in ion transport or flocculation, and single nucleotide polymorphisms (SNPs) were identified. Mutations in several genes, ARG82, KEX1, CTK1, SPT20, IRA2, ASG1 or GIS4, were confirmed as involved in acetic and/or lactic tolerance, and new determinants of these phenotypes, MSN5 and PSP2, identified.
Collapse
Affiliation(s)
- Isabel E Sánchez-Adriá
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino, 7, Paterna, 46980 Valencia, Spain
| | - Gemma Sanmartín
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino, 7, Paterna, 46980 Valencia, Spain
| | - Jose A Prieto
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino, 7, Paterna, 46980 Valencia, Spain
| | - Francisco Estruch
- Department of Biochemistry and Molecular Biology, Universitat de València, Dr. Moliner 50, 46100 Burjassot, Spain
| | - Estefanía Fortis
- Cereal (Center for Research Europastry Advanced Lab), Europastry S.A., Marie Curie, 6, Sant Joan Despí, 08970 Barcelona, Spain
| | - Francisca Randez-Gil
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino, 7, Paterna, 46980 Valencia, Spain.
| |
Collapse
|
14
|
Jilani SB, Olson DG. Mechanism of furfural toxicity and metabolic strategies to engineer tolerance in microbial strains. Microb Cell Fact 2023; 22:221. [PMID: 37891678 PMCID: PMC10612203 DOI: 10.1186/s12934-023-02223-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Lignocellulosic biomass represents a carbon neutral cheap and versatile source of carbon which can be converted to biofuels. A pretreatment step is frequently used to make the lignocellulosic carbon bioavailable for microbial metabolism. Dilute acid pretreatment at high temperature and pressure is commonly utilized to efficiently solubilize the pentose fraction by hydrolyzing the hemicellulose fibers and the process results in formation of furans-furfural and 5-hydroxymethyl furfural-and other inhibitors which are detrimental to metabolism. The presence of inhibitors in the medium reduce productivity of microbial biocatalysts and result in increased production costs. Furfural is the key furan inhibitor which acts synergistically along with other inhibitors present in the hydrolysate. In this review, the mode of furfural toxicity on microbial metabolism and metabolic strategies to increase tolerance is discussed. Shared cellular targets between furfural and acetic acid are compared followed by discussing further strategies to engineer tolerance. Finally, the possibility to use furfural as a model inhibitor of dilute acid pretreated lignocellulosic hydrolysate is discussed. The furfural tolerant strains will harbor an efficient lignocellulosic carbon to pyruvate conversion mechanism in presence of stressors in the medium. The pyruvate can be channeled to any metabolite of interest by appropriate modulation of downstream pathway of interest. The aim of this review is to emphasize the use of hydrolysate as a carbon source for bioproduction of biofuels and other compounds of industrial importance.
Collapse
Affiliation(s)
- S Bilal Jilani
- Thayer School of Engineering, Dartmouth College, 15 Thayer Drive, Hanover, NH, 03755, USA.
| | - Daniel G Olson
- Thayer School of Engineering, Dartmouth College, 15 Thayer Drive, Hanover, NH, 03755, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| |
Collapse
|
15
|
Moola N, Jardine A, Audenaert K, Rafudeen MS. 6-deoxy-6-amino chitosan: a preventative treatment in the tomato/ Botrytis cinerea pathosystem. FRONTIERS IN PLANT SCIENCE 2023; 14:1282050. [PMID: 37881612 PMCID: PMC10595175 DOI: 10.3389/fpls.2023.1282050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/20/2023] [Indexed: 10/27/2023]
Abstract
6-deoxy-6-amino chitosan (aminochitosan) is a water-soluble chitosan derivative with an additional amine group at the C-6 position. This modification has improved aqueous solubility, in vitro antifungal activity and is hypothesized to have enhanced in vivo antifungal activity compared to native chitosan. Gray mold disease in tomatoes is caused by the fungus, Botrytis cinerea, and poses a severe threat both pre- and post-harvest. To investigate the optimal concentration of aminochitosan and its lower molecular weight fractions for antifungal and priming properties in the tomato/B. cinerea pathosystem, different concentrations of aminochitosan were tested in vitro on B. cinerea growth and sporulation and in vivo as a foliar pre-treatment in tomato leaves. The leaves were monitored for photosynthetic changes using multispectral imaging and hydrogen peroxide accumulation using DAB. Despite batch-to-batch variations in aminochitosan, it displayed significantly greater inhibition of B. cinerea in vitro than native chitosan at a minimum concentration of 1 mg/mL. A concentration-dependent increase in the in vitro antifungal activities was observed for radial growth, sporulation, and germination with maximum in vitro inhibition for all the biopolymer batches and lower MW fractions at 2.5 and 5 mg/mL, respectively. However, the inhibition threshold for aminochitosan was identified as 1 mg/mL for spores germinating in vivo, compared to the 2.5 mg/mL threshold in vitro. The pre-treatment of leaves displayed efficacy in priming direct and systemic resistance to B. cinerea infection at 4, 6 and 30 days post-inoculation by maintaining elevated Fv/Fm activity and chlorophyll content due to a stronger and more rapid elicitation of the defense systems at earlier time points. Moreover, these defense systems appear to be ROS-independent at higher concentrations (1 and 2.5 mg/mL). In addition, aminochitosan accumulates in the cell membrane and therefore acts to increase the membrane permeability of cells after foliar spray. These observations corroborate the notion that aminochitosan biopolymers can exert their effects through both direct mechanisms of action and indirect immunostimulatory mechanisms. The contrast between in vitro and in vivo efficacy highlights the bimodal mechanisms of action of aminochitosan and the advantageous role of primed plant defense systems.
Collapse
Affiliation(s)
- Naadirah Moola
- Laboratory of Plant Stress, Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
| | - Anwar Jardine
- Department of Chemistry, Faculty of Science, University of Cape Town, Cape Town, South Africa
| | - Kris Audenaert
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Mohamed Suhail Rafudeen
- Laboratory of Plant Stress, Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
16
|
Pyne ME, Bagley JA, Narcross L, Kevvai K, Exley K, Davies M, Wang Q, Whiteway M, Martin VJJ. Screening non-conventional yeasts for acid tolerance and engineering Pichia occidentalis for production of muconic acid. Nat Commun 2023; 14:5294. [PMID: 37652930 PMCID: PMC10471774 DOI: 10.1038/s41467-023-41064-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023] Open
Abstract
Saccharomyces cerevisiae is a workhorse of industrial biotechnology owing to the organism's prominence in alcohol fermentation and the suite of sophisticated genetic tools available to manipulate its metabolism. However, S. cerevisiae is not suited to overproduce many bulk bioproducts, as toxicity constrains production at high titers. Here, we employ a high-throughput assay to screen 108 publicly accessible yeast strains for tolerance to 20 g L-1 adipic acid (AA), a nylon precursor. We identify 15 tolerant yeasts and select Pichia occidentalis for production of cis,cis-muconic acid (CCM), the precursor to AA. By developing a genome editing toolkit for P. occidentalis, we demonstrate fed-batch production of CCM with a maximum titer (38.8 g L-1), yield (0.134 g g-1 glucose) and productivity (0.511 g L-1 h-1) that surpasses all metrics achieved using S. cerevisiae. This work brings us closer to the industrial bioproduction of AA and underscores the importance of host selection in bioprocessing.
Collapse
Affiliation(s)
- Michael E Pyne
- Department of Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
- Department of Biology, University of Western Ontario, Ontario, Canada
| | - James A Bagley
- Department of Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
| | - Lauren Narcross
- Department of Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
- Amyris, Inc., Emeryville, CA, USA
| | - Kaspar Kevvai
- Department of Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
- Pivot Bio, Berkeley, CA, USA
| | - Kealan Exley
- Department of Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
- Novo Nordisk Foundation Center for Biosustainability, Lyngby, Denmark
| | - Meghan Davies
- Department of Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
- BenchSci, Toronto, ON, Canada
| | | | - Malcolm Whiteway
- Department of Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
| | - Vincent J J Martin
- Department of Biology, Concordia University, Montréal, QC, H4B 1R6, Canada.
- Centre for Applied Synthetic Biology, Concordia University, Montréal, QC, H4B 1R6, Canada.
| |
Collapse
|
17
|
To MH, Wang H, Miao Y, Kaur G, Roelants SLKW, Lin CSK. Optimal preparation of food waste to increase its utility for sophorolipid production by Starmerella bombicola. BIORESOURCE TECHNOLOGY 2023; 379:128993. [PMID: 37011850 DOI: 10.1016/j.biortech.2023.128993] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
Secondary feedstocks, such as food waste (FW), have been used for yeasts (e.g. Starmerella bombicola) to produce sophorolipids (SLs), which are commercially available biosurfactants. However, the quality of FW varies by location and season and may contains chemicals that inhibit SLs production. Therefore, it is crucial to identify such inhibitors and, if possible, remove them, to ensure efficient utilization. In this study, large scale FW was first analysed to determine the concentration of potential inhibitors. Lacticacid, acetic acid and ethanol were identified and found to be inhibitors of the growth of S. bombicola and its SLs production. Various methods were then evaluated for their ability to remove these inhibitors. Finally, a simple and effective strategy for removing inhibitors from FW was developed that complied with the 12 principles of green chemistry and could be adopted by industry for high SLs production.
Collapse
Affiliation(s)
- Ming Ho To
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong
| | - Huaimin Wang
- McKetta Department of Chemical Engineering, Cockrell School of Engineering, The University of Texas at Austin, TX 78712-1589, USA
| | - Yahui Miao
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong
| | - Guneet Kaur
- School of Engineering, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - Sophie L K W Roelants
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Bio Base Europe Pilot Plant, Ghent, Belgium
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong.
| |
Collapse
|
18
|
Ozturk Cetin O, Cebeci Avunca S, Cagri Mehmetoglu A, Yemis O, Ozturk M. Suitability of acid whey for fermented and fresh‐pack cornichon pickle production. INT J DAIRY TECHNOL 2023. [DOI: 10.1111/1471-0307.12950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
19
|
Baev V, Apostolova E, Gotcheva V, Koprinarova M, Papageorgiou M, Rocha JM, Yahubyan G, Angelov A. 16S-rRNA-Based Metagenomic Profiling of the Bacterial Communities in Traditional Bulgarian Sourdoughs. Microorganisms 2023; 11:803. [PMID: 36985376 PMCID: PMC10058899 DOI: 10.3390/microorganisms11030803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Sourdoughs (SDs) are spontaneously formed microbial ecosystems composed of various species of lactic acid bacteria (LAB) and acid-tolerant yeasts in food matrices of cereal flours mixed with water. To date, more than 90 LAB species have been isolated, significantly impacting the organoleptic characteristics, shelf life, and health properties of bakery products. To learn more about the unique bacterial communities involved in creating regional Bulgarian sourdoughs, we examined the metacommunities of five sourdoughs produced by spontaneous fermentation and maintained by backslopping in bakeries from three geographic locations. The 16S rRNA gene amplicon sequencing showed that the former genus Lactobacillus was predominant in the studied sourdoughs (51.0-78.9%). Weissella (0.9-42.8%), Herbaspirillum (1.6-3.8%), Serratia (0.1-11.7%), Pediococcus (0.2-7.5%), Bacteroides (0.1-1.3%), and Sphingomonas (0.1-0.5%) were also found in all 5 samples. Genera Leuconostoc, Enterococcus, Bacillus, and Asaia were sample-specific. It is interesting to note that the genus Weissella was more abundant in wholegrain samples. The greatest diversity at the species level was found in the former genus Lactobacillus, presented in the sourdough samples with 13 species. The UPGMA cluster analysis clearly demonstrated similarity in species' relative abundance between samples from the same location. In addition, we can conclude that the presence of two main clusters-one including samples from mountainous places (the cities of Smolyan and Bansko) and the other including samples from the city of Ruse (the banks of the Danube River)-may indicate the impact of climate and geographic location (e.g., terrain, elevation, land use, and nearby water bodies and their streams) on the abundance of microbiome taxa. As the bacterial population is crucial for bread standardization, we expect the local bakery sector to be interested in the relationship between process variables and their effect on bacterial dynamics described in this research study.
Collapse
Affiliation(s)
- Vesselin Baev
- Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Elena Apostolova
- Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Velitchka Gotcheva
- Department of Biotechnology, University of Food Technologies, 26 Maritza Blvd., 4000 Plovdiv, Bulgaria
| | - Miglena Koprinarova
- Institute of Molecular Biology “Acad. Roumen Tsanev”, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
- Department of Catering and Nutrition, University of Food Technologies, 26 Maritza Blvd., 4000 Plovdiv, Bulgaria
| | - Maria Papageorgiou
- Department of Food Science and Technology, International Hellenic University, P.O. Box 141, 57400 Thessaloniki, Greece
| | - João Miguel Rocha
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Galina Yahubyan
- Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Angel Angelov
- Department of Biotechnology, University of Food Technologies, 26 Maritza Blvd., 4000 Plovdiv, Bulgaria
| |
Collapse
|
20
|
Verges VL, Gollihue JW, Joyce GE, DeBolt S. Lab-Scale Methodology for New-Make Bourbon Whiskey Production. Foods 2023; 12:foods12030457. [PMID: 36765986 PMCID: PMC9914533 DOI: 10.3390/foods12030457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/23/2022] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
Whiskey production originated in Scotland in the 15th century and was based on malted barley. As Scotch-Irish settlers came into the Ohio river valley, they began fermenting and distilling the primary grain of North America, maize. These earlier settlers started a heritage; they created American Whiskey. The bourbon industry in Kentucky had tremendous growth in the last 20 years, and currently, distilleries have a broad increase in product innovation, new raw materials, improved sustainability, efficient processes, and product diversification. Our study presents a new lab-scale method for new-make bourbon whiskey production. It was developed to mimic distilleries' processes; therefore, results can be extrapolated and adopted by commercial distilleries. The method focused on reproducibility with consistency from batch to batch when handled by an operator or small crew in a university lab. The method consisted of a first cooking step to make a "mash", a fermentation phase of 96 h, a first distillation accomplished with a copper pot still to obtain the "low wines" and a second distillation carried out with an air still to collect the "hearts". The method produced a final distillate of 500-700 mL for further sensory analysis and tasting. This lab-scale method showed consistency between samples in the different parameters quantified and will be also used to train students in fermentation and distillation studies.
Collapse
Affiliation(s)
- Virginia L. Verges
- Department of Horticulture, University of Kentucky, Lexington, KY 40503, USA
| | - Jarrad W. Gollihue
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY 40503, USA
- James B. Beam Institute for Kentucky Spirits, University of Kentucky, Lexington, KY 40503, USA
| | - Glenna E. Joyce
- James B. Beam Institute for Kentucky Spirits, University of Kentucky, Lexington, KY 40503, USA
| | - Seth DeBolt
- Department of Horticulture, University of Kentucky, Lexington, KY 40503, USA
- James B. Beam Institute for Kentucky Spirits, University of Kentucky, Lexington, KY 40503, USA
- Correspondence: ; Tel.: +1-859-257-8654
| |
Collapse
|
21
|
Baptista SL, Romaní A, Cunha JT, Domingues L. Multi-feedstock biorefinery concept: Valorization of winery wastes by engineered yeast. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116623. [PMID: 36368200 DOI: 10.1016/j.jenvman.2022.116623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
The wine industry produces significant amounts of by-products and residues that are not properly managed, posing an environmental problem. Grape must surplus, vine shoots, and wine lees have the potential to be used as renewable resources for the production of energy and chemicals. Metabolic engineering efforts have established Saccharomyces cerevisiae as an efficient microbial cell factory for biorefineries. Current biorefineries designed for producing multiple products often rely on just one feedstock, but the bioeconomy would clearly benefit if these biorefineries could efficiently convert multiple feedstocks. Moreover, to reduce the environmental impact of fossil fuel consumption and maximize production economics, a biorefinery should be capable to supplement the manufacture of biofuel with the production of high-value products. This study proposes an integrated approach for the valorization of diverse wastes resulting from winemaking processes through the biosynthesis of xylitol and ethanol. Using genetically modified S. cerevisiae strains, the xylose-rich hemicellulosic fraction of hydrothermally pretreated vine shoots was converted into xylitol, and the cellulosic fraction was used to produce bioethanol. In addition, grape must, enriched in sugars, was efficiently used as a low-cost source for yeast propagation. The production of xylitol was optimized, in a Simultaneous Saccharification and Fermentation process configuration, by adjusting the inoculum size and enzyme loading. Furthermore, a yeast strain displaying cellulases in the cell surface was applied for the production of bioethanol from the glucan-rich cellulosic. With the addition of grape must and/or wine lees, high ethanol concentrations were reached, which are crucial for the economic feasibility of distillation. This integrated multi-feedstock valorization provides a synergistic alternative for converting a range of winery wastes and by-products into biofuel and an added-value chemical while decreasing waste released to the environment.
Collapse
Affiliation(s)
- Sara L Baptista
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal; LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - Aloia Romaní
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas, 32004, Ourense, Spain
| | - Joana T Cunha
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal; LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal; LABBELS - Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
22
|
The potential of multistress tolerant yeast, Saccharomycodes ludwigii, for second-generation bioethanol production. Sci Rep 2022; 12:22062. [PMID: 36543886 PMCID: PMC9772304 DOI: 10.1038/s41598-022-26686-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Ethanol production at high temperatures using lignocellulosic biomass as feedstock requires a highly efficient thermo and lignocellulosic inhibitor-tolerant ethanologenic yeast. In this study, sixty-three yeast isolates were obtained from tropical acidic fruits using a selective acidified medium containing 80 mM glacial acetic acid. Twenty-nine of the yeast isolates exhibited significant thermo and acetic acid-tolerant fermentative abilities. All these isolates were classified into three major yeast species, namely Saccharomycodes ludwigii, Pichia kudriavzevii, and P. manshurica, based on molecular identification. Saccharomycodes ludwigii APRE2 displayed an ability to grow at high temperatures of up to 43 °C and exhibited significant multistress tolerance toward acetic acid, furfural, 5-hydroxymethyl furfural (5-HMF), and ethanol among the isolated yeast species. It can produce a maximum ethanol concentration of 63.07 g/L and productivity of 1.31 g/L.h in yeast extract malt extract (YM) medium containing 160 g/L glucose and supplemented with 80 mM acetic acid and 15 mM furfural as a cocktail inhibitor. When an acid-pretreated pineapple waste hydrolysate (PWH) containing approximately 106 g/L total sugars, 131 mM acetic acid, and 3.95 mM furfural was used as a feedstock, 38.02 g/L and 1.58 g/L.h of ethanol concentration and productivity, respectively, were achieved. Based on the results of the current study, the new thermo and acetic acid-tolerant yeast S. ludwigii APRE2 exhibited excellent potential for second-generation bioethanol production at high temperatures.
Collapse
|
23
|
Souza LV, Martins E, Moreira IMFB, de Carvalho AF. Strategies for the Development of Bioprotective Cultures in Food Preservation. Int J Microbiol 2022; 2022:6264170. [PMID: 37645592 PMCID: PMC10462446 DOI: 10.1155/2022/6264170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/11/2022] [Accepted: 11/28/2022] [Indexed: 08/31/2023] Open
Abstract
Consumers worldwide are increasingly demanding food with fewer ingredients, preferably without chemical additives. The trend called "Clean Label" has stimulated the development and commercialization of new types of bioprotective bacterial cultures. These bacteria are not considered new, and several cultures have been available on the market. Additionally, new bioprotective bacteria are being identified to service the clean label trend, extend the shelf life, and, mainly, improve the food safety of food. In this context, the lactic acid bacteria (LAB) have been extensively prospected as a bioprotective culture, as they have a long history in food production and their antimicrobial activity against spoilage and pathogenic microorganisms is well established. However, to make LAB cultures available in the market is not that easy, the strains should be characterized phenotypically and genotypically, and studies of safety and technological application are necessary to validate their bioprotection performance. Thus, this review presents information on the bioprotection mechanisms developed by LAB in foods and describes the main strategies used to identify and characterize bioprotective LAB with potential application in the food industry.
Collapse
Affiliation(s)
- Luana Virgínia Souza
- Inovaleite—Department of Food Technology, Federal University of Viçosa (Universidade Federal de Viçosa) (UFV), Avenida Peter Henry Rolfs, s/n—Campus Universitário, Viçosa, MG 36570-900, Brazil
| | - Evandro Martins
- Inovaleite—Department of Food Technology, Federal University of Viçosa (Universidade Federal de Viçosa) (UFV), Avenida Peter Henry Rolfs, s/n—Campus Universitário, Viçosa, MG 36570-900, Brazil
| | - Isabella Maria Fernandes Botelho Moreira
- Inovaleite—Department of Food Technology, Federal University of Viçosa (Universidade Federal de Viçosa) (UFV), Avenida Peter Henry Rolfs, s/n—Campus Universitário, Viçosa, MG 36570-900, Brazil
| | - Antônio Fernandes de Carvalho
- Inovaleite—Department of Food Technology, Federal University of Viçosa (Universidade Federal de Viçosa) (UFV), Avenida Peter Henry Rolfs, s/n—Campus Universitário, Viçosa, MG 36570-900, Brazil
| |
Collapse
|
24
|
Cheong YE, Kim J, Jin YS, Kim KH. Elucidation of the fucose metabolism of probiotic Lactobacillus rhamnosus GG by metabolomic and flux balance analyses. J Biotechnol 2022; 360:110-116. [PMID: 36336085 DOI: 10.1016/j.jbiotec.2022.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/08/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Lactobacillus rhamnosus GG (LGG) is one of the most widely used probiotics because of its health benefits and safety. Fucose is among the most abundant hexoses in the human intestine, and LGG consumes fucose to produce energy or proliferate. However, no study has elucidated the metabolism by which LGG metabolizes fucose to produce energy, biomass, and extracellular metabolites. We used metabolomics and flux balance analysis to elucidate these mechanisms and highlight how they might affect the host. We found three different metabolic flux modes by which LGG anaerobically metabolizes fucose to produce energy and biomass. These metabolic flux modes differ from homolactic or heterolactic fermentation and account for the production of lactic acid, 1,2-propanediol, acetic acid, formic acid, and carbon dioxide as a result of fucose metabolism in LGG. We also used gas chromatography/time-of-flight mass spectrometry to identify a variety of short-chain fatty acids and organic acids secreted during fucose metabolism by LGG. Our study is the first to elucidate the unique fucose metabolism of LGG in anaerobic condition.
Collapse
Affiliation(s)
- Yu Eun Cheong
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Jungyeon Kim
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Republic of Korea; Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
25
|
Lucia C, Laudicina VA, Badalucco L, Galati A, Palazzolo E, Torregrossa M, Viviani G, Corsino SF. Challenges and opportunities for citrus wastewater management and valorisation: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115924. [PMID: 36104880 DOI: 10.1016/j.jenvman.2022.115924] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Citrus wastewaters (CWWs) are by-products of the citrus fruit transformation process. Currently, more than 700 million of m³ of CWWs per year are produced worldwide. Until nowadays, the management of CWWs is based on a take-make-use-dispose model. Indeed, after being produced within a citrus processing industry, CWWs are subjected to treatment and then discharged into the environment. Now, the European Union is pushing towards a take-make-use-reuse management model, which suggests to provide for the minimization of residual pollutants simultaneously with their exploitation through a biorefinery concept. Indeed, the recovery of energy nutrients and other value-added products held by CWWs may promote environmental sustainability and close the nutrient cycles in line with the circular bio-economy perspective. Unfortunately, knowledge about the benefits and disadvantages of available technologies for the management and valorisation of CWWs are very fragmentary, thus not providing to the scientific community and stakeholders an appropriate approach. Moreover, available studies focus on a specific treatment/valorisation pathway of CWWs and an overall vision is still missing. This review aims to provide an integrated approach for the sustainable management of CWWs to be proposed to company managers and other stakeholders within the legislative boundaries and in line with the circular bio-economy perspective. To this aim, firstly, a concise analysis of citrus wastewater characteristics and the main current regulations on CWWs are reported and discussed. Then, the main technologies with a general comparison of their pros and cons, and alternative pathways for CWWs utilization are presented and discussed. Finally, a focus was paid to the economic feasibility of the solutions proposed to date relating to the recovery of the CWWs for the production of both value-added compounds and agricultural reuse. Based on literature analysis an integrated approach for a sustainable CWWs management is proposed. Such an approach suggests that after chemicals recovery by biorefinery, wastewaters should be directly used for crop irrigation if allowed by regulations or addressed to treatment plant. The latter way should be preferred when CWWs cannot be directly applied to soil due to lack of concomitance between CWWs production and crop needs. In such a way, treated wastewater should be reused after tertiary treatments for crop irrigation, whereas produced sludges should be undergone to dewatering treatment before being reused as organic amendment to improve soil fertility. Finally, this review invite European institutions and each Member State to promote common and specific legislations to overcome the fragmentation of the regulatory framework regarding CWWs reuse.
Collapse
Affiliation(s)
- Caterina Lucia
- Department of Agriculture, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Building 4, 90128, Palermo, Italy
| | - Vito Armando Laudicina
- Department of Agriculture, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Building 4, 90128, Palermo, Italy.
| | - Luigi Badalucco
- Department of Agriculture, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Building 4, 90128, Palermo, Italy
| | - Antonino Galati
- Department of Agriculture, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Building 4, 90128, Palermo, Italy
| | - Eristanna Palazzolo
- Department of Agriculture, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Building 4, 90128, Palermo, Italy
| | - Michele Torregrossa
- Department of Engineering, University of Palermo, Viale delle Scienze, Building 8, 90128, Palermo, Italy
| | - Gaspare Viviani
- Department of Engineering, University of Palermo, Viale delle Scienze, Building 8, 90128, Palermo, Italy
| | - Santo Fabio Corsino
- Department of Engineering, University of Palermo, Viale delle Scienze, Building 8, 90128, Palermo, Italy
| |
Collapse
|
26
|
Sheng X, Li Z, Zhang J. Exploring the resourcing technology of condensate using ozonation combined with ion-exchange in ethanol fermentation. Bioprocess Biosyst Eng 2022; 45:1919-1926. [PMID: 36264370 DOI: 10.1007/s00449-022-02782-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022]
Abstract
Direct reutilization of condensate can inhibit ethanol fermentation, 2-phenylethyl alcohol and furfural existed in the condensate are considered to be inhibitors. To achieve the reutilization of the condensate, the ozonation combined with ion-exchange method was used. The results showed that the elimination rates of 2-phenylethyl alcohol and furfural reached 98.0% and 100.0%, respectively after ozonation, while the concentrations of acetic acid, propionic acid, butyric acid and valeric acid increased by 14.9%, 7.7%, 35.3% and 25.5%, respectively. The fermentation results showed that the inhibition of the condensate after ozonation was alleviated but was not completely eliminated. When the effluent volume treated by the ion-exchange method reached 80 BV, the concentrations of acetic acid, propionic acid, butyric acid and valeric acid decreased by 25.8%, 8.6%, 6.5% and 34.4%, respectively. The fermentation results showed that the inhibition of the condensate was completely eliminated after ozonation combined with ion-exchange treatment.
Collapse
Affiliation(s)
- Xuanxuan Sheng
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Ziqi Li
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianhua Zhang
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
27
|
Brewing and probiotic potential activity of wild yeasts Hanseniaspora uvarum PIT001, Pichia kluyveri LAR001 and Candida intermedia ORQ001. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04139-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Kavyani S, Amjad-Iranagh S, Zarif M. Effect of temperature, pH, and terminal groups on structural properties of carbon nanotube-dendrimer composites: A coarse-grained molecular dynamics simulation study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
29
|
Singh R, Chandel S, Ghosh A, Gautam A, Huson DH, Ravichandiran V, Ghosh D. Easy efficient HDR-based targeted knock-in in Saccharomyces cerevisiae genome using CRISPR-Cas9 system. Bioengineered 2022; 13:14857-14871. [PMID: 36602175 PMCID: PMC10109214 DOI: 10.1080/21655979.2022.2162667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
During the last two decades, yeast has been used as a biological tool to produce various small molecules, biofuels, etc., using an inexpensive bioprocess. The application of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated protein (Cas) techniques in yeast genetic and metabolic engineering has made a paradigm shift, particularly with a significant improvement in targeted chromosomal integration using synthetic donor constructs, which was previously a challenge. This study reports the CRISPR-Cas9-based highly efficient strategy for targeted chromosomal integration and in-frame expression of a foreign gene in the genome of Saccharomyces cerevisiae (S. cerevisiae) by homology-dependent recombination (HDR); our optimized methods show that CRISPR-Cas9-based chromosomal targeted integration of small constructs at multiple target sites of the yeast genome can be achieved with an efficiency of 74%. Our study also suggests that 15 bp microhomology flanked arms are sufficient for 50% targeted knock-in at minimal knock-in construct concentration. Whole-genome sequencing confirmed that there is no off-target effect. This study provides a comprehensive and streamlined protocol that will support the targeted integration of essential genes into the yeast genome for synthetic biology and other industrial purposes.Highlights• CRISPR-Cas9 based in-frame expression of foreign protein in Saccharomyces cerevisiae using Homology arm without a promoter.• As low as 15 base pairs of microhomology (HDR) are sufficient for targeted integration in Saccharomyces cerevisiae.• The methodology is highly efficient and very specific as no off-targeted effects were shown by the whole-genome sequence.
Collapse
Affiliation(s)
- Rajveer Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Shivani Chandel
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Arijit Ghosh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, India.,Department of Molecular Biology and Gynaecological Oncology, Netaji Subhas Chandra Bose Cancer Research Institute, Kolkata, India
| | - Anupam Gautam
- Algorithms in Bioinformatics, Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany.,International Max Planck Research School "From Molecules to Organisms", Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Daniel H Huson
- Algorithms in Bioinformatics, Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany.,International Max Planck Research School "From Molecules to Organisms", Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - V Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Dipanjan Ghosh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, India
| |
Collapse
|
30
|
Coprocessing Corn Germ Meal for Oil Recovery and Ethanol Production: A Process Model for Lipid-Producing Energy Crops. Processes (Basel) 2022. [DOI: 10.3390/pr10040661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Efforts to engineer high-productivity crops to accumulate oils in their vegetative tissue present the possibility of expanding biodiesel production. However, processing the new crops for lipid recovery and ethanol production from cell wall saccharides is challenging and expensive. In a previous study using corn germ meal as a model substrate, we reported that liquid hot water (LHW) pretreatment enriched the lipid concentration by 2.2 to 4.2 fold. This study investigated combining oil recovery with ethanol production by extracting oil following LHW and simultaneous saccharification and co-fermentation (SSCF) of the biomass. Corn germ meal was again used to model the oil-bearing energy crops. Pretreated germ meal hydrolysate or solids (160 and 180 °C for 10 min) were fermented, and lipids were extracted from both the spent fermentation whole broth and fermentation solids, which were recovered by centrifugation and convective drying. Lipid contents in spent fermentation solids increased 3.7 to 5.7 fold compared to the beginning germ meal. The highest lipid yield achieved after fermentation was 36.0 mg lipid g−1 raw biomass; the maximum relative amount of triacylglycerol (TAG) was 50.9% of extracted oil. Although the fermentation step increased the lipid concentration of the recovered solids, it did not improve the lipid yields of pretreated biomass and detrimentally affected oil compositions by increasing the relative concentrations of free fatty acids.
Collapse
|
31
|
Frallicciardi J, Melcr J, Siginou P, Marrink SJ, Poolman B. Membrane thickness, lipid phase and sterol type are determining factors in the permeability of membranes to small solutes. Nat Commun 2022; 13:1605. [PMID: 35338137 PMCID: PMC8956743 DOI: 10.1038/s41467-022-29272-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 03/02/2022] [Indexed: 12/16/2022] Open
Abstract
Cell membranes provide a selective semi-permeable barrier to the passive transport of molecules. This property differs greatly between organisms. While the cytoplasmic membrane of bacterial cells is highly permeable for weak acids and glycerol, yeasts can maintain large concentration gradients. Here we show that such differences can arise from the physical state of the plasma membrane. By combining stopped-flow kinetic measurements with molecular dynamics simulations, we performed a systematic analysis of the permeability of a variety of small molecules through synthetic membranes of different lipid composition to obtain detailed molecular insight into the permeation mechanisms. While membrane thickness is an important parameter for the permeability through fluid membranes, the largest differences occur when the membranes transit from the liquid-disordered to liquid-ordered and/or to gel state, which is in agreement with previous work on passive diffusion of water. By comparing our results with in vivo measurements from yeast, we conclude that the yeast membrane exists in a highly ordered and rigid state, which is comparable to synthetic saturated DPPC-sterol membranes. Membrane permeability of small molecules depends on the composition of the lipid bilayer. Here, authors compare permeability measured on membranes in different physical states and conclude that the yeast membrane exists in a highly ordered phase.
Collapse
Affiliation(s)
- Jacopo Frallicciardi
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, the Netherlands
| | - Josef Melcr
- Department of Biophysical Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, the Netherlands
| | - Pareskevi Siginou
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, the Netherlands
| | - Siewert J Marrink
- Department of Biophysical Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, the Netherlands.
| | - Bert Poolman
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, the Netherlands.
| |
Collapse
|
32
|
TIEN TN, NGUYEN TC, NGUYEN CN, NGUYEN TT, PHAM TA, PHAM NH, CHU-KY S. Protease increases ethanol yield and decreases fermentation time in no-cook process during very-high-gravity ethanol production from rice. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Fu J, Liu C, Li L, Liu J, Tie Y, Wen X, Zhao Q, Qiao Z, An Z, Zheng J. Adaptive response and tolerance to weak acids in
Saccharomyces cerevisiae boulardii
: a metabolomics approach. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Junjie Fu
- College of Biotechnology Engineering Sichuan University of Science and Engineering Yibin 644000 China
| | - Chaolan Liu
- Antibiotics Research and Re‐evalution Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics Chengdu University Chengdu 610052 China
| | - Li Li
- College of Biotechnology Engineering Sichuan University of Science and Engineering Yibin 644000 China
| | - Jun Liu
- College of Biotechnology Engineering Sichuan University of Science and Engineering Yibin 644000 China
| | - Yu Tie
- College of Biotechnology Engineering Sichuan University of Science and Engineering Yibin 644000 China
- Solid‐State Fermentation Resource Utilisation Key Laboratory of Sichuan Province Yibin 644000 China
| | - Xueping Wen
- College of Biotechnology Engineering Sichuan University of Science and Engineering Yibin 644000 China
| | - Qikai Zhao
- College of Biotechnology Engineering Sichuan University of Science and Engineering Yibin 644000 China
- HengfengHuaBang Biological Science and Technology Co., Ltd. Leshan 614000 China
| | | | - Zheming An
- Wuliangye Yibin Co, Ltd Yibin 644000 China
| | - Jia Zheng
- Wuliangye Yibin Co, Ltd Yibin 644000 China
| |
Collapse
|
34
|
Arumugam SM, Singh D, Mahala S, Devi B, Kumar S, Jakhu S, Elumalai S. MgO/CaO Nanocomposite Facilitates Economical Production of d-Fructose and d-Allulose Using Glucose and Its Response Prediction Using a DNN Model. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Senthil M. Arumugam
- Chemical Engineering Division, DBT-Center of Innovative and Applied Bioprocessing, Mohali, Punjab 140306 India
| | - Dalwinder Singh
- Computational Biology Division, DBT-National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
| | - Sangeeta Mahala
- Chemical Engineering Division, DBT-Center of Innovative and Applied Bioprocessing, Mohali, Punjab 140306 India
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Punjab 140306 India
| | - Bhawana Devi
- Chemical Engineering Division, DBT-Center of Innovative and Applied Bioprocessing, Mohali, Punjab 140306 India
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Punjab 140306 India
| | - Sandeep Kumar
- Chemical Engineering Division, DBT-Center of Innovative and Applied Bioprocessing, Mohali, Punjab 140306 India
| | - Sunaina Jakhu
- Chemical Engineering Division, DBT-Center of Innovative and Applied Bioprocessing, Mohali, Punjab 140306 India
| | - Sasikumar Elumalai
- Chemical Engineering Division, DBT-Center of Innovative and Applied Bioprocessing, Mohali, Punjab 140306 India
| |
Collapse
|
35
|
Adewara OA, Ogunbanwo ST. Acid stress responses of Lactobacillus amylovorus and Candida kefyr isolated from fermented sorghum gruel and their application in food fermentation. Can J Microbiol 2022; 68:269-280. [PMID: 35038286 DOI: 10.1139/cjm-2021-0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exposure of Lactic Acid Bacteria (LAB) and yeasts to adverse fluctuations during fermentation causes stress, consequently, microbes develop adaptive responses. In this study, the physiological and proteomic responses of LAB and yeast to acid stress, and their application in food fermentation was investigated. The physiological and proteomic responses of Lactobacillus amylovorus LS07 and Candida kefyr YS12 to acid stress were measured using turbidimetry method, SDS-PAGE and LC-MS/MS respectively. The technique previously reported by Association of Official Analytical Chemists (AOAC) were employed for evaluation of the physiocochemical and organoleptic properties of the sorghum gruel fermented using the LAB and yeast in singly and combination as starter cultures and spontaneous fermentation as control. Growth of L. amylovorus LS07 was optimal at pH 1.0 and C. kefyr YSI2 at pH 4. An increased intensity of 30S ribosomal protein S2 (L. amylovorus LS07) and 6-phosphogluconate dehydrogenase (C. kefyr YS12) was noted at pH 1 and 4 respectively suggesting increased microbial metabolism thereby reducing stress encountered. Sorghum gruel produced with combined starters had the highest crude protein (10.94 %), Iron content (0.0085 %), organoleptic acceptability (7.29) significantly different from products produced with the single starters and control. The combined starter's (L. amylovorus LS07 and C. kefyr YSI2 as starter) adapted stress yielded foods with improved sensory properties, mineral and reduced anti-nutrient contents.
Collapse
Affiliation(s)
- Oluwaseun Adeola Adewara
- University of Ibadan, 58987, Microbiology, Ibadan, Ibadan, Nigeria.,Caleb University, 202110, Biological Sciences and Biotechnology, Lagos, Lagos, Nigeria;
| | - S T Ogunbanwo
- University of Ibadan, Microbiology, P.O. Box 22346, University of Ibadan, Ibadan, Nigeria, Ibadan, Oyo, Nigeria, +234;
| |
Collapse
|
36
|
Sun R, Vermeulen A, Devlieghere F. Modeling the combined effect of temperature, pH, acetic and lactic acid concentrations on the growth/no growth interface of acid-tolerant Bacillus spores. Int J Food Microbiol 2021; 360:109419. [PMID: 34600755 DOI: 10.1016/j.ijfoodmicro.2021.109419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/05/2021] [Accepted: 09/19/2021] [Indexed: 11/16/2022]
Abstract
The application of minimal processing technologies has led to increased spoilage incidents in low-acid pasteurized sauces due to the outgrowth of acid-tolerant spore-forming spoilage bacteria (ATSSB). Controlling the germination and subsequent growth of ATSSB spores is vital to enhance the ambient storage stability of pasteurized sauces. This study developed and validated a set of growth/no growth (G/NG) models for spores of two ATSSB strains (Bacillus velezensis and Bacillus subtilis subsp. subtilis) isolated from pasteurized sauces. The G/NG data at two levels of temperature (22 and 30 °C) were collected in Nutrient Broth (aw = 0.98 adjusted with NaCl) by a full factorial design with five equidistant levels of pH (4.4-5.6), four concentrations of total acetic acid (0.0-0.3% (w/w)), and four concentrations of total lactic acid (0.00-1.00% (w/w)). The growth, starting from heat-treated (10 min 80 °C) spores, of each strain was assessed under 160 combinations by regular optical density measurements during three months. Twelve replicates were made for each combination. The developed models demonstrate that without organic acids even the lowest pH (4.4) allows a high growth possibility of the ATSSB spores, while acetic and lactic acids exhibit a significant antibacterial activity, which can be enhanced at decreased pH. The growth starting from B. subtilis spores can be inhibited for at least three months with 1.0% (w/w) total lactic acid in the water phase at both temperatures, which was not the case for B. velezensis, while 0.3% acetic acid achieves a full inhibition on both strains at 22 °C. With a combination of 0.3% acetic acid and 0.7% lactic acid, no growth should occur in the investigated range. This research is one of the first studies exploring the feasibility of ambient storage for low-acid pasteurized sauces eliminating preservatives such as benzoic and sorbic acids, and proves the synergistic effect of decreased pH and the presence of acetic and lactic acids on inhibiting bacterial growth from ATSSB spores.
Collapse
Affiliation(s)
- Rongxue Sun
- FMFP, Research Unit of Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - An Vermeulen
- FMFP, Research Unit of Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Frank Devlieghere
- FMFP, Research Unit of Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
37
|
Huang XF, Reardon KF. Quorum-sensing molecules increase ethanol yield from Saccharomyces cerevisiae. FEMS Yeast Res 2021; 21:6424905. [PMID: 34755845 DOI: 10.1093/femsyr/foab056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/05/2021] [Indexed: 11/14/2022] Open
Abstract
One strategy to increase the yield of desired fermentation products is to redirect substrate carbon from biomass synthesis. Non-genetic approaches to alter metabolism may have advantages of general applicability and simple control. The goal of this study was to identify and evaluate chemicals for their ability to inhibit the growth of Saccharomyces cerevisiae while allowing ethanol production with higher yields. Eight potential growth-inhibitory chemicals were screened for their ability to reduce cell growth in 24-well plates. Effective chemicals were then evaluated in cultivations to identify those that simultaneously reduced biomass yield and increased ethanol yield. The yeast quorum-sensing molecules 2-phenylethanol, tryptophol, and tyrosol, were found to increase the ethanol yield of S. cerevisiae JAY 270. These molecules were tested with seven other yeast strains and ethanol yields of up to 15% higher were observed. The effects of 2-phenylethanol and tryptophol were also studied in bioreactor fermentations. These findings demonstrate for the first time that the ethanol yield can be improved by adding yeast quorum-sensing molecules to reduce the cell growth of S. cerevisiae, suggesting a strategy to improve the yield of ethanol and other yeast fermentation products by manipulating native biological control systems.
Collapse
Affiliation(s)
- Xing-Feng Huang
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO
| | - Kenneth F Reardon
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO
| |
Collapse
|
38
|
Current Progress in Production of Building-Block Organic Acids by Consolidated Bioprocessing of Lignocellulose. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Several organic acids have been indicated among the top value chemicals from biomass. Lignocellulose is among the most attractive feedstocks for biorefining processes owing to its high abundance and low cost. However, its highly complex nature and recalcitrance to biodegradation hinder development of cost-competitive fermentation processes. Here, current progress in development of single-pot fermentation (i.e., consolidated bioprocessing, CBP) of lignocellulosic biomass to high value organic acids will be examined, based on the potential of this approach to dramatically reduce process costs. Different strategies for CBP development will be considered such as: (i) design of microbial consortia consisting of (hemi)cellulolytic and valuable-compound producing strains; (ii) engineering of microorganisms that combine biomass-degrading and high-value compound-producing properties in a single strain. The present review will mainly focus on production of organic acids with application as building block chemicals (e.g., adipic, cis,cis-muconic, fumaric, itaconic, lactic, malic, and succinic acid) since polymer synthesis constitutes the largest sector in the chemical industry. Current research advances will be illustrated together with challenges and perspectives for future investigations. In addition, attention will be dedicated to development of acid tolerant microorganisms, an essential feature for improving titer and productivity of fermentative production of acids.
Collapse
|
39
|
Uwineza C, Mahboubi A, Atmowidjojo A, Ramadhani A, Wainaina S, Millati R, Wikandari R, Niklasson C, Taherzadeh MJ. Cultivation of edible filamentous fungus Aspergillus oryzae on volatile fatty acids derived from anaerobic digestion of food waste and cow manure. BIORESOURCE TECHNOLOGY 2021; 337:125410. [PMID: 34157433 DOI: 10.1016/j.biortech.2021.125410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
In a circular economy approach, edible filamentous fungi (single cell protein) can be cultivated on volatile fatty acids (VFAs) derived from anaerobic digestion (AD) of organic-rich waste streams. In this study, the effect of pH, concentration/distribution of VFAs, nutrient supplementation, and type of waste on Aspergillus oryzae cultivation on synthetic VFAs, and actual VFAs derived from AD of food waste and cow manure were investigated. The optimal pH for A. oryzae growth on VFAs were 6 and 7 with maximum acetic acid consumption rates of 0.09 g/L.h. The fungus could thrive on high concentrations of acetic (up to 9 g/L) yielding 0.29 g dry biomass/gVFAsfed. In mixed VFAs cultures, A. oryzae primarily consumed caproic and acetic acids reaching a biomass yield of 0.26 g dry biomass/gVFAsfed (containing up to 41% protein). For waste-derived VFAs at pH 6, the fungus successfully consumed 81-100% of caproic, acetic, and butyric acids.
Collapse
Affiliation(s)
- Clarisse Uwineza
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Amir Mahboubi
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Amelia Atmowidjojo
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Alya Ramadhani
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Steven Wainaina
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Ria Millati
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Rachma Wikandari
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Claes Niklasson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | | |
Collapse
|
40
|
Shi C, Knøchel S. Inhibitory effects of binary combinations of microbial metabolites on the growth of tolerant Penicillium roqueforti and Mucor circinelloides. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
41
|
Komesli S, Akbulut S, Arslan NP, Adiguzel A, Taskin M. Waste frying oil hydrolysis and lipase production by cold-adapted Pseudomonas yamanorum LP2 under non-sterile culture conditions. ENVIRONMENTAL TECHNOLOGY 2021; 42:3245-3253. [PMID: 32192416 DOI: 10.1080/09593330.2020.1745297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 03/16/2020] [Indexed: 06/10/2023]
Abstract
Non-sterile culture technique is currently used in some microbial processes. However, there is no study on the use of this technique in the production of microbial lipases and hydrolysis of waste frying oils. This study was conducted to hydrolyse waste frying oils and produce lipase under non-sterile culture conditions using locally isolated cold-adapted bacteria. Of 75 bacterial isolates, the psychrotolerant Pseudomonas yamanorum LP2 (Genbank number: KU711080) was determined to have the highest lipase activity. It was found that a combination of restricted nutrient availability, low temperature and high inoculum volume prevented microbial contaminants under non-sterile conditions. The most favourable parameters for lipase production under both sterile and non-sterile conditions were 15°C temperature, pH 8, 30 mL/L inoculum volume, 40 mL/L waste frying oil concentration, 10 mL/L Tween-80 and 72 h incubation time. The maximum lipase activities in sterile and non-sterile media were determined as 93.3 and 96.8 U/L, respectively. The present process designed for enzyme production and waste oil hydrolysis can reduce the cost of cultivation medium as well as energy consumption and workload. The potential of cold-adapted bacteria to produce lipase and hydrolyse waste oils under non-sterile culture conditions was first tested in the current study.
Collapse
Affiliation(s)
- Senba Komesli
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, Erzurum, Turkey
| | - Sumeyya Akbulut
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, Erzurum, Turkey
| | | | - Ahmet Adiguzel
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, Erzurum, Turkey
| | - Mesut Taskin
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, Erzurum, Turkey
| |
Collapse
|
42
|
Aitzhanova A, Oleinikova Y, Mounier J, Hymery N, Leyva Salas M, Amangeldi A, Saubenova M, Alimzhanova M, Ashimuly K, Sadanov A. Dairy associations for the targeted control of opportunistic Candida. World J Microbiol Biotechnol 2021; 37:143. [PMID: 34328568 DOI: 10.1007/s11274-021-03096-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/18/2021] [Indexed: 01/15/2023]
Abstract
Antifungal and antibacterial activities of twenty-six combinations of lactic acid bacteria, propionibacteria, acetic acid bacteria and dairy yeasts inoculated in whey and milk were investigated. Associations including acetic acid bacteria were shown to suppress growth of the opportunistic yeast Candida albicans in well-diffusion assays. The protective effect of milk fermented with the two most promising consortia was confirmed in Caco-2 cell culture infected with C. albicans. Indeed, these fermented milks, after heat-treatment or not, suppressed lactate dehydrogenase release after 48 h while significant increase in LDH release was observed in the positive control (C. albicans alone) and with fermented milk obtained using commercial yogurt starter cultures. The analysis of volatile compounds in the cell-free supernatant using solid phase microextraction (SPME) coupled to gas chromatography-mass spectrometry (GC-MS) showed accumulation of significant amount of acetic acid by the consortium composed of Lactobacillus delbrueckii 5, Lactobacillus gallinarum 1, Lentilactobacillus parabuchneri 3, Lacticaseibacillus paracasei 33-4, Acetobacter syzygii 2 and Kluyveromyces marxianus 19, which corresponded to the zone of partial inhibition of C. albicans growth during well-diffusion assays. Interestingly, another part of anti-Candida activity, yielding small and transparent inhibition zones, was linked with the consortium cell fraction. This study showed a correlation between anti-Candida activity and the presence of acetic acid bacteria in dairy associations as well as a significant effect of two dairy associations against C. albicans in a Caco-2 cell model. These two associations may be promising consortia for developing functional dairy products with antagonistic action against candidiasis agents.
Collapse
Affiliation(s)
- Aida Aitzhanova
- Al-Farabi Kazakh National University, Al-Farabi ave., 71, 050040, Almaty, Kazakhstan
- Research and Production Center for Microbiology and Virology, Bogenbay Batyr str., 105, 050010, Almaty, Kazakhstan
| | - Yelena Oleinikova
- Research and Production Center for Microbiology and Virology, Bogenbay Batyr str., 105, 050010, Almaty, Kazakhstan.
| | - Jérôme Mounier
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Univ Brest, 29280, Plouzané, France
| | - Nolwenn Hymery
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Univ Brest, 29280, Plouzané, France
| | - Marcia Leyva Salas
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Univ Brest, 29280, Plouzané, France
| | - Alma Amangeldi
- Research and Production Center for Microbiology and Virology, Bogenbay Batyr str., 105, 050010, Almaty, Kazakhstan
| | - Margarita Saubenova
- Research and Production Center for Microbiology and Virology, Bogenbay Batyr str., 105, 050010, Almaty, Kazakhstan
| | - Mereke Alimzhanova
- Al-Farabi Kazakh National University, Al-Farabi ave., 71, 050040, Almaty, Kazakhstan
- Research and Production Center for Microbiology and Virology, Bogenbay Batyr str., 105, 050010, Almaty, Kazakhstan
| | - Kazhybek Ashimuly
- Research and Production Center for Microbiology and Virology, Bogenbay Batyr str., 105, 050010, Almaty, Kazakhstan
| | - Amankeldy Sadanov
- Research and Production Center for Microbiology and Virology, Bogenbay Batyr str., 105, 050010, Almaty, Kazakhstan
| |
Collapse
|
43
|
Cao L, Gao Y, Wang XZ, Shu GY, Hu YN, Xie ZP, Cui W, Guo XP, Zhou X. A Series of Efficient Umbrella Modeling Strategies to Track Irradiation-Mutation Strains Improving Butyric Acid Production From the Pre-development Earlier Stage Point of View. Front Bioeng Biotechnol 2021; 9:609345. [PMID: 34222207 PMCID: PMC8242359 DOI: 10.3389/fbioe.2021.609345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Clostridium tyrobutyricum (C. tyrobutyricum) is a fermentation strain used to produce butyric acid. A promising new biofuel, n-butanol, can be produced by catalysis of butyrate, which can be obtained through microbial fermentation. Butyric acid has various uses in food additives and flavor agents, antiseptic substances, drug formulations, and fragrances. Its use as a food flavoring has been approved by the European Union, and it has therefore been listed on the EU Lists of Flavorings. As butyric acid fermentation is a cost-efficient process, butyric acid is an attractive feedstock for various biofuels and food commercialization products. 12C6+ irradiation has advantages over conventional mutation methods for fermentation production due to its dosage conformity and excellent biological availability. Nevertheless, the effects of these heavy-ion irradiations on the specific productiveness of C. tyrobutyricum are still uncertain. We developed non-structured mathematical models to represent the heavy-ion irradiation of C. tyrobutyricum in biofermentation reactors. The kinetic models reflect various fermentation features of the mutants, including the mutant strain growth model, butyric acid formation model, and medium consumption model. The models were constructed based on the Markov chain Monte Carlo model and logistic regression. Models were verified using experimental data in response to different initial glucose concentrations (0-180 g/L). The parameters of fixed proposals are applied in the various fermentation stages. Predictions of these models were in accordance well with the results of fermentation assays. The maximum butyric acid production was 56.3 g/L. Our study provides reliable information for increasing butyric acid production and for evaluating the feasibility of using mutant strains of C. tyrobutyricum at the pre-development phase.
Collapse
Affiliation(s)
- Li Cao
- College of Life Sciences and Engineering, Hexi University, Zhangye, China
| | - Yue Gao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xue-Zhen Wang
- College of Life Sciences and Engineering, Hexi University, Zhangye, China
| | - Guang-Yuan Shu
- College of Life Sciences and Engineering, Hexi University, Zhangye, China
| | - Ya-Nan Hu
- College of Life Sciences and Engineering, Hexi University, Zhangye, China
| | - Zong-Ping Xie
- College of Life Sciences and Engineering, Hexi University, Zhangye, China
| | - Wei Cui
- College of Life Sciences and Engineering, Hexi University, Zhangye, China
| | - Xiao-Peng Guo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xiang Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
44
|
Calvert MD, Madden AA, Nichols LM, Haddad NM, Lahne J, Dunn RR, McKenney EA. A review of sourdough starters: ecology, practices, and sensory quality with applications for baking and recommendations for future research. PeerJ 2021; 9:e11389. [PMID: 34026358 PMCID: PMC8117929 DOI: 10.7717/peerj.11389] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/12/2021] [Indexed: 01/13/2023] Open
Abstract
The practice of sourdough bread-making is an ancient science that involves the development, maintenance, and use of a diverse and complex starter culture. The sourdough starter culture comes in many different forms and is used in bread-making at both artisanal and commercial scales, in countries all over the world. While there is ample scientific research related to sourdough, there is no standardized approach to using sourdough starters in science or the bread industry; and there are few recommendations on future directions for sourdough research. Our review highlights what is currently known about the microbial ecosystem of sourdough (including microbial succession within the starter culture), methods of maintaining sourdough (analogous to land management) on the path to bread production, and factors that influence the sensory qualities of the final baked product. We present new hypotheses for the successful management of sourdough starters and propose future directions for sourdough research and application to better support and engage the sourdough baking community.
Collapse
Affiliation(s)
- Martha D Calvert
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University (Virginia Tech), Blackburg, VA, United States of America.,Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States of America
| | - Anne A Madden
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States of America
| | - Lauren M Nichols
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States of America
| | - Nick M Haddad
- Kellogg Biological Station and Department of Integrative Biology, Michigan State University, Hickory Corners, MI, United States of America
| | - Jacob Lahne
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University (Virginia Tech), Blackburg, VA, United States of America
| | - Robert R Dunn
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States of America.,Center for Evolutionary Hologenomics, University of Copenhagen, Copenhagen, Denmark
| | - Erin A McKenney
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States of America
| |
Collapse
|
45
|
Prins RC, Billerbeck S. A buffered media system for yeast batch culture growth. BMC Microbiol 2021; 21:127. [PMID: 33892647 PMCID: PMC8063419 DOI: 10.1186/s12866-021-02191-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/11/2021] [Indexed: 11/24/2022] Open
Abstract
Background Fungi are premier hosts for the high-yield secretion of proteins for biomedical and industrial applications. The stability and activity of these secreted proteins is often dependent on the culture pH. As yeast acidifies the commonly used synthetic complete drop-out (SD) media that contains ammonium sulfate, the pH of the media needs to be buffered in order to maintain a desired extracellular pH during biomass production. At the same time, many buffering agents affect growth at the concentrations needed to support a stable pH. Although the standard for biotechnological research and development is shaken batch cultures or microtiter plate cultures that cannot be easily automatically pH-adjusted during growth, there is no comparative study that evaluates the buffering capacity and growth effects of different media types across pH-values in order to develop a pH-stable batch culture system. Results We systematically test the buffering capacity and growth effects of a citrate-phosphate buffer (CPB) from acidic to neutral pH across different media types. These media types differ in their nitrogen source (ammonium sulfate, urea or both). We find that the widely used synthetic drop-out media that uses ammonium sulfate as nitrogen source can only be effectively buffered at buffer concentrations that also affect growth. At lower concentrations, yeast biomass production still acidifies the media. When replacing the ammonium sulfate with urea, the media alkalizes. We then develop a medium combining ammonium sulfate and urea which can be buffered at low CPB concentrations that do not affect growth. In addition, we show that a buffer based on Tris/HCl is not effective in maintaining any of our media types at neutral pH even at relatively high concentrations. Conclusion Here we show that the buffering of yeast batch cultures is not straight-forward and addition of a buffering agent to set a desired starting pH does not guarantee pH-maintenance during growth. In response, we present a buffered media system based on an ammonium sulfate/urea medium that enables relatively stable pH-maintenance across a wide pH-range without affecting growth. This buffering system is useful for protein-secretion-screenings, antifungal activity assays, as well as for other pH-dependent basic biology or biotechnology projects. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02191-5.
Collapse
Affiliation(s)
- Rianne C Prins
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Sonja Billerbeck
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
46
|
Physiological performance of Kazachstania unispora in sourdough environments. World J Microbiol Biotechnol 2021; 37:88. [PMID: 33881636 PMCID: PMC8060213 DOI: 10.1007/s11274-021-03027-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/02/2021] [Indexed: 10/31/2022]
Abstract
In this work we explored the potential of several strains of Kazachstania unispora to be used as non-conventional yeasts in sourdough fermentation. Properties such as carbohydrate source utilization, tolerance to different environmental factors and the performance in fermentation were evaluated. The K. unispora strains are characterized by rather restricted substrate utilization: only glucose and fructose supported the growth of the strains. However, the growth in presence of fructose was higher compared to a Saccharomyces cerevisiae commercial strain. Moreover, the inability to ferment maltose can be considered a positive characteristic in sourdoughs, where the yeasts can form a nutritional mutualism with maltose-positive Lactic Acid Bacteria. Tolerance assays showed that K. unispora strains are adapted to a sourdough environment: they were able to grow in conditions of high osmolarity, high acidity and in presence of organic acids, ethanol and salt. Finally, the performance in fermentation was comparable with the S. cerevisiae commercial strain. Moreover, the growth was more efficient, which is an advantage in obtaining the biomass in an industrial scale. Our data show that K. unispora strains have positive properties that should be explored further in bakery sector.
Collapse
|
47
|
Peetermans A, Foulquié-Moreno MR, Thevelein JM. Mechanisms underlying lactic acid tolerance and its influence on lactic acid production in Saccharomyces cerevisiae. MICROBIAL CELL 2021; 8:111-130. [PMID: 34055965 PMCID: PMC8144909 DOI: 10.15698/mic2021.06.751] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One of the major bottlenecks in lactic acid production using microbial fermentation is the detrimental influence lactic acid accumulation poses on the lactic acid producing cells. The accumulation of lactic acid results in many negative effects on the cell such as intracellular acidification, anion accumulation, membrane perturbation, disturbed amino acid trafficking, increased turgor pressure, ATP depletion, ROS accumulation, metabolic dysregulation and metal chelation. In this review, the manner in which Saccharomyces cerevisiae deals with these issues will be discussed extensively not only for lactic acid as a singular stress factor but also in combination with other stresses. In addition, different methods to improve lactic acid tolerance in S. cerevisiae using targeted and non-targeted engineering methods will be discussed.
Collapse
Affiliation(s)
- Arne Peetermans
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Flanders, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001, Leuven-Heverlee, Flanders, Belgium
| | - María R Foulquié-Moreno
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Flanders, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001, Leuven-Heverlee, Flanders, Belgium
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Flanders, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001, Leuven-Heverlee, Flanders, Belgium.,NovelYeast bv, Open Bio-Incubator, Erasmus High School, Laarbeeklaan 121, 1090 Brussels (Jette), Belgium
| |
Collapse
|
48
|
Du H, Ji M, Xing M, Wang X, Xu Y. The effects of dynamic bacterial succession on the flavor metabolites during Baijiu fermentation. Food Res Int 2021; 140:109860. [PMID: 33648178 DOI: 10.1016/j.foodres.2020.109860] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/14/2020] [Accepted: 10/27/2020] [Indexed: 11/18/2022]
Abstract
The succession of microbial community significantly affect the flavor formation of traditional fermented foods and beverages. Chinese liquor (Baijiu) fermentation is a typical spontaneous solid-state fermentation process driven by natural microbiota. The type of process used to make liquor-craft or industrial-alters the operational environment and the aromatic qualities of the product contributed by various microbial consortia. But differences in microbial community assembly and temporal succession are often overlooked. In this study, we investigated bacterial community dynamics, substrate consumption, and metabolite production during both craft and industrial liquor-making processes (CLP and ILP, respectively). We found that the compositions of bacterial communities were different, even though no significant difference (p > 0.05) was observed in bacterial species between CLP and ILP at the beginning of fermentation. During ILP, glucose was used more rapidly by microflora, leading in turn to a higher ethanol production rate during the early stage of fermentation. The higher rate of ethanol production in ILP shortened the lifetime of bacteria such as Weissella, Pediococcus, Leuconostoc, and Bacillus during the early stage of fermentation. Lactobacillus sp. became dominant earlier in ILP than in CLP. Finally, the change in bacterial community dynamics led to changes in aroma compounds. Using CLP and ILP as a model system, our results illustrate the dynamic nature of Baijiu fermentations and microbial succession patterns therein. This can be applied to optimize the fermentation processes and flavors attributes of this and other fermented foods.
Collapse
Affiliation(s)
- Hai Du
- Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China
| | - Mei Ji
- Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China
| | - Minyu Xing
- Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xueshan Wang
- Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China.
| |
Collapse
|
49
|
Hansen ASL, Dunham MJ, Arsovska D, Zhang J, Keasling JD, Herrgard MJ, Jensen MK. Dietary Change Enables Robust Growth-Coupling of Heterologous Methyltransferase Activity in Yeast. ACS Synth Biol 2020; 9:3408-3415. [PMID: 33179905 DOI: 10.1021/acssynbio.0c00348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Genetic modifications of living organisms and proteins are made possible by a catalogue of molecular and synthetic biology tools, yet proper screening assays for genetic variants of interest continue to lag behind. Synthetic growth-coupling (GC) of enzyme activities offers a simple, inexpensive way to track such improvements. In this follow-up study we present the optimization of a recently established GC design for screening of heterologous methyltransferases (MTases) and related pathways in the yeast Saccharomyces cerevisiae. Specifically, upon testing different media compositions and genetic backgrounds, improved GC of different heterologous MTase activities is obtained. Furthermore, we demonstrate the strength of the system by screening a library of catechol O-MTase variants converting protocatechuic acid into vanillic acid. We demonstrated high correlation (R2 = 0.775) between vanillic acid and cell density as a proxy for MTase activity. We envision that the improved MTase GC can aid evolution-guided optimization of biobased production processes for methylated compounds with yeast in the future.
Collapse
Affiliation(s)
- Anne Sofie Lærke Hansen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Maitreya J. Dunham
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Dushica Arsovska
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Jie Zhang
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Jay D. Keasling
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- Joint BioEnergy Institute, Emeryville, California 94608, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering & Department of Bioengineering, University of California, Berkeley, California 94720, United States
- Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institutes of Advanced Technologies, Shenzhen 518055, China
| | - Markus J. Herrgard
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- BioInnovation Institute, 2200 Copenhagen, Denmark
| | - Michael K. Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
50
|
Lu SY, Bischoff KM, Rich JO, Liu S, Skory CD. Recombinant bacteriophage LysKB317 endolysin mitigates Lactobacillus infection of corn mash fermentations. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:157. [PMID: 32944073 PMCID: PMC7488000 DOI: 10.1186/s13068-020-01795-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Commercial ethanol fermentation facilities traditionally rely on antibiotics for bacterial contamination control. Here we demonstrate an alternative approach to treat contamination using a novel peptidoglycan hydrolase (LysKB317) isolated from a bacteriophage, EcoSau. This endolysin was specially selected against Lactobacillus strains that were isolated as contaminants from a fuel ethanol plant. The LysKB317 gene was recombinantly expressed in Escherichia coli as a 33 kDa purified enzyme. RESULTS In turbidity reduction assays, the recombinant enzyme was subjected to a panel of 32 bacterial strains and was active against 28 bacterial strains representing 1 species of Acetobacter, 8 species of Lactobacillus, 1 species of Pediococcus, 3 species of Streptococcus, and 1 species of Weissella. The activity of LysKB317 was optimal around pH 6, but it has broad activity and stability from pH 4.5-7.5 up to at least 48 h. Maximum activity was observed at 50 °C up to at least 72 h. In addition, LysKB317 was stable in 30% ethanol up to at least 72 h. In experimentally infected corn mash fermentations, 1 µM endolysin reduced bacterial load by 3-log fold change, while 0.01 µM reduced bacteria by 2-log fold change. Concentration of fermentation products (ethanol, residual glucose, lactic acid, and acetic acids) for infected cultures treated with ≥ 0.01 µM LysKB317 was similar to uncontaminated controls. CONCLUSION Exogenously added LysKB317 endolysin is functional in conditions typically found in fuel ethanol fermentations tanks and may be developed as an alternative to antibiotics for contamination control during fuel ethanol fermentations.
Collapse
Affiliation(s)
- Shao-Yeh Lu
- Renewable Product Technology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, 1815 North University Street, Peoria, IL 61604-3902 USA
| | - Kenneth M. Bischoff
- Renewable Product Technology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, 1815 North University Street, Peoria, IL 61604-3902 USA
| | - Joseph O. Rich
- Renewable Product Technology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, 1815 North University Street, Peoria, IL 61604-3902 USA
- Agricultural Research Service, U.S. Department of Agriculture, Fort Collins, CO 80526 USA
| | - Siqing Liu
- Renewable Product Technology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, 1815 North University Street, Peoria, IL 61604-3902 USA
| | - Christopher D. Skory
- Renewable Product Technology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, 1815 North University Street, Peoria, IL 61604-3902 USA
| |
Collapse
|