1
|
Tong Z, Yin Z. Distribution, contribution and regulation of nestin + cells. J Adv Res 2024; 61:47-63. [PMID: 37648021 PMCID: PMC11258671 DOI: 10.1016/j.jare.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Nestin is an intermediate filament first reported in neuroepithelial stem cells. Nestin expression could be found in a variety of tissues throughout all systems of the body, especially during tissue development and tissue regeneration processes. AIM OF REVIEW This review aimed to summarize and discuss current studies on the distribution, contribution and regulation of nestin+ cells in different systems of the body, to discuss the feasibility ofusing nestin as a marker of multilineage stem/progenitor cells, and better understand the potential roles of nestin+ cells in tissue development, regeneration and pathological processes. KEY SCIENTIFIC CONCEPTS OF REVIEW This review highlights the potential of nestin as a marker of multilineage stem/progenitor cells, and as a key factor in tissue development and tissue regeneration. The article discussed the current findings, limitations, and potential clinical implications or applications of nestin+ cells. Additionally, it included the relationship of nestin+ cells to other cell populations. We propose potential future research directions to encourage further investigation in the field.
Collapse
Affiliation(s)
- Ziyang Tong
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zi Yin
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| |
Collapse
|
2
|
Al-Hakeim HK, Twaij BAAR, Al-Naqeeb TH, Moustafa SR, Maes M. Neuronal damage and inflammatory biomarkers are associated with the affective and chronic fatigue-like symptoms due to end-stage renal disease. J Affect Disord 2024; 347:220-229. [PMID: 38007104 DOI: 10.1016/j.jad.2023.11.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND Many biochemical, immunological, and neuropsychiatric changes are associated with end-stage renal disease (ESRD). Neuronal damage biomarkers such as glial fibrillary acidic protein (GFAP), neurofilament light chain (NFL), S100 calcium-binding protein B (S100B), ionized calcium-binding adaptor molecule-1 (IBA1), and myelin basic protein (MBP) are among the less-studied biomarkers of ESRD. AIM We examined the associations between these neuro-axis biomarkers, inflammatory biomarkers, e.g., C-reactive protein (CRP), interleukin (IL-6), IL-10, and zinc, copper, and neuropsychiatric symptoms due to ERSD. METHODS ELISA techniques were used to measure serum levels of neuronal damage biomarkers in 70 ESRD patients, and 46 healthy controls. RESULTS ESRD patients have higher scores of depression, anxiety, fatigue, and physiosomatic symptoms than healthy controls. Aberrations in kidney function tests and the number of dialysis interventions are associated with the severity of depression, anxiety, fibro-fatigue and physiosomatic symptoms, peripheral inflammation, nestin, and NFL. Serum levels of neuronal damage biomarkers (NFL, MBP, and nestin), CRP, and interleukin (IL)-10 are elevated, and serum zinc is decreased in ESRD patients as compared with controls. The neuronal damage biomarkers NFL, nestin, S100B and MBP are associated with the severity of one or more neuropsychiatric symptom domains. Around 50 % of the variance in the neuropsychiatric symptoms is explained by NFL, nestin, S00B, copper, and an inflammatory index. CONCLUSIONS The severity of renal dysfunction and/or the number of dialysis interventions may induce peripheral inflammation and, consequently, neurotoxicity to intermediate filament proteins, astrocytes, and the blood-brain barrier, leading to the neuropsychiatric symptoms of ESRD.
Collapse
Affiliation(s)
| | | | - Tabarek Hadi Al-Naqeeb
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Shatha Rouf Moustafa
- Clinical Analysis Department, College of Pharmacy, Hawler Medical University, Havalan City, Erbil, Iraq
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria; Research Institute, Medical University of Plovdiv, Plovdiv, Bulgaria; Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China.
| |
Collapse
|
3
|
Khamis T, Abdelkhalek A, Abdellatif H, Dwidar N, Said A, Ahmed R, Wagdy K, Elgarhy R, Eltahan R, Mohamed H, Said Amer E, Hanna M, Ragab T, Kishk A, Wael J, Sarhan E, Saweres L, Reda M, Elkomy S, Mohamed A, Samy A, Khafaga A, Shaker Y, Yehia H, Alanazi A, Alassiri M, Tîrziu E, Bucur IM, Arisha AH. BM-MSCs alleviate diabetic nephropathy in male rats by regulating ER stress, oxidative stress, inflammation, and apoptotic pathways. Front Pharmacol 2023; 14:1265230. [PMID: 38044936 PMCID: PMC10690373 DOI: 10.3389/fphar.2023.1265230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/12/2023] [Indexed: 12/05/2023] Open
Abstract
Introduction: Diabetic nephropathy (DN), a chronic kidney disease, is a major cause of end-stage kidney disease worldwide. Mesenchymal stem cells (MSCs) have become a promising option to mitigate several diabetic complications. Methods: In this study, we evaluated the therapeutic potential of bone marrow-derived mesenchymal stem cells (BM-MSCs) in a rat model of STZ-induced DN. After the confirmation of diabetes, rats were treated with BM-MSCs and sacrificed at week 12 after treatment. Results: Our results showed that STZ-induced DN rats had extensive histopathological changes, significant upregulation in mRNA expression of renal apoptotic markers, ER stress markers, inflammatory markers, fibronectin, and intermediate filament proteins, and reduction of positive immunostaining of PCNA and elevated P53 in kidney tissue compared to the control group. BM-MSC therapy significantly improved renal histopathological changes, reduced renal apoptosis, ER stress, inflammation, and intermediate filament proteins, as well as increased positive immunostaining of PCNA and reduced P53 in renal tissue compared to the STZ-induced DN group. Conclusion: In conclusion, our study indicates that BM-MSCs may have therapeutic potential for the treatment of DN and provide important insights into their potential use as a novel therapeutic approach for DN.
Collapse
Affiliation(s)
- Tarek Khamis
- Department of Pharmacology and Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Adel Abdelkhalek
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Hussein Abdellatif
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
- Anatomy and Embryology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nourelden Dwidar
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Ahmed Said
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Rama Ahmed
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Kerolos Wagdy
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Rowina Elgarhy
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Rawan Eltahan
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Hisham Mohamed
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Eman Said Amer
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Maria Hanna
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Tarek Ragab
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Abdallah Kishk
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Judy Wael
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Eyad Sarhan
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Linda Saweres
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Mohamed Reda
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Sara Elkomy
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Abdalah Mohamed
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Abdullah Samy
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Ateya Khafaga
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Youliana Shaker
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Hamdy Yehia
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Asma Alanazi
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Mohammed Alassiri
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
- Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City (KAMC), Ministry of the National Guard—Health Affairs, Riyadh, Saudi Arabia
| | - Emil Tîrziu
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, University of Life Sciences, “King Mihai I” from Timisoara [ULST], Timisoara, Romania
| | - Iulia Maria Bucur
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, University of Life Sciences, “King Mihai I” from Timisoara [ULST], Timisoara, Romania
| | - Ahmed Hamed Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
- Department of Physiology, Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
4
|
Yakupova EI, Abramicheva PA, Bocharnikov AD, Andrianova NV, Plotnikov EY. Biomarkers of the End-Stage Renal Disease Progression: Beyond the GFR. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1622-1644. [PMID: 38105029 DOI: 10.1134/s0006297923100164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/20/2023] [Accepted: 08/20/2023] [Indexed: 12/19/2023]
Abstract
Chronic kidney disease can progress to the end-stage renal disease (ESRD) characterized by a high risk of morbidity and mortality. ESRD requires immediate therapy or even dialysis or kidney transplantation, therefore, its timely diagnostics is critical for many patients. ESRD is associated with pathological changes, such as inflammation, fibrosis, endocrine disorders, and epigenetic changes in various cells, which could serve as ESRD markers. The review summarizes information on conventional and new ESRD biomarkers that can be assessed in kidney tissue, blood, and urine. Some biomarkers are specific to a particular pathology, while others are more universal. Here, we suggest several universal inflammatory, fibrotic, hormonal, and epigenetic markers indicative of severe deterioration of renal function and ESRD progression for improvement of ESRD diagnostics.
Collapse
Affiliation(s)
- Elmira I Yakupova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Polina A Abramicheva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexey D Bocharnikov
- International School of Medicine of the Future, Sechenov First Moscow State Medical University, Moscow, 119992, Russia
| | - Nadezda V Andrianova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Egor Y Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow, 117997, Russia
| |
Collapse
|
5
|
Hertig V, Villeneuve L, Calderone A. Nestin identifies a subpopulation of rat ventricular fibroblasts and participates in cell migration. Am J Physiol Cell Physiol 2023; 325:C496-C508. [PMID: 37458435 DOI: 10.1152/ajpcell.00161.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023]
Abstract
Fibroblast progenitor cells migrate to the endocardial region during cardiogenesis, and the migration of ventricular fibroblasts to the ischemically damaged region of the infarcted adult heart is a seminal event of reparative fibrosis. The intermediate filament protein nestin is implicated in cell migration and expression identified in a subpopulation of scar-derived myofibroblasts. The present study tested the hypothesis that fibroblast progenitor cells express nestin, and the intermediate filament protein drives the migratory phenotype of ventricular fibroblasts. Transcription factor 21 (Tcf21)- and Wilms tumor 1 (WT1)-fibroblast progenitor cells identified in the epicardial/endocardial regions of the E12.5- to E13.5-day embryonic mouse heart predominantly expressed nestin. Nuclear Tcf21/WT1 staining was identified in neonatal rat ventricular fibroblasts (NNVFbs), and a subpopulation coexpressed nestin. Nuclear Tcf21/WT1 expression persisted in adult rat ventricular fibroblasts, whereas nestin protein levels were downregulated. Nestin-expressing NNVFbs exhibited a unique phenotype as the subpopulation was refractory to cell cycle reentry in response to selective stimuli. Nestin(-)- and nestin(+)-scar-derived rat myofibroblasts plated in Matrigel unmasked a migratory phenotype characterized by the de novo formation of lumen-like structures. The elongated membrane projections emanating from scar myofibroblasts delineating the boundary of lumen-like structures expressed nestin. Lentiviral short-hairpin RNA (shRNA)-mediated nestin depletion inhibited the in vitro migratory response of NNVFbs as the wound radius was significantly larger compared with NNVFbs infected with the empty lentivirus. Thus, nestin represents a marker of embryonic Tcf21/WT1(+)-fibroblast progenitor cells. The neonatal rat heart contains a distinct subpopulation of nestin-immunoreactive Tcf21/WT1(+) fibroblasts refractory to cell cycle reentry, and the intermediate filament protein may preferentially facilitate ventricular fibroblast migration during physiological/pathological remodeling.NEW & NOTEWORTHY Tcf21/WT1(+)-fibroblast progenitor cells of the embryonic mouse heart predominantly express the intermediate filament protein nestin. A subpopulation of Tcf21/WT1(+)-neonatal rat ventricular fibroblasts express nestin and are refractory to selective stimuli influencing cell cycle reentry. Scar-derived myofibroblasts plated in Matrigel elicit the formation of lumen-like structures characterized by the appearance of nestin(+)-membrane projections. Lentiviral shRNA-mediated nestin depletion in a subpopulation of neonatal rat ventricular fibroblasts suppressed the migratory response following the in vitro scratch assay.
Collapse
Affiliation(s)
- Vanessa Hertig
- Research Center, Montreal Heart Institute, Montréal, Québec, Canada
| | - Louis Villeneuve
- Research Center, Montreal Heart Institute, Montréal, Québec, Canada
| | - Angelino Calderone
- Research Center, Montreal Heart Institute, Montréal, Québec, Canada
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
6
|
Al-hakeim HK, Al-raheem Twaij BA, Al-naqeeb TH, Moustafa SR, Maes M. Neuronal damage and inflammatory biomarkers are associated with the affective and chronic fatigue-like symptoms due to end-stage renal disease.. [DOI: 10.1101/2023.05.03.23289492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
AbstractBackgroundMany biochemical, immunological, and neuropsychiatric changes are associated with end-stage renal disease (ESRD). Neuronal damage biomarkers such as glial fibrillary acidic protein (GFAP), neurofilament light chain (NFL), S100 calcium-binding protein B (S100B), ionized calcium-binding adaptor molecule-1 (IBA1), and myelin basic protein (MBP) are among the less-studied biomarkers of ESRD.AimWe examined the associations between these neuro-axis biomarkers, inflammatory biomarkers, e.g., C-reactive protein (CRP), interleukin (IL-6), IL-10, and zinc, copper, and neuropsychiatric symptoms due to ERSD.MethodsELISA techniques were used to measure serum levels of neuronal damage biomarkers in 70 ESRD patients, and 46 healthy controls.ResultsESRD patients have higher scores of depression, anxiety, fatigue, and physiosomatic symptoms than healthy controls. Aberrations in kidney function tests and the number of dialysis interventions are associated with the severity of depression, anxiety, fibro-fatigue and physiosomatic symptoms, peripheral inflammation, nestin, and NFL. Serum levels of neuronal damage biomarkers (NFL, MBP, and nestin), CRP, and interleukin (IL)-10 are elevated, and serum zinc is decreased in ESRD patients as compared with controls. The neuronal damage biomarkers NFL, nestin, S100B and MBP are associated with the severity of one or more neuropsychiatric symptom domains. Around 50% of the variance in the neuropsychiatric symptoms is explained by NFL, nestin, S00B, copper, and an inflammatory index.ConclusionsThe severity of renal dysfunction and/or the number of dialysis interventions may induce peripheral inflammation and, consequently, neurotoxicity to intermediate filament proteins, astrocytes, and the blood-brain barrier, leading to the neuropsychiatric symptoms of ESRD.
Collapse
|
7
|
Age-Associated Loss in Renal Nestin-Positive Progenitor Cells. Int J Mol Sci 2022; 23:ijms231911015. [PMID: 36232326 PMCID: PMC9569966 DOI: 10.3390/ijms231911015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 12/03/2022] Open
Abstract
The decrease in the number of resident progenitor cells with age was shown for several organs. Such a loss is associated with a decline in regenerative capacity and a greater vulnerability of organs to injury. However, experiments evaluating the number of progenitor cells in the kidney during aging have not been performed until recently. Our study tried to address the change in the number of renal progenitor cells with age. Experiments were carried out on young and old transgenic nestin-green fluorescent protein (GFP) reporter mice, since nestin is suggested to be one of the markers of progenitor cells. We found that nestin+ cells in kidney tissue were located in the putative niches of resident renal progenitor cells. Evaluation of the amount of nestin+ cells in the kidneys of different ages revealed a multifold decrease in the levels of nestin+ cells in old mice. In vitro experiments on primary cultures of renal tubular cells showed that all cells including nestin+ cells from old mice had a lower proliferation rate. Moreover, the resistance to damaging factors was reduced in cells obtained from old mice. Our data indicate the loss of resident progenitor cells in kidneys and a decrease in renal cells proliferative capacity with aging.
Collapse
|
8
|
Burgy O, Crestani B, Bonniaud P. Targeting the nasty nestin to shoot lung fibrosis. Eur Respir J 2022; 59:59/5/2103146. [PMID: 35512809 DOI: 10.1183/13993003.03146-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/05/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Olivier Burgy
- INSERM U1231, Faculty of Medicine and Pharmacy, University of Bourgogne-Franche Comté, Dijon, France .,Constitutive Reference Center for Rare Pulmonary Diseases - OrphaLung, Dijon-Bourgogne University Hospital, Dijon, France
| | - Bruno Crestani
- Université Paris Cité, Inserm, U1152, laboratoire d'excellence INFLAMEX, Paris, France.,APHP, Service de Pneumologie A, Constitutive Reference Center for Rare Pulmonary Diseases - OrphaLung, FHU APOLLO, Hôpital Bichat, Paris, France
| | - Philippe Bonniaud
- INSERM U1231, Faculty of Medicine and Pharmacy, University of Bourgogne-Franche Comté, Dijon, France.,Constitutive Reference Center for Rare Pulmonary Diseases - OrphaLung, Dijon-Bourgogne University Hospital, Dijon, France.,Dept of Pulmonary Medicine and Intensive Care Unit, Dijon-Bourgogne University Hospital, Dijon, France
| |
Collapse
|
9
|
Wang J, Lai X, Yao S, Chen H, Cai J, Luo Y, Wang Y, Qiu Y, Huang Y, Wei X, Wang B, Lu Q, Guan Y, Wang T, Li S, Xiang AP. Nestin promotes pulmonary fibrosis via facilitating recycling of TGF-β receptor I. Eur Respir J 2021; 59:13993003.03721-2020. [PMID: 34625478 PMCID: PMC9068978 DOI: 10.1183/13993003.03721-2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/16/2021] [Indexed: 12/03/2022]
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease that is characterised by aberrant proliferation of activated myofibroblasts and pathological remodelling of the extracellular matrix. Previous studies have revealed that the intermediate filament protein nestin plays key roles in tissue regeneration and wound healing in different organs. Whether nestin plays a critical role in the pathogenesis of IPF needs to be clarified. Methods Nestin expression in lung tissues from bleomycin-treated mice and IPF patients was determined. Transfection with nestin short hairpin RNA vectors in vitro that regulated transcription growth factor (TGF)-β/Smad signalling was conducted. Biotinylation assays to observe plasma membrane TβRI, TβRI endocytosis and TβRI recycling after nestin knockdown were performed. Adeno-associated virus serotype (AAV)6-mediated nestin knockdown was assessed in vivo. Results We found that nestin expression was increased in a murine pulmonary fibrosis model and IPF patients, and that the upregulated protein primarily localised in lung α-smooth muscle actin-positive myofibroblasts. Mechanistically, we determined that nestin knockdown inhibited TGF-β signalling by suppressing recycling of TβRI to the cell surface and that Rab11 was required for the ability of nestin to promote TβRI recycling. In vivo, we found that intratracheal administration of AAV6-mediated nestin knockdown significantly alleviated pulmonary fibrosis in multiple experimental mice models. Conclusion Our findings reveal a pro-fibrotic function of nestin partially through facilitating Rab11-dependent recycling of TβRI and shed new light on pulmonary fibrosis treatment. Nestin regulates the vesicular trafficking system by promoting Rab11-dependent recycling of TβRI and thereby contributes to the progression of pulmonary fibrosis. Precise targeting of nestin may represent a potential therapeutic strategy for IPF.https://bit.ly/3zO75c3
Collapse
Affiliation(s)
- Jiancheng Wang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China.,Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China.,These authors contributed equally to this work
| | - Xiaofan Lai
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China.,Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,These authors contributed equally to this work
| | - Senyu Yao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China.,These authors contributed equally to this work
| | - Hainan Chen
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China.,These authors contributed equally to this work
| | - Jianye Cai
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China.,Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-Sen University, Guangzhou, China
| | - Yulong Luo
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yi Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Yuan Qiu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Yinong Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China.,Department of Endocrinology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaoyue Wei
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Boyan Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Qiying Lu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Yuanjun Guan
- Core Facility of Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Tao Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Shiyue Li
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China .,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Center for Precision Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
10
|
Patil K, Khan FB, Akhtar S, Ahmad A, Uddin S. The plasticity of pancreatic cancer stem cells: implications in therapeutic resistance. Cancer Metastasis Rev 2021; 40:691-720. [PMID: 34453639 PMCID: PMC8556195 DOI: 10.1007/s10555-021-09979-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023]
Abstract
The ever-growing perception of cancer stem cells (CSCs) as a plastic state rather than a hardwired defined entity has evolved our understanding of the functional and biological plasticity of these elusive components in malignancies. Pancreatic cancer (PC), based on its biological features and clinical evolution, is a prototypical example of a CSC-driven disease. Since the discovery of pancreatic CSCs (PCSCs) in 2007, evidence has unraveled their control over many facets of the natural history of PC, including primary tumor growth, metastatic progression, disease recurrence, and acquired drug resistance. Consequently, the current near-ubiquitous treatment regimens for PC using aggressive cytotoxic agents, aimed at ‘‘tumor debulking’’ rather than eradication of CSCs, have proven ineffective in providing clinically convincing improvements in patients with this dreadful disease. Herein, we review the key hallmarks as well as the intrinsic and extrinsic resistance mechanisms of CSCs that mediate treatment failure in PC and enlist the potential CSC-targeting ‘natural agents’ that are gaining popularity in recent years. A better understanding of the molecular and functional landscape of PCSC-intrinsic evasion of chemotherapeutic drugs offers a facile opportunity for treating PC, an intractable cancer with a grim prognosis and in dire need of effective therapeutic advances.
Collapse
Affiliation(s)
- Kalyani Patil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Farheen B Khan
- Department of Biology, College of Science, The United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar.,Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar. .,Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar. .,Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
11
|
Chen H, Cai J, Wang J, Qiu Y, Jiang C, Wang Y, Wang Y, Yi C, Guo Lv, Pan L, Guan Y, Zheng J, Qiu D, Du C, Liu Q, Chen G, Yang Y, Xu Y, Xiang AP, Zhang Q. Targeting Nestin + hepatic stellate cells ameliorates liver fibrosis by facilitating TβRI degradation. J Hepatol 2021; 74:1176-1187. [PMID: 33217494 DOI: 10.1016/j.jhep.2020.11.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 11/02/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Liver fibrosis is a wound healing response that arises from various aetiologies. The intermediate filament protein Nestin has been reported to participate in maintaining tissue homeostasis during wound healing responses. However, little is known about the role Nestin plays in liver fibrosis. This study investigated the function and precise regulatory network of Nestin during liver fibrosis. METHODS Nestin expression was assessed via immunostaining and quantitative real-time PCR (qPCR) in fibrotic/cirrhotic samples. The induction of Nestin expression by transforming growth factor beta (TGFβ)-Smad2/3 signalling was investigated through luciferase reporter assays. The functional role of Nestin in hepatic stellate cells (HSCs) was investigated by examining the pathway activity of profibrogenic TGFβ-Smad2/3 signalling and degradation of TGFβ receptor I (TβRI) after interfering with Nestin. The in vivo effects of knocking down Nestin were examined with an adeno-associated virus vector (serotype 6, AAV6) carrying short-hairpin RNA targeting Nestin in fibrotic mouse models. RESULTS Nestin was mainly expressed in activated HSCs and increased with the progression of liver fibrosis. The profibrogenic pathway TGFβ-Smad2/3 induced Nestin expression directly. Knocking down Nestin promoted caveolin 1-mediated TβRI degradation, resulting in TGFβ-Smad2/3 pathway impairment and reduced fibrosis marker expression in HSCs. In AAV6-treated murine fibrotic models, knocking down Nestin resulted in decreased levels of inflammatory infiltration, hepatocellular damage, and a reduced degree of fibrosis. CONCLUSION The expression of Nestin in HSCs was induced by TGFβ and positively correlated with the degree of liver fibrosis. Knockdown of Nestin decreased activation of the TGFβ pathway and alleviated liver fibrosis both in vitro and in vivo. Our data demonstrate a novel role of Nestin in controlling HSC activation in liver fibrosis. LAY SUMMARY Liver fibrosis has various aetiologies but represents a common process in chronic liver diseases that is associated with high morbidity and mortality. Herein, we demonstrate that the intermediate filament protein Nestin plays an essential profibrogenic role in liver fibrosis by forming a positive feedback loop with the TGFβ-Smad2/3 pathway, providing a potential therapeutic target for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Huaxin Chen
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianye Cai
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China; Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiancheng Wang
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China; Scientific Research Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yuan Qiu
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Chenhao Jiang
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Yi Wang
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Yiqin Wang
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Chenju Yi
- Scientific Research Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Guo Lv
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lijie Pan
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuanjun Guan
- Core Facility Centre, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jun Zheng
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dongbo Qiu
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Cong Du
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiuli Liu
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guihua Chen
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yang Yang
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Yan Xu
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Andy Peng Xiang
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China.
| | - Qi Zhang
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
12
|
Atkins A, Xu MJ, Li M, Rogers NP, Pryzhkova MV, Jordan PW. SMC5/6 is required for replication fork stability and faithful chromosome segregation during neurogenesis. eLife 2020; 9:e61171. [PMID: 33200984 PMCID: PMC7723410 DOI: 10.7554/elife.61171] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/16/2020] [Indexed: 12/21/2022] Open
Abstract
Mutations of SMC5/6 components cause developmental defects, including primary microcephaly. To model neurodevelopmental defects, we engineered a mouse wherein Smc5 is conditionally knocked out (cKO) in the developing neocortex. Smc5 cKO mice exhibited neurodevelopmental defects due to neural progenitor cell (NPC) apoptosis, which led to reduction in cortical layer neurons. Smc5 cKO NPCs formed DNA bridges during mitosis and underwent chromosome missegregation. SMC5/6 depletion triggers a CHEK2-p53 DNA damage response, as concomitant deletion of the Trp53 tumor suppressor or Chek2 DNA damage checkpoint kinase rescued Smc5 cKO neurodevelopmental defects. Further assessment using Smc5 cKO and auxin-inducible degron systems demonstrated that absence of SMC5/6 leads to DNA replication stress at late-replicating regions such as pericentromeric heterochromatin. In summary, SMC5/6 is important for completion of DNA replication prior to entering mitosis, which ensures accurate chromosome segregation. Thus, SMC5/6 functions are critical in highly proliferative stem cells during organism development.
Collapse
Affiliation(s)
- Alisa Atkins
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public HealthBaltimoreUnited States
| | - Michelle J Xu
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public HealthBaltimoreUnited States
| | - Maggie Li
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public HealthBaltimoreUnited States
| | - Nathaniel P Rogers
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public HealthBaltimoreUnited States
| | - Marina V Pryzhkova
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public HealthBaltimoreUnited States
| | - Philip W Jordan
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public HealthBaltimoreUnited States
| |
Collapse
|
13
|
Waasdorp M, de Rooij DM, Florquin S, Duitman J, Spek CA. Protease-activated receptor-1 contributes to renal injury and interstitial fibrosis during chronic obstructive nephropathy. J Cell Mol Med 2018; 23:1268-1279. [PMID: 30485646 PMCID: PMC6349177 DOI: 10.1111/jcmm.14028] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/05/2018] [Accepted: 10/24/2018] [Indexed: 12/17/2022] Open
Abstract
End‐stage renal disease, the final stage of all chronic kidney disorders, is associated with renal fibrosis and inevitably leads to renal failure and death. Transition of tubular epithelial cells (TECs) into mesenchymal fibroblasts constitutes a proposed mechanism underlying the progression of renal fibrosis and here we assessed whether protease‐activated receptor (PAR)‐1, which recently emerged as an inducer of epithelial‐to‐mesenchymal transition (EMT), aggravates renal fibrosis. We show that PAR‐1 activation on TECs reduces the expression of epithelial markers and simultaneously induces mesenchymal marker expression reminiscent of EMT. We next show that kidney damage was reduced in PAR‐1‐deficient mice during unilateral ureter obstruction (UUO) and that PAR‐1‐deficient mice develop a diminished fibrotic response. Importantly, however, we did hardly observe any signs of mesenchymal transition in both wild‐type and PAR‐1‐deficient mice suggesting that diminished fibrosis in PAR‐1‐deficient mice is not due to reduced EMT. Instead, the accumulation of macrophages and fibroblasts was significantly reduced in PAR‐1‐deficient animals which were accompanied by diminished production of MCP‐1 and TGF‐β. Overall, we thus show that PAR‐1 drives EMT of TECs in vitro and aggravates UUO‐induced renal fibrosis although this is likely due to PAR‐1‐dependent pro‐fibrotic cytokine production rather than EMT.
Collapse
Affiliation(s)
- Maaike Waasdorp
- Center for Experimental and Molecular Medicine, Academic Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Dennis M de Rooij
- Center for Experimental and Molecular Medicine, Academic Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Sandrine Florquin
- Pathology, Academic Medical Center Amsterdam, Amsterdam, The Netherlands
| | - JanWillem Duitman
- Center for Experimental and Molecular Medicine, Academic Medical Center Amsterdam, Amsterdam, The Netherlands.,Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Physiopathologie Et Epidémiologie Des Maladies Respiratoires, Medical School Xavier Bichat, Inserm UMR1152, Paris, France
| | - C Arnold Spek
- Center for Experimental and Molecular Medicine, Academic Medical Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Kutlu T, Alcigir G. Comparison of renal lesions in cats and dogs using pathomorphological and ımmunohistochemical methods. Biotech Histochem 2018; 94:126-133. [PMID: 30328730 DOI: 10.1080/10520295.2018.1522670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We investigated the pathogenesis of chronic renal fibrosis in cats and dogs using immunohistochemistry. We used the avidin-biotin complex peroxidase (ABC-P) method with antibodies against transforming growth factor-β1, cytokeratin, E-cadherin, S100A4, alpha-smooth muscle actin, vimentin and nestin to determine whether tubule epithelial cells had undergone epithelial-mesenchymal transformation (EMT) that resulted in loss of epithelial cells and an increased number of mesenchymal cells. Although nephrosis was more common in dogs, nephritis was more common in cats; these pathologies developed in both kidneys. We found that EMT participated in the pathogenesis of renal fibrosis in both dogs and cats.
Collapse
Affiliation(s)
- Tuncer Kutlu
- a Faculty of Veterinary Medicine, Department of Pathology , Hatay Mustafa Kemal University , Hatay , Turkey
| | - Gunay Alcigir
- b Faculty of Veterinary Medicine, Department of Pathology , Ankara University , Ankara , Turkey
| |
Collapse
|
15
|
He S, Lin J, Lin L, Xu Y, Feng J. Shikonin‑mediated inhibition of nestin affects hypoxia‑induced proliferation of pulmonary artery smooth muscle cells. Mol Med Rep 2018; 18:3476-3482. [PMID: 30066896 DOI: 10.3892/mmr.2018.9333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 05/21/2018] [Indexed: 11/06/2022] Open
Abstract
The imbalance between the proliferation and apoptosis of pulmonary artery smooth muscle cells (PASMCs) is of importance in pulmonary vascular remodeling. Shikonin, a naphthoquinone compound extracted from the Chinese medicinal herb Lithospermum erythrorhizon, inhibits the proliferation of rat smooth muscle cells (SMCs). The present study was designed to investigate the effects of shikonin on the proliferation of rat PASMCs and the possible mechanisms involved. Rat PASMCs were cultured under the following five treatment conditions: Normal control; hypoxia for 24 h; hypoxia + 1 µM shikonin for 24 h; hypoxia + 2 µM shikonin for 24 h; and hypoxia + 4 µM shikonin for 24 h. The viability of PASMCs was measured using the Cell Counting Kit‑8 assay, the mRNA expression of nestin (NES) in each group was measured by reverse transcription‑polymerase chain reaction and the protein expression of NES was measured by western blotting. The proliferation of hypoxic PASMCs transfected with NES‑specific small interfering (si)RNA decreased compared with the non‑transfected group. These results indicated that hypoxia induced the proliferation of PASMCs through the enhancement of NES expression. The treatment of hypoxic PASMCs with shikonin resulted in a significant downregulation of NES expression and the inhibition of PASMC proliferation.
Collapse
Affiliation(s)
- Susu He
- Department of Respiratory Medicine, Taizhou Hospital of Zhejiang Province, Linhai, Zhejiang 317000, P.R. China
| | - Jian Lin
- Department of Respiratory Medicine, Taizhou Hospital of Zhejiang Province, Linhai, Zhejiang 317000, P.R. China
| | - Ling Lin
- Department of Respiratory Medicine, Taizhou Hospital of Zhejiang Province, Linhai, Zhejiang 317000, P.R. China
| | - Youzu Xu
- Department of Respiratory Medicine, Taizhou Hospital of Zhejiang Province, Linhai, Zhejiang 317000, P.R. China
| | - Jiaxi Feng
- Department of Respiratory Medicine, Taizhou Hospital of Zhejiang Province, Linhai, Zhejiang 317000, P.R. China
| |
Collapse
|
16
|
Calderone A. The Biological Role of Nestin (+)-Cells in Physiological and Pathological Cardiovascular Remodeling. Front Cell Dev Biol 2018; 6:15. [PMID: 29492403 PMCID: PMC5817075 DOI: 10.3389/fcell.2018.00015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 01/31/2018] [Indexed: 01/02/2023] Open
Abstract
The intermediate filament protein nestin was identified in diverse populations of cells implicated in cardiovascular remodeling. Cardiac resident neural progenitor/stem cells constitutively express nestin and following an ischemic insult migrate to the infarct region and participate in angiogenesis and neurogenesis. A modest number of normal adult ventricular fibroblasts express nestin and the intermediate filament protein is upregulated during the progression of reparative and reactive fibrosis. Nestin depletion attenuates cell cycle re-entry suggesting that increased expression of the intermediate filament protein in ventricular fibroblasts may represent an activated phenotype accelerating the biological impact during fibrosis. Nestin immunoreactivity is absent in normal adult rodent ventricular cardiomyocytes. Following ischemic damage, the intermediate filament protein is induced in a modest population of pre-existing adult ventricular cardiomyocytes bordering the peri-infarct/infarct region and nestin(+)-ventricular cardiomyocytes were identified in the infarcted human heart. The appearance of nestin(+)-ventricular cardiomyocytes post-myocardial infarction (MI) recapitulates an embryonic phenotype and depletion of the intermediate filament protein inhibits cell cycle re-entry. Recruitment of the serine/threonine kinase p38 MAPK secondary to an overt inflammatory response after an ischemic insult may represent a seminal event limiting the appearance of nestin(+)-ventricular cardiomyocytes and concomitantly suppressing cell cycle re-entry. Endothelial and vascular smooth muscle cells (VSMCs) express nestin and upregulation of the intermediate filament protein may directly contribute to vascular remodeling. This review will highlight the biological role of nestin(+)-cells during physiological and pathological remodeling of the heart and vasculature and discuss the phenotypic advantage attributed to the intermediate filament protein.
Collapse
Affiliation(s)
- Angelino Calderone
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC, Canada.,Montreal Heart Institute, Montréal, QC, Canada
| |
Collapse
|
17
|
Hertig V, Tardif K, Meus MA, Duquette N, Villeneuve L, Toussaint F, Ledoux J, Calderone A. Nestin expression is upregulated in the fibrotic rat heart and is localized in collagen-expressing mesenchymal cells and interstitial CD31(+)- cells. PLoS One 2017; 12:e0176147. [PMID: 28448522 PMCID: PMC5407835 DOI: 10.1371/journal.pone.0176147] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/05/2017] [Indexed: 11/19/2022] Open
Abstract
Renal and lung fibrosis was characterized by the accumulation of collagen-immunoreactive mesenchymal cells expressing the intermediate filament protein nestin. The present study tested the hypothesis that nestin expression was increased in the hypertrophied/fibrotic left ventricle of suprarenal abdominal aorta constricted adult male Sprague-Dawley rats and induced in ventricular fibroblasts by pro-fibrotic peptide growth factors. Nestin protein levels were upregulated in the pressure-overloaded left ventricle and expression positively correlated with the rise of mean arterial pressure. In sham and pressure-overloaded hearts, nestin immunoreactivity was detected in collagen type I(+)-and CD31(+)-cells identified in the interstitium and perivascular region whereas staining was absent in smooth muscle α-actin(+)-cells. A significantly greater number of collagen type I(+)-cells co-expressing nestin was identified in the left ventricle of pressure-overloaded rats. Moreover, an accumulation of nestin(+)-cells lacking collagen, CD31 and smooth muscle α-actin staining was selectively observed at the adventitial region of predominantly large calibre blood vessels in the hypertrophied/fibrotic left ventricle. Angiotensin II and TGF-β1 stimulation of ventricular fibroblasts increased nestin protein levels via phosphatidylinositol 3-kinase- and protein kinase C/SMAD3-dependent pathways, respectively. CD31/eNOS(+)-rat cardiac microvascular endothelial cells synthesized/secreted collagen type I, expressed prolyl 4-hydroxylase and TGF-β1 induced nestin expression. The selective accumulation of adventitial nestin(+)-cells highlighted a novel feature of large vessel remodelling in the pressure-overloaded heart and increased appearance of collagen type I/nestin(+)-cells may reflect an activated phenotype of ventricular fibroblasts. CD31/collagen/nestin(+)-interstitial cells could represent displaced endothelial cells displaying an unmasked mesenchymal phenotype, albeit contribution to the reactive fibrotic response of the pressure-overloaded heart remains unknown.
Collapse
Affiliation(s)
- Vanessa Hertig
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
| | - Kim Tardif
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
| | - Marc Andre Meus
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
| | - Natacha Duquette
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
| | - Louis Villeneuve
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
| | - Fanny Toussaint
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
- Department of Pharmacology & Physiology, Université de Montréal, Québec, Montréal, Canada
| | - Jonathan Ledoux
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
- Department of Medicine, Université de Montréal, Québec, Montréal, Canada
| | - Angelino Calderone
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
- Department of Pharmacology & Physiology, Université de Montréal, Québec, Montréal, Canada
- * E-mail:
| |
Collapse
|
18
|
Meus MA, Hertig V, Villeneuve L, Jasmin JF, Calderone A. Nestin Expressed by Pre-Existing Cardiomyocytes Recapitulated in Part an Embryonic Phenotype; Suppressive Role of p38 MAPK. J Cell Physiol 2016; 232:1717-1727. [DOI: 10.1002/jcp.25496] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 07/19/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Marc-Andre Meus
- Montreal Heart Institute; Université de Montréal; Montréal Québec Canada
- Département de Physiologie Moléculaire et Intégrative; Université de Montréal; Montréal Québec Canada
| | - Vanessa Hertig
- Montreal Heart Institute; Université de Montréal; Montréal Québec Canada
- Département de Physiologie Moléculaire et Intégrative; Université de Montréal; Montréal Québec Canada
| | - Louis Villeneuve
- Montreal Heart Institute; Université de Montréal; Montréal Québec Canada
| | - Jean-Francois Jasmin
- Department of Pharmaceutical Sciences; University of the Sciences in Philadelphia; Philadelphia Pennsylvania
| | - Angelino Calderone
- Montreal Heart Institute; Université de Montréal; Montréal Québec Canada
- Département de Physiologie Moléculaire et Intégrative; Université de Montréal; Montréal Québec Canada
| |
Collapse
|
19
|
Omata M, Doke Y, Yamada C, Kawashima K, Sho R, Enomoto K, Furuya M, Inomata N. Hepatocyte Nuclear Factor-1β Induces Redifferentiation of Dedifferentiated Tubular Epithelial Cells. PLoS One 2016; 11:e0154912. [PMID: 27196561 PMCID: PMC4873210 DOI: 10.1371/journal.pone.0154912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/21/2016] [Indexed: 11/19/2022] Open
Abstract
Tubular epithelial cells (TECs) can be dedifferentiated by repetitive insults, which activate scar-producing cells generated from interstitial cells such as fibroblasts, leading to the accumulation and deposition of extracellular matrix molecules. The dedifferentiated TECs play a crucial role in the development of renal fibrosis. Therefore, renal fibrosis may be attenuated if dedifferentiated TECs are converted back to their normal state (re-epithelialization). However, the mechanism underlying the re-epithelialization remains to be elucidated. In the present study, TGF-β1, a profibrotic cytokine, induced dedifferentiation of cultured TECs, and the dedifferentiated TECs were re-epithelialized by the removal of TGF-β1 stimulation. In the re-epithelialization process, transcription factor hepatocyte nuclear factor 1, beta (HNF-1β) was identified as a candidate molecule involved in inducing re-epithelialization by means of DNA microarray and biological network analysis. In functional validation studies, the re-epithelialization by TGF-β1 removal was abolished by HNF-1β knockdown. Furthermore, the ectopic expression of HNF-1β in the dedifferentiated TECs induced the re-epithelialization without the inhibition of TGF-β/Smad signaling, even in the presence of TGF-β1 stimulation. In mouse renal fibrosis model, unilateral ureteral obstruction model, HNF-1β expression in the TECs of the kidney was suppressed with fibrosis progression. Furthermore, the HNF-1β downregulated TECs resulted in dedifferentiation, which was characterized by expression of nestin. In conclusion, HNF-1β suppression in TECs is a crucial event for the dedifferentiation of TECs, and the upregulation of HNF-1β in TECs has a potential to restore the dedifferentiated TECs into their normal state, leading to the attenuation of renal fibrosis.
Collapse
|
20
|
Chabot A, Hertig V, Boscher E, Nguyen QT, Boivin B, Chebli J, Bissonnette E, Villeneuve L, Brochiero E, Dupuis J, Calderone A. Endothelial and Epithelial Cell Transition to a Mesenchymal Phenotype Was Delineated by Nestin Expression. J Cell Physiol 2015; 231:1601-10. [DOI: 10.1002/jcp.25257] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/16/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Andréanne Chabot
- Montreal Heart Institute; Université de Montréal; Montréal Québec Canada
- Département de Physiologie Moléculaire et Intégrative; Université de Montréal; Montréal Quebéc Canada
| | - Vanessa Hertig
- Montreal Heart Institute; Université de Montréal; Montréal Québec Canada
- Département de Physiologie Moléculaire et Intégrative; Université de Montréal; Montréal Quebéc Canada
| | - Elena Boscher
- Montreal Heart Institute; Université de Montréal; Montréal Québec Canada
| | - Quang Trinh Nguyen
- Montreal Heart Institute; Université de Montréal; Montréal Québec Canada
| | - Benoît Boivin
- Montreal Heart Institute; Université de Montréal; Montréal Québec Canada
- Département de Biochimie et; Montréal Québec Canada
- Médecine; Université de Montréal; Montréal Québec Canada
| | | | - Elyse Bissonnette
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec; Département de Médicine; Université Laval; Québec Canada
| | - Louis Villeneuve
- Montreal Heart Institute; Université de Montréal; Montréal Québec Canada
| | | | - Jocelyn Dupuis
- Montreal Heart Institute; Université de Montréal; Montréal Québec Canada
- Médecine; Université de Montréal; Montréal Québec Canada
| | - Angelino Calderone
- Montreal Heart Institute; Université de Montréal; Montréal Québec Canada
- Département de Physiologie Moléculaire et Intégrative; Université de Montréal; Montréal Quebéc Canada
| |
Collapse
|
21
|
Thies S, Friess M, Frischknecht L, Korol D, Felley-Bosco E, Stahel R, Vrugt B, Weder W, Opitz I, Soltermann A. Expression of the Stem Cell Factor Nestin in Malignant Pleural Mesothelioma Is Associated with Poor Prognosis. PLoS One 2015; 10:e0139312. [PMID: 26421614 PMCID: PMC4589394 DOI: 10.1371/journal.pone.0139312] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/11/2015] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The epithelioid and sarcomatoid histologic variants of malignant pleural mesothelioma (MPM) can be considered as E- and M-parts of the epithelial-mesenchymal transition (EMT) axis; the biphasic being an intermediate. EMT is associated with an increase of stem cell (SC) traits. We correlated the neural crest SC marker nestin and the EMT marker periostin with histology, type of neo-adjuvant chemotherapy (CT) and overall survival (OS) of MPM patients. PATIENTS AND METHODS Tumor tissues of a historic cohort 1 (320 patients) and an intended induction chemotherapy followed by extrapleural pneumonectomy (EPP) cohort 2 (145 patients) were immunohistochemically H-scored (intensity of immunoreactivity multiplied by frequency of stained cells). Paired chemo-naïve biopsies and -treated surgical specimens were available for 105/145 patients. CT included platinum/gemcitabine (Pla/Gem) or platinum/pemetrexed (Pla/Pem). RESULTS Expression of any cytosolic nestin progressively increased from epithelioid to biphasic to sarcomatoid MPM in cohort 1, whereas the diagnostic markers calretinin and podoplanin decreased. In cohort 2, Pla/Pem CT increased the expression level of nestin in comparison to Pla/Gem, whereas the opposite was found for periostin. In Pla/Pem treated patients, nestin was higher in biphasic MPM compared to epithelioid. In addition to non-epithelioid histology, any expression of nestin in chemo-naïve biopsies (median overall survival: 22 vs. 17 months) and chemo-treated surgical specimens (18 vs. 12 months) as well as high periostin in biopsies (23 vs. 15 months) were associated with poor prognosis. In the multivariate survival analysis, any nestin expression in chemo-naïve biopsies proved to be an independent prognosticator against histology. In both pre- and post-CT situations, the combination of nestin or periostin expression with non-epithelioid histology was particularly/ dismal (all p-values <0.05). CONCLUSIONS The SC marker nestin and the EMT marker periostin allow for further prognostic stratification among histologic variants of MPM. Their expression level is influenced by neo-adjuvant chemotherapy.
Collapse
Affiliation(s)
- Svenja Thies
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Martina Friess
- Division of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Lukas Frischknecht
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Dimitri Korol
- Cancer Registry, University Hospital Zurich, Zurich, Switzerland
| | | | - Rolf Stahel
- Clinic of Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Bart Vrugt
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Walter Weder
- Division of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Isabelle Opitz
- Division of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Alex Soltermann
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
22
|
Feng J, Hu W, Feng C, Mao X, Jin K, Ye Y. Increasing Proliferation of Intrinsic Tubular Cells after Renal Ischemia-reperfusion Injury in Adult Rat. Aging Dis 2015; 6:228-35. [PMID: 26236544 DOI: 10.14336/ad.2014.0917] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/11/2014] [Accepted: 09/17/2014] [Indexed: 02/02/2023] Open
Abstract
The kidney is capable of regeneration following injury. However, whether renal stem/progenitor cells contribute to the repair process after injury, as well as the origin of the cells that repair and replace damaged renal tubule cells remains debated. Therefore, better understanding of the repair process will be critical to developing new strategies for the treatment of acute renal failure. Using an ischemia-reperfusion injury mode and an immunocytochemistry method, we counted the number of BrdU-positive cells in damged regions at different durations of reperfusion. We found that BrdU, a cell proliferative marker, was mainly incorporated in the tubular cells of both medulla and cortex 1 day after reperfusion. The number of BrdU-positive cells reached a peak at 3 days and lasted for two months after injury. BrdU-positive cells were barely found in the renal glomerulus and the parietal layer of Bowman's capsule after injury, and only a few were found in the intersititium. PAX2, an embryonic renal marker, was also increased in renal tubule cells. Confocal images show that BrdU-positive cells co-expressed PAX2, but not the activated form of caspase-3, a cell death marker. Our data suggest that renal stem-like cells or dedifferentiation of surviving renal tubular cells in both the medulla and cortex may predominantly contribute to the repair process after renal ischemia-reperfusion injury in rat.
Collapse
Affiliation(s)
- Jian Feng
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang 310016, China
| | - Weiming Hu
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang 310016, China
| | - Chunyue Feng
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang 310016, China
| | - XiaoOu Mao
- Buck Institute for Research on Aging, Novato, CA94945, USA
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX76107, USA
| | - Youxin Ye
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang 310016, China
| |
Collapse
|
23
|
Jiang MH, Li G, Liu J, Liu L, Wu B, Huang W, He W, Deng C, Wang D, Li C, Lahn BT, Shi C, Xiang AP. Nestin(+) kidney resident mesenchymal stem cells for the treatment of acute kidney ischemia injury. Biomaterials 2015; 50:56-66. [PMID: 25736496 DOI: 10.1016/j.biomaterials.2015.01.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 01/20/2015] [Indexed: 12/25/2022]
Abstract
Renal resident mesenchymal stem cells (MSCs) are important regulators of kidney homeostasis, repair or regeneration. However, natural distribution and the starting population properties of these cells remain elusive because of the lack of specific markers. Here, we identified post-natal kidney derived Nestin(+) cells that fulfilled all of the criteria as a mesenchymal stem cell. These isolated Nestin(+) cells expressed the typical cell-surface marker of MSC, including Sca-1, CD44, CD106, NG2 and PDGFR-α. They were capable of self-renewal, possessed high clonogenic potential and extensive proliferation for more than 30 passages. Under appropriate differentiation conditions, these cells could differentiate into adipocytes, osteocytes, chondrocytes and podocytes. After intravenous injection into acute kidney injury mice, Nestin(+) cells contributed to functional improvement by significantly decreasing the peak level of serum creatinine and BUN, and reducing the damaged cell apoptosis. Furthermore, conditioned medium from Nestin(+) cells could protect against ischemic acute renal failure partially through paracrine factor VEGF. Taken together, our findings indicate that renal resident Nestin(+) MSCs can be derived, propagated, differentiated, and repair the acute kidney injury, which may shed new light on understanding MSCs biology and developing cell replacement therapies for kidney disease.
Collapse
Affiliation(s)
- Mei Hua Jiang
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China; Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Guilan Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Junfeng Liu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China; Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Longshan Liu
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bingyuan Wu
- Department of Cardiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weijun Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Wen He
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chunhua Deng
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Dong Wang
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chunling Li
- Institute of Hypertension & Kidney Research, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bruce T Lahn
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Chenggang Shi
- Department of Nephrology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Andy Peng Xiang
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China; Department of Biochemistry, Zhongshan Medical School, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
24
|
Chabot A, Meus MA, Naud P, Hertig V, Dupuis J, Villeneuve L, El Khoury N, Fiset C, Nattel S, Jasmin JF, Calderone A. Nestin is a Marker of Lung Remodeling Secondary to Myocardial Infarction and Type I Diabetes in the Rat. J Cell Physiol 2014; 230:170-9. [DOI: 10.1002/jcp.24696] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 06/05/2014] [Indexed: 01/25/2023]
Affiliation(s)
- Andréanne Chabot
- Montreal Heart Institute; Université de Montréal; Montréal Québec Canada
- Département de Physiologie; Université de Montréal; Montréal Québec Canada
| | - Marc-Andre Meus
- Montreal Heart Institute; Université de Montréal; Montréal Québec Canada
- Département de Physiologie; Université de Montréal; Montréal Québec Canada
| | - Patrice Naud
- Montreal Heart Institute; Université de Montréal; Montréal Québec Canada
| | - Vanessa Hertig
- Montreal Heart Institute; Université de Montréal; Montréal Québec Canada
- Département de Physiologie; Université de Montréal; Montréal Québec Canada
| | - Jocelyn Dupuis
- Montreal Heart Institute; Université de Montréal; Montréal Québec Canada
| | - Louis Villeneuve
- Montreal Heart Institute; Université de Montréal; Montréal Québec Canada
| | - Nabel El Khoury
- Montreal Heart Institute; Université de Montréal; Montréal Québec Canada
- Département de Physiologie; Université de Montréal; Montréal Québec Canada
| | - Celine Fiset
- Montreal Heart Institute; Université de Montréal; Montréal Québec Canada
- Faculté de Pharmacie; Université de Montréal; Montréal Québec Canada
| | - Stanley Nattel
- Montreal Heart Institute; Université de Montréal; Montréal Québec Canada
| | - Jean-Francois Jasmin
- Department of Stem Cell Biology & Regenerative Medicine; Thomas Jefferson University; Philadelphia Pennsylvania
- Department of Pharmaceutical Sciences; University of the Sciences in Philadelphia; Philadelphia Pennsylvania
| | - Angelino Calderone
- Montreal Heart Institute; Université de Montréal; Montréal Québec Canada
- Département de Physiologie; Université de Montréal; Montréal Québec Canada
| |
Collapse
|
25
|
Tampaki EC, Nakopoulou L, Tampakis A, Kontzoglou K, Weber WP, Kouraklis G. Nestin involvement in tissue injury and cancer--a potential tumor marker? Cell Oncol (Dordr) 2014; 37:305-15. [PMID: 25164879 DOI: 10.1007/s13402-014-0193-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND In eukaryotic cells, the cytoskeleton contains three major filamentous components: actin microfilaments, microtubules and intermediate filaments. Nestin represents one of the class VI intermediate filament proteins. Clinical and molecular analyses have revealed substantial information regarding the presence of Nestin in cells with progenitor or stem cell properties. During tissue injury Nestin is expressed in cells with progenitor cell-like properties. These cells may serve as a tissue reserve and, as such, may contribute to tissue repair. Based on currently available data, Nestin also appears to be implicated in two oncogenic processes. First, Nestin has been found to be expressed in cancer stem-like cells and poorly differentiated cancer cells and, as such, Nestin is thought to contribute to the aggressive behavior of these cells. Second, Nestin has been found to be involved in tumor angiogenesis through an interaction of cancer cells and blood vessel endothelial cells and, as such, Nestin is thought to facilitate tumor growth. CONCLUSIONS We conclude that Nestin may serve as a promising tumor marker and as a potential therapeutic target amenable to tumor suppression and angiogenesis inhibition.
Collapse
Affiliation(s)
- Ekaterini Christina Tampaki
- 2nd Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, 17 Agiou Thoma Street, 11527, Athens, Greece,
| | | | | | | | | | | |
Collapse
|
26
|
Akahoshi N, Kamata S, Kubota M, Hishiki T, Nagahata Y, Matsuura T, Yamazaki C, Yoshida Y, Yamada H, Ishizaki Y, Suematsu M, Kasahara T, Ishii I. Neutral aminoaciduria in cystathionine β-synthase-deficient mice, an animal model of homocystinuria. Am J Physiol Renal Physiol 2014; 306:F1462-76. [DOI: 10.1152/ajprenal.00623.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The kidney is one of the major loci for the expression of cystathionine β-synthase (CBS) and cystathionine γ-lyase (CTH). While CBS-deficient ( Cbs−/−) mice display homocysteinemia/methioninemia and severe growth retardation, and rarely survive beyond the first 4 wk, CTH-deficient ( Cth−/−) mice show homocysteinemia/cystathioninemia but develop with no apparent abnormality. This study examined renal amino acid reabsorption in those mice. Although both 2-wk-old Cbs−/− and Cth−/− mice had normal renal architecture, their serum/urinary amino acid profiles largely differed from wild-type mice. The most striking feature was marked accumulation of Met and cystathionine in serum/urine/kidney samples of Cbs−/− and Cth−/− mice, respectively. Levels of some neutral amino acids (Val, Leu, Ile, and Tyr) that were not elevated in Cbs−/− serum were highly elevated in Cbs−/− urine, and urinary excretion of other neutral amino acids (except Met) was much higher than expected from their serum levels, demonstrating neutral aminoaciduria in Cbs−/− (not Cth−/−) mice. Because the bulk of neutral amino acids is absorbed via a B0AT1 transporter and Met has the highest substrate affinity for B0AT1 than other neutral amino acids, hypermethioninemia may cause hyperexcretion of neutral amino acids.
Collapse
Affiliation(s)
- Noriyuki Akahoshi
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Gunma, Japan
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO), Suematsu Gas Biology Project, Tokyo, Japan
- Department of Immunology, Akita University Graduate School of Medicine, Akita, Japan; and
| | - Shotaro Kamata
- Department of Biochemistry, Keio University Graduate School of Pharmaceutical Sciences, Tokyo, Japan
| | - Masashi Kubota
- Department of Biochemistry, Keio University Graduate School of Pharmaceutical Sciences, Tokyo, Japan
| | - Takako Hishiki
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO), Suematsu Gas Biology Project, Tokyo, Japan
| | - Yoshiko Nagahata
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO), Suematsu Gas Biology Project, Tokyo, Japan
| | - Tomomi Matsuura
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO), Suematsu Gas Biology Project, Tokyo, Japan
| | - Chiho Yamazaki
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Yuka Yoshida
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Hidenori Yamada
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Yasuki Ishizaki
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Makoto Suematsu
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO), Suematsu Gas Biology Project, Tokyo, Japan
| | - Tadashi Kasahara
- Department of Biochemistry, Keio University Graduate School of Pharmaceutical Sciences, Tokyo, Japan
| | - Isao Ishii
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Gunma, Japan
- Department of Biochemistry, Keio University Graduate School of Pharmaceutical Sciences, Tokyo, Japan
| |
Collapse
|
27
|
Skwirba M, Zakrzewicz A, Atanasova S, Wilker S, Fuchs-Moll G, Müller D, Padberg W, Grau V. Expression of nestin after renal transplantation in the rat. APMIS 2014; 122:1020-31. [PMID: 24698412 DOI: 10.1111/apm.12255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 01/02/2014] [Indexed: 01/18/2023]
Abstract
Chronic allograft injury (CAI) limits the long-term success of renal transplantation. Nestin is a marker of progenitor cells, which probably contribute to its pathogenesis. We hypothesize that nestin is induced by ischemia/reperfusion injury and acute rejection, main risk factors for CAI. Syngeneic renal transplantation was performed in Lewis rats and allogeneic transplantation in the Fischer 344 to Lewis strain combination, which results in reversible acute rejection and in CAI in the long-run. The Dark Agouti to Lewis rat strain combination was used to study fatal acute rejection. In untreated kidneys, nestin immunoreactivity was detected in glomeruli and in very few interstitial or microvascular cells. Syngeneic transplantation induced nestin expression within 4 days, which decreased until day 9 and returned to control levels on day 42. Nestin expression was strong during acute rejection and still detected during the pathogenesis of CAI on day 42. Nestin-positive cells were identified as endothelial cells and interstitial fibroblast-like cells co-expressing alpha-smooth muscle actin. A sub-population of them expressed proliferating cell nuclear antigen. In conclusion, nestin is induced in renal grafts by ischemia/reperfusion injury and acute rejection. It is expressed by proliferating myofibroblasts and endothelial cells and probably contributes to the pathogenesis of CAI.
Collapse
Affiliation(s)
- Michael Skwirba
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, Giessen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Wen D, Ni L, You L, Zhang L, Gu Y, Hao CM, Chen J. Upregulation of nestin in proximal tubules may participate in cell migration during renal repair. Am J Physiol Renal Physiol 2012; 303:F1534-44. [PMID: 22993065 DOI: 10.1152/ajprenal.00083.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The characteristics of renal tubular progenitor/precursor cells and the role of renal tubule regeneration in the repair of remnant kidneys (RKs) after nephrectomy are not well known. In the present study of a murine model of subtotal nephrectomy, we used immunofluorescence (IF), immunoblot analysis, and in situ hybridization methods to demonstrate that nestin expression was transiently upregulated in tubule cells near the incision edges of RKs. The nestin-positive tubules were immature proximal tubules that colabeled with lotus tetragonolobus agglutinin but not with markers of mature tubules (aquaporin-1, Tamm-Horsfall protein, and aquaporin-2). In addition, many of the nestin-expressing tubule cells were actively proliferative cells, as indicated by colabeling with bromodeoxyuridine. Double-label IF and immunoblot analysis also showed that the upregulation of tubular nestin was associated with enhanced transforming growth factor-β1 (TGF-β1) expression in the incision edge of RKs but not α-smooth muscle actin, which is a marker of fibrosis. In cultured human kidney proximal tubule cells (HKC), immunoblot analysis indicated that TGF-β1 induced nestin expression and loss of E-cadherin expression, suggesting an association of nestin expression and cellular dedifferentiation. Knockdown of nestin expression by a short hairpin RNA-containing plasmid led to decreased migration of HKC cells that were induced by TGF-β1. Taken together, our results suggest that the tubule repair that occurs during the recovery process following nephrectomy may involve TGF-β1-induced nestin expression in immature renal proximal tubule cells and the promotion of renal cell migration.
Collapse
Affiliation(s)
- Donghai Wen
- Division of Nephrology, Huashan Hospital, Shanghai Medical College, Fudan Univ., Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Tubulointerstitial injury in the kidney is complex, involving a number of independent and overlapping cellular and molecular pathways, with renal interstitial fibrosis and tubular atrophy (IFTA) as the final common pathway. Furthermore, there are multiple ways to assess IFTA. RECENT FINDINGS Cells involved include tubular epithelial cells, fibroblasts, fibrocytes, myofibroblasts, monocyte/macrophages, and mast cells with complex and still incompletely characterized cell-molecular interactions. Molecular mediators involved are numerous and involve pathways such as transforming growth factor (TGF)-β, bone morphogenic protein (BMP), platelet-derived growth factor (PDGF), and hepatocyte growth factor (HGF). Recent genomic approaches have shed insight into some of these cellular and molecular pathways. Pathologic evaluation of IFTA is central in assessing the severity of chronic disease; however, there are a variety of methods used to assess IFTA. Most assessment of IFTA relies on pathologist assessment of special stains such as trichrome, Sirius Red, and collagen III immunohistochemistry. Visual pathologist assessment can be prone to intra and interobserver variability, but some methods employ computerized morphometery, without a clear consensus as to the best method. SUMMARY IFTA results from on orchestration of cell types and molecular pathways. Opinions vary on the optimal qualitative and quantitative assessment of IFTA.
Collapse
Affiliation(s)
- Alton B Farris
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia 30322, USA.
| | | |
Collapse
|
30
|
Klapczynski M, Gagne GD, Morgan SJ, Larson KJ, Leroy BE, Blomme EA, Cox BF, Shek EW. Computer-assisted imaging algorithms facilitate histomorphometric quantification of kidney damage in rodent renal failure models. J Pathol Inform 2012; 3:20. [PMID: 22616032 PMCID: PMC3352620 DOI: 10.4103/2153-3539.95456] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 04/04/2012] [Indexed: 02/01/2023] Open
Abstract
Introduction: Surgical 5/6 nephrectomy and adenine-induced kidney failure in rats are frequently used models of progressive renal failure. In both models, rats develop significant morphological changes in the kidneys and quantification of these changes can be used to measure the efficacy of prophylactic or therapeutic approaches. In this study, the Aperio Genie Pattern Recognition technology, along with the Positive Pixel Count, Nuclear and Rare Event algorithms were used to quantify histological changes in both rat renal failure models. Methods: Analysis was performed on digitized slides of whole kidney sagittal sections stained with either hematoxylin and eosin or immunohistochemistry with an anti-nestin antibody to identify glomeruli, regenerating tubular epithelium, and tubulointerstitial myofibroblasts. An anti-polymorphonuclear neutrophil (PMN) antibody was also used to investigate neutrophil tissue infiltration. Results: Image analysis allowed for rapid and accurate quantification of relevant histopathologic changes such as increased cellularity and expansion of glomeruli, renal tubular dilatation, and degeneration, tissue inflammation, and mineral aggregation. The algorithms provided reliable and consistent results in both control and experimental groups and presented a quantifiable degree of damage associated with each model. Conclusion: These algorithms represent useful tools for the uniform and reproducible characterization of common histomorphologic features of renal injury in rats.
Collapse
Affiliation(s)
- Marcin Klapczynski
- Investigative Toxicology and Pathology, Abbott Laboratories, 100 Abbott Park Rd, Abbott Park, IL 60064, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Liu N, Guo JK, Pang M, Tolbert E, Ponnusamy M, Gong R, Bayliss G, Dworkin LD, Yan H, Zhuang S. Genetic or pharmacologic blockade of EGFR inhibits renal fibrosis. J Am Soc Nephrol 2012; 23:854-67. [PMID: 22362908 DOI: 10.1681/asn.2011050493] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Although enhanced activation of the EGF receptor (EGFR) associates with the development and progression of renal fibrosis, the mechanisms linking these observations are not completely understood. Here, after unilateral ureteral obstruction (UUO), wild-type mice exhibited sustained EGFR phosphorylation in the kidney and developed renal fibrosis that was more severe than the renal fibrosis observed in waved-2 mice, which have reduced EGFR tyrosine kinase activity. Waved-2 mice also showed fewer renal tubular cells arrested at G2/M, reduced expression of α-smooth muscle actin (α-SMA), downregulation of multiple genes encoding profibrogenic cytokines, including TGF-β1, and dephosphorylation of Smad3, STAT3, and ERK1/2. Administration of the specific EGFR inhibitor gefitinib recapitulated this phenotype in wild-type mice after UUO. Furthermore, inactivation of either EGFR or STAT3 reduced UUO-induced expression of lipocalin-2, a molecule associated with the pathogenesis of CKD. In cultured renal interstitial fibroblasts, inhibition of EGFR also abrogated TGF-β1- or serum-induced phosphorylation of EGFR, STAT3, ERK1/2, and Smad3 as well as expression of α-SMA and extracelluar matrix proteins. Taken together, these data suggest that EGFR may mediate renal fibrogenesis by promoting transition of renal epithelial cells to a profibrotic phenotype, increased production of inflammatory factors, and activation of renal interstitial fibroblasts. Inhibition of EGFR may have therapeutic potential for fibrotic kidney disease.
Collapse
Affiliation(s)
- Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Béguin PC, Gosselin H, Mamarbachi M, Calderone A. Nestin expression is lost in ventricular fibroblasts during postnatal development of the rat heart and re-expressed in scar myofibroblasts. J Cell Physiol 2012; 227:813-20. [PMID: 21503881 DOI: 10.1002/jcp.22794] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Studies have reported that the intermediate filament protein nestin was expressed in various non-stem/progenitor cells during development, downregulated during postnatal growth and re-expressed following injury. The present study tested the hypothesis that an analogous paradigm was prevalent for ventricular fibroblasts. In the neonatal rat heart, nestin protein levels were significantly higher than the adult heart and the isolation of cardiac cells revealed a selective expression in ventricular fibroblasts. In adult ventricular fibroblasts, nestin protein expression was markedly lower compared to neonatal ventricular fibroblasts. Following ischemic damage to the rat heart, nestin staining was detected in a subpopulation of scar myofibroblasts (37%) and the percentage of immunoreactive cells was greater than adult ventricular fibroblasts (7%) but significantly lower than neonatal ventricular fibroblasts (86%). Moreover, dissimilar rates of (3)H-thymidine uptake were observed among the fibroblast populations and may be related in part to the disparate percentage of nestin(+) cells. To assess the role of nestin in DNA synthesis, neonatal ventricular fibroblasts were infected with a lentivirus containing a shRNAmir directed against the intermediate filament protein. The partial depletion of nestin expression in neonatal ventricular fibroblasts significantly reduced basal DNA synthesis, in the absence of an apoptotic response. Thus, postnatal development of the rat heart was associated with a selective loss of nestin expression in ventricular fibroblasts and subsequent induction in a subpopulation of myofibroblasts following ischemic injury. The re-expression of nestin in scar myofibroblasts may represent an adaptive response to enhance their proliferative rate and accelerate the healing process.
Collapse
Affiliation(s)
- Pauline C Béguin
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
33
|
Abstract
Scar formation following an ischemic insult to the heart is referred to as reparative fibrosis and represents an essential physiological response to heal the damaged myocardium. The biological events of reparative fibrosis include inflammation, the deposition of collagen by myofibroblasts, sympathetic innervation, and angiogenesis. Several studies have further reported that scar formation was associated with the recruitment of neural crest-derived cardiac resident nestin(+) cells that display characteristics consistent with a neural progenitor/stem cell phenotype. During the reparative fibrotic response, these nestin(+) cells participate in neural remodeling and represent a novel cellular substrate of angiogenesis. In addition, a subpopulation of nestin(+) cells identified in the normal heart expressed cardiac progenitor transcriptional factors and may directly contribute to myocardial regeneration following ischemic damage. Nestin protein was also detected in endothelial cells of newly formed blood vessels in the scar and may represent a marker of revascularization. Lastly, nestin was induced in a subpopulation of smooth muscle α-actin(+) scar-derived myofibroblasts, and the expression of the intermediate filament protein may provide a proliferative advantage. Collectively, these data demonstrate that diverse populations of nestin(+) cells participate in cardiac wound healing.
Collapse
|
34
|
Wen D, You L, Zhang Q, Zhang L, Gu Y, Hao CM, Chen J. Upregulation of nestin protects podocytes from apoptosis induced by puromycin aminonucleoside. Am J Nephrol 2011; 34:423-34. [PMID: 21952051 DOI: 10.1159/000331701] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 08/12/2011] [Indexed: 01/12/2023]
Abstract
BACKGROUND Nestin is an intermediate filament protein widely used as a marker of stem cells or progenitor cells. Nestin is also highly expressed in the glomerular podocyte, a type of terminally differentiated epithelial cell. Little is known about the significance of nestin in podocytes. METHODS Puromycin aminonucleoside (PAN) was injected into the rats to produce a PAN nephrosis model. Transmission electronic microscopy and terminal dUTP nick end-labeling assay were used to examine the podocyte foot process (FP) effacement and apoptosis, respectively. A mouse podocyte cell line was cultured and incubated with PAN. Immunoblot was used to examine the level of nestin expression both in vivo and in vitro. Enhanced green fluorescence protein-tagged plasmids containing nestin shRNA were transfected into the cultured podocytes to silence nestin expression. F-actin arrangement within cultured podocytes was investigated by immunofluorescence, while the apoptosis rate was examined by both Hoechst stain and flow cytometry. RESULTS In the PAN-induced rat nephrosis model, podocyte nestin expression was increased in the absence of apparent podocyte apoptosis, even though the FP was significantly effaced. In the cultured mouse podocytes, PAN upregulated nestin expression in a time-dependent manner within 24 h of treatment. Notably, no significant apoptosis occurred, however knocking down nestin expression resulted in a remarkable derangement of actin cytoskeleton and an increase in apoptosis in the cultured podocytes 24 h after being incubated with PAN. CONCLUSIONS Upregulation of nestin expression during PAN nephrosis could protect podocytes from apoptosis and that this process is mediated by maintaining the regular arrangement of actin cytoskeleton.
Collapse
Affiliation(s)
- Donghai Wen
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
35
|
Sakairi T, Hiromura K, Takahashi S, Hamatani H, Takeuchi S, Tomioka M, Maeshima A, Kuroiwa T, Nojima Y. Effects of proteasome inhibitors on rat renal fibrosis in vitro and in vivo. Nephrology (Carlton) 2011; 16:76-86. [PMID: 21175982 DOI: 10.1111/j.1440-1797.2010.01367.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
AIM Transforming growth factor-β (TGF-β) is involved in renal tubulointerstitial fibrosis. Recently, the ubiquitin proteasome system was shown to participate in the TGF-β signalling pathway. The aim of this study was to examine the effects of proteasome inhibitors on TGF-β-induced transformation of renal fibroblasts and tubular epithelial cells in vitro and on unilateral ureteral obstruction (UUO) in vivo. METHODS Rat renal fibroblasts NRK-49F cells and tubular epithelial cells, NRK-52E, were treated with TGF-β in the presence or absence of a proteasome inhibitor, MG132 or lactacystin. Rats were subjected to UUO and received MG132 i.p. for 7 days. RESULTS In cultured renal cells, both MG132 and lactacystin inhibited TGF-β-induced α-smooth muscle actin (α-SMA) protein expression according to both western blotting and immunofluorescent study results. MG132 also suppressed TGF-β-induced mRNA expression of α-SMA and upregulation of Smad-response element reporter activity. However, MG132 did not inhibit TGF-β-induced phosphorylation and nuclear translocation of Smad2. In contrast, MG132 increased the protein level of Smad co-repressor SnoN, demonstrating that SnoN is one of the target molecules by which MG132 blocks the TGF-β signalling pathway. Although the proteasome inhibitor suppressed TGF-β-induced transformation of cultured fibroblasts and tubular epithelial cells, MG132 treatment did not ameliorate tubulointerstitial fibrosis in the rat UUO model. CONCLUSION Proteasome inhibitors attenuate TGF-β signalling by blocking Smad signal transduction in vitro, but do not inhibit renal interstitial fibrosis in vivo.
Collapse
Affiliation(s)
- Toru Sakairi
- Department of Medicine and Clinical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Forbes MS, Thornhill BA, Chevalier RL. Proximal tubular injury and rapid formation of atubular glomeruli in mice with unilateral ureteral obstruction: a new look at an old model. Am J Physiol Renal Physiol 2011; 301:F110-7. [PMID: 21429968 DOI: 10.1152/ajprenal.00022.2011] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Unilateral ureteral obstruction (UUO), employed extensively as a model of progressive renal interstitial fibrosis, results in rapid parenchymal deterioration. Atubular glomeruli are formed in many renal disorders, but their identification has been limited by labor-intensive available techniques. The formation of atubular glomeruli was therefore investigated in adult male mice subjected to complete UUO under general anesthesia. In this species, the urinary pole of Bowman's capsule is normally lined by tall parietal epithelial cells similar to those of the proximal tubule, and both avidly bind Lotus tetragonolobus lectin. Following UUO, these cells became flattened, lost their affinity for Lotus lectin, and no longer generated superoxide (revealed by nitroblue tetrazolium infusion). Based on Lotus lectin staining, stereological measurements, and serial section analysis, over 80% of glomeruli underwent marked transformation after 14 days of UUO. The glomerulotubular junction became stenotic and atrophic due to cell death by apoptosis and autophagy, with concomitant remodeling of Bowman's capsule to form atubular glomeruli. In this degenerative process, transformed epithelial cells sealing the urinary pole expressed α-smooth muscle actin, vimentin, and nestin. Although atubular glomeruli remained perfused, renin immunostaining was markedly increased along afferent arterioles, and associated maculae densae disappeared. Numerous progressive kidney disorders, including diabetic nephropathy, are characterized by the formation of atubular glomeruli. The rapidity with which glomerulotubular junctions degenerate, coupled with Lotus lectin as a marker of glomerular integrity, points to new investigative uses for the model of murine UUO focusing on mechanisms of epithelial cell injury and remodeling in addition to fibrogenesis.
Collapse
Affiliation(s)
- Michael S Forbes
- Dept. of Pediatrics, University of Virginia, Box 800386, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
37
|
Matsuda Y, Naito Z, Kawahara K, Nakazawa N, Korc M, Ishiwata T. Nestin is a novel target for suppressing pancreatic cancer cell migration, invasion and metastasis. Cancer Biol Ther 2011; 11:512-23. [PMID: 21258211 DOI: 10.4161/cbt.11.5.14673] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nestin, is a class VI intermediate filament (IF) that is expressed in 30% of pancreatic ductal adenocarcinoma (PDAC) cases, and its expression in PDAC positively correlates with peripancreatic invasion. An expression vector carrying a short hairpin RNA (shRNA) targeting nestin was stably transfected into PANC-1 and PK-45H human pancreatic cancer cells, which express high nestin levels. Alterations in morphology and alignment of actin filaments and α-tubulin were examined by phase-contrast and immunocytochemistry. Effects on cell growth, migration in scratch and Boyden chamber assays, invasion, cell adhesion, and in vivo growth were determined. Differences in mRNA levels were examined by arrays. Nestin shRNA-transfected cells exhibited decreased nestin expression, a sheet-like appearance with tight cell-cell adhesion, increased expression of filamentous F-actin and E-cadherin, and attenuated migration and invasion, both of which were enhanced following nestin re-expression. Expression of α-tubulin, and in vitro cell growth and adhesion were not altered by nestin down-regulation, whereas hepatic metastases were decreased. Thus, nestin plays important roles in pancreatic cancer cell migration, invasion and metastasis by selectively modulating the expression of actin and cell adhesion molecules, and may therefore be a novel therapeutic target in PDAC.
Collapse
Affiliation(s)
- Yoko Matsuda
- Department of Pathology, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Ye Y, Wang B, Jiang X, Hu W, Feng J, Li H, Jin M, Ying Y, Wang W, Mao X, Jin K. Proliferative capacity of stem/progenitor-like cells in the kidney may associate with the outcome of patients with acute tubular necrosis. Hum Pathol 2011; 42:1132-41. [PMID: 21315412 DOI: 10.1016/j.humpath.2010.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 10/22/2010] [Accepted: 11/05/2010] [Indexed: 10/18/2022]
Abstract
Animal studies indicate that adult renal stem/progenitor cells can undergo rapid proliferation in response to renal injury, but whether the same is true in humans is largely unknown. To examine the profile of renal stem/progenitor cells responsible for acute tubular necrosis in human kidney, double and triple immunostaining was performed using proliferative marker and stem/progenitor protein markers on sections from 10 kidneys with acute tubular necrosis and 4 normal adult kidneys. The immunopositive cells were recorded using 2-photon confocal laser scanning microscopy. We found that dividing cells were present in the tubules of the cortex and medulla, as well as the glomerulus in normal human kidney. Proliferative cells in the parietal layer of Bowman capsule expressed CD133, and dividing cells in the tubules expressed immature cell protein markers paired box gene 2, vimentin, and nestin. After acute tubular necrosis, Ki67-positive cells in the cortex tubules significantly increased compared with normal adult kidney. These Ki67-positive cells expressed CD133 and paired box gene 2, but not the cell death marker, activated caspase-3. In addition, the number of dividing cells increased significantly in patients with acute tubular necrosis who subsequently recovered, compared with patients with acute tubular necrosis who consequently developed protracted acute tubular necrosis or died. Our data suggest that renal stem/progenitor cells may reside not only in the parietal layer of Bowman capsule but also in the cortex and medulla in normal human kidney, and the proliferative capacity of renal stem/progenitor cells after acute tubular necrosis may be an important determinant of a patient's outcome.
Collapse
Affiliation(s)
- Youxin Ye
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang 310016, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Tomioka M, Hiromura K, Sakairi T, Takeuchi S, Maeshima A, Kaneko Y, Kuroiwa T, Takeuchi T, Nojima Y. Nestin is a novel marker for renal tubulointerstitial injury in immunoglobulin A nephropathy. Nephrology (Carlton) 2010; 15:568-74. [PMID: 20649878 DOI: 10.1111/j.1440-1797.2010.01342.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIM Nestin, an intermediate filament originally identified as a marker of neural progenitor cells, is transiently expressed in endothelial cells and tubuloepithelial cells during kidney development. However, in adult kidneys, podocytes are the only cells that express nestin. In this study, we examined tubulointerstitial nestin expression in human glomerulonephritis. METHODS Renal biopsy specimens obtained from 41 adult patients with immunoglobulin (Ig)A nephropathy were studied. Nestin expression was determined by immunohistochemical staining and estimated by digital image analysis. To identify the phenotype of nestin-positive cells, a double immunofluorescent study was performed for nestin and CD34 (a marker for endothelial cells) or alpha-smooth muscle actin (alpha-SMA, a marker for myofibroblasts). RESULTS In normal kidney, nestin expression was restricted to the podocytes and was not detected in tubular cells and tubulointerstitial cells. In contrast, increased nestin expression was observed at tubulointerstitial areas of IgA nephropathy. The degree of tubulointerstitial nestin expression was positively correlated with tubulointerstitial fibrosis (r = 0.546, P < 0.001). The double immunofluorescent study showed that most nestin-positive cells in the interstitium were co-stained with CD34 or alpha-SMA, suggesting that peritubular endothelial cells and tubulointerstitial myofibroblasts express nestin during the progression of tubulointerstitial injury. In addition, strong nestin expression was associated with deterioration of renal function. CONCLUSION Nestin expression is associated with tubulointerstitial injury and predicts renal prognosis in IgA nephropathy. Nestin could be a new marker for peritubular endothelial cell injury and tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Mai Tomioka
- Department of Medicine and Clinical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Boor P, Ostendorf T, Floege J. Renal fibrosis: novel insights into mechanisms and therapeutic targets. Nat Rev Nephrol 2010; 6:643-56. [PMID: 20838416 DOI: 10.1038/nrneph.2010.120] [Citation(s) in RCA: 467] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Renal fibrosis is the common end point of virtually all progressive kidney diseases. Renal fibrosis should not be viewed as a simple and uniform 'scar', but rather as a dynamic system that involves extracellular matrix components and many, if not all, renal and infiltrating cell types. The involved cells exhibit enormous plasticity or phenotypic variability-a fact that we are only beginning to appreciate. Only a detailed understanding of the underlying mechanisms of renal fibrosis can facilitate the development of effective treatments. In this Review, we discuss the most recent advances in renal, or more specifically, tubulointerstitial fibrosis. Novel mechanisms as well as potential treatment targets based on different cell types are described. Problems that continue to plague the field are also discussed, including specific therapeutic targeting of the kidney, the development of improved diagnostic methods to assess renal fibrosis and the shortcomings of available animal models.
Collapse
Affiliation(s)
- Peter Boor
- Department of Nephrology, RWTH University of Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| | | | | |
Collapse
|
41
|
Expression of nestin, vimentin, and NCAM by renal interstitial cells after ischemic tubular injury. J Biomed Biotechnol 2010; 2010:193259. [PMID: 20617137 PMCID: PMC2896652 DOI: 10.1155/2010/193259] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 03/12/2010] [Accepted: 04/13/2010] [Indexed: 02/06/2023] Open
Abstract
This work explores the distribution of various markers expressed by interstitial cells in rat kidneys after ischemic injury (35 minutes) during regeneration of S3 tubules of outer stripe of outer medulla (OSOM). Groups of experimental animals (n = 4) were sacrificed every two hours during the first 24 hours post-ischemia as well as 2, 3, 7, 14 days post-ischemia. The occurrence of lineage markers was analyzed on kidney sections by immunohistochemistry and morphometry during the process of tubular regeneration. In postischemic kidneys, interstitial cell proliferation, assessed by 5-bromo-2'-deoxyuridine (BrdU) and Proliferating Cell Nuclear Antigen (PCNA) labeling, was prominent in outer medulla and reach a maximum between 24 and 72 hours after reperfusion. This population was characterized by the coexpression of vimentin and nestin. The density of -Neural Cell Adhesion Molecule (NCAM) positive interstitial cells increased transiently (18-72 hours) in the vicinity of altered tubules. We have also localized a small population of alpha-Smooth Muscle Actin (SMA)-positive cells confined to chronically altered areas and characterized by a small proliferative index. In conclusion, we observed in the postischemic kidney a marked proliferation of interstitial cells that underwent transient phenotypical modifications. These interstitial cells could be implicated in processes leading to renal fibrosis.
Collapse
|
42
|
Kishaba Y, Matsubara D, Niki T. Heterogeneous expression of nestin in myofibroblasts of various human tissues. Pathol Int 2010; 60:378-85. [DOI: 10.1111/j.1440-1827.2010.02532.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Ichii O, Otsuka S, Sasaki N, Yabuki A, Ohta H, Takiguchi M, Hashimoto Y, Endoh D, Kon Y. Local overexpression of interleukin-1 family, member 6 relates to the development of tubulointerstitial lesions. J Transl Med 2010; 90:459-75. [PMID: 20101239 DOI: 10.1038/labinvest.2009.148] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Identification of factors that exacerbate a disease is important for the development of biomarkers. In this study, we discovered ectopic overexpression of interleukin-1 family, member-6 (IL-1F6) in several murine renal diseases. IL-1F6 participates in cytokine/chemokine production in the epithelium. In PCR array analysis for inflammatory mediators, Il1f6 showed the highest expression in the kidney of the B6.MRLc1 glomerulonephritis model. IL-1F6 was localized in the epithelium from the DCTs to CCDs, which showed tubular dilations or epithelial deciduations. Ultrastructual examination of the epithelial cells revealed that IL-1F6 was localized on the cytoplasmic ribosome, vesicles, and nucleus. In and around these tubules, we found infiltrations of CD3-positive T-cells and nestin- or alpha-smooth-muscle actin-positive mesenchymal cells. Expression of the IL-1F6 protein and Il1f6 mRNA in the kidney was increased by the development of TILs in the B6.MRLc1 model and in lupus (BXSB, NZB/WF1, and MRL/lpr), nephrotic syndrome (ICGN), and streptozotocin-induced diabetic models. IL-1F6 was also detected in the epithelia having squamous or deciduous contours in other organs such as the skin, esophagus, thymus, or uterus. In vitro analysis using M-1 cells from the murine collecting duct revealed that Il1f6 mRNA induction was related to the upregulation of IL-6, TGF-beta receptor-1, and mesenchymal markers and to the downregulation of epithelial markers and changes in the squamous cells of the epithelium. Interestingly, urine Il1f6 mRNA expression was detected earlier than renal dysfunctions in these mouse models. Ectopic overexpression of IL-1F6 in kidneys is associated with TILs and especially with cell infiltrations and changes in epithelial morphology. We propose that local overexpression of IL-1F6 is related to the development of TILs.
Collapse
Affiliation(s)
- Osamu Ichii
- Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Yim HE, Yoo KH, Bae IS, Hong YS, Lee JW. Effect of angiotensin II inhibition on the epithelial to mesenchymal transition in developing rat kidney. KOREAN JOURNAL OF PEDIATRICS 2009. [DOI: 10.3345/kjp.2009.52.8.944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Hyung Eun Yim
- Department of Pediatrics, College of Medicine, Korea University, Seoul, Korea
| | - Kee Hwan Yoo
- Department of Pediatrics, College of Medicine, Korea University, Seoul, Korea
| | - In Sun Bae
- Department of Pediatrics, College of Medicine, Korea University, Seoul, Korea
| | - Young Sook Hong
- Department of Pediatrics, College of Medicine, Korea University, Seoul, Korea
| | - Joo Won Lee
- Department of Pediatrics, College of Medicine, Korea University, Seoul, Korea
| |
Collapse
|
45
|
Infiltration of nestin-expressing cells in interstitial fibrosis in chronic cyclosporine nephropathy. Transplantation 2008; 86:571-7. [PMID: 18724228 DOI: 10.1097/tp.0b013e3181820470] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Nestin-expressing cells play a role in the repair process of injured tissues and organs. This study examined the nestin-expressing cells in interstitial fibrosis in experimental chronic cyclosporine A (CsA) nephropathy. METHODS Sprague Dawley rats were treated daily for 1 or 4 weeks with CsA (15 mg/kg) or vehicle (VH; olive oil, 1 mg/kg). Nestin mRNA expression was evaluated with reverse transcriptional-polymerase chain reaction, and nestin-expressing cells were detected immunohistochemically. Localization of nestin was performed with double labeling studies for vimentin, aquaporin 1, or calbindin D28K. RESULTS Nestin mRNA expression was not different between VH- and CsA-treated rat kidneys. Nestin-expressing cells were rarely observed in the cortex in the VH group, but CsA-induced renal injury caused an increase in nestin-expressing cells in the cortex in a time-dependent manner. Nestin-expressing cells in the CsA group were localized to the area of interstitial fibrosis, and the number of nestin-expressing cells well correlated with the score of interstitial fibrosis (r=0.898). Nestin-expressing cells did not express vimentin, aquaporin 1, or calbindin D28K. CONCLUSIONS CsA-induced renal injury recruits nestin-expressing cells to injured areas, and these cells might be involved in reparative fibrosis in the progression of chronic CsA nephropathy.
Collapse
|
46
|
The renal cortical interstitium: morphological and functional aspects. Histochem Cell Biol 2008; 130:247-62. [PMID: 18575881 PMCID: PMC2491705 DOI: 10.1007/s00418-008-0452-5] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2008] [Indexed: 12/28/2022]
Abstract
The renal interstitial compartment, situated between basement membranes of epithelia and vessels, contains two contiguous cellular networks. One network is formed by interstitial fibroblasts, the second one by dendritic cells. Both are in intimate contact with each other. Fibroblasts are interconnected by junctions and connected to basement membranes of vessels and tubules by focal adhesions. Fibroblasts constitute the “skeleton” of the kidney. In the renal cortex, fibroblasts produce erythropoietin and are distinguished from other interstitial cells by their prominent F-actin cytoskeleton, abundance of rough endoplasmic reticulum, and by ecto-5′-nucleotidase expression in their plasma membrane. The resident dendritic cells belong to the mononuclear phagocyte system and fulfil a sentinel function. They are characterized by their expression of MHC class II and CD11c. The central situation of fibroblasts suggests that signals from tubules, vessels, and inflammatory cells converge in fibroblasts and elicit an integrated response. Following tubular damage and inflammatory signals fibroblasts proliferate, change to the myofibroblast phenotype and increase their collagen production, potentially resulting in renal fibrosis. The acquisition of a profibrotic phenotype by fibroblasts in renal diseases is generally considered a main causal event in the progression of chronic renal failure. However, it might also be seen as a repair process.
Collapse
|
47
|
Origin of renal myofibroblasts in the model of unilateral ureter obstruction in the rat. Histochem Cell Biol 2008; 130:141-55. [PMID: 18449560 PMCID: PMC2413112 DOI: 10.1007/s00418-008-0433-8] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2008] [Indexed: 01/03/2023]
Abstract
Tubulo-interstitial fibrosis is a constant feature of chronic renal failure and it is suspected to contribute importantly to the deterioration of renal function. In the fibrotic kidney there exists, besides normal fibroblasts, a large population of myofibroblasts, which are supposedly responsible for the increased production of intercellular matrix. It has been proposed that myofibroblasts in chronic renal failure originate from the transformation of tubular cells via epithelial–mesenchymal transition (EMT) or from infiltration by bone marrow-derived precursors. Little attention has been paid to the possibility of a transformation of resident fibroblasts into myofibroblasts in renal fibrosis. Therefore we examined the fate of resident fibroblasts in the initial phase of renal fibrosis in the classical model of unilateral ureter obstruction (UUO) in the rat. Rats were perfusion-fixed on days 1, 2, 3 and 4 after ligature of the right ureter. Starting from 1 day of UUO an increasing expression of alpha-smooth muscle actin (αSMA) in resident fibroblasts was revealed by immunofluorescence and confirmed by the observation of bundles of microfilaments and webs of intermediate filaments in the electron microscope. Inversely, there was a decreased expression of 5′-nucleotidase (5′NT), a marker of renal cortical fibroblasts. The RER became more voluminous, suggesting an increased synthesis of matrix. Intercellular junctions, a characteristic feature of myofibroblasts, became more frequent. The mitotic activity in fibroblasts was strongly increased. Renal tubules underwent severe regressive changes but the cells retained their epithelial characteristics and there was no sign of EMT. In conclusion, after ureter ligature, resident peritubular fibroblasts proliferated and they showed progressive alterations, suggesting a transformation in myofibroblasts. Thus the resident fibroblasts likely play a central role in fibrosis in that model.
Collapse
|
48
|
Abstract
We investigated whether the intermediate filament protein and neural stem cell marker nestin characterizes the glomerular progenitor/reserve cell population immigrating the glomerulus after mesangial cell (MC) injury in the rat (anti-Thy1 nephritis). Nestin expression was investigated by immunohistochemistry and real-time PCR during anti-Thy1 nephritis. Migration and proliferation assays were used to characterize the function of nestin in isolated MCs after nestin knockdown by siRNA. After MC injury during anti-Thy1 nephritis, glomerular nestin was transiently increased during the repopulation phase. At the peak of mesangial proliferation and expansion (day 5) most OX-7-positive MCs expressed nestin largely colocalizing with the activation marker alpha-smooth muscle actin and the proliferation marker PCNA. In contrast to a healthy, non-injured mesangium in vivo, MCs in culture are considered to be in an 'activated, injured state' and express nestin in a generalized distribution with condensed localization around the nucleus as well as intensive staining of cell protrusions such as filopodia. During cell cycle, the percentage of MCs with high nestin levels was increased during S- aupnd G2-phase. Blocking of nestin using specific siRNA resulted in inhibition of cell proliferation but not cell migration. In conclusion, nestin is constitutively expressed in podocytes, but is a marker for repopulating MCs after experimental MC injury in vivo. Nestin promotes MC proliferation in vitro, suggesting a supporting role for nestin during repair reaction.
Collapse
|
49
|
Abstract
Sakairi and collaborators show that some tubular cells as well as some interstitial myofibroblasts express the intermediate filament protein nestin. These findings evoke questions about the origin and role of these nestin-positive cells in the development of tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- J-L Bascands
- Institut National de la Santé et de la Recherche Medical, U858/12MR, Renal and Cardiac Remodeling, Toulouse, France.
| | | | | |
Collapse
|