1
|
Choi J, Choi MS, Jeon J, Moon J, Lee J, Kong E, Lucia SE, Hong S, Lee JH, Lee EY, Kim P. In vivo longitudinal 920 nm two-photon intravital kidney imaging of a dynamic 2,8-DHA crystal formation and tubular deterioration in the adenine-induced chronic kidney disease mouse model. BIOMEDICAL OPTICS EXPRESS 2023; 14:1647-1658. [PMID: 37078028 PMCID: PMC10110322 DOI: 10.1364/boe.485187] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/01/2023] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Chronic kidney disease (CKD) is one of the most common renal diseases manifested by gradual loss of kidney function with no symptoms in the early stage. The underlying mechanism in the pathogenesis of CKD with various causes such as high blood pressure, diabetes, high cholesterol, and kidney infection is not well understood. In vivo longitudinal repetitive cellular-level observation of the kidney of the CKD animal model can provide novel insights to diagnose and treat the CKD by visualizing the dynamically changing pathophysiology of CKD with its progression over time. In this study, using two-photon intravital microscopy with a single 920 nm fixed-wavelength fs-pulsed laser, we longitudinally and repetitively observed the kidney of an adenine diet-induced CKD mouse model for 30 days. Interestingly, we could successfully visualize the 2,8-dihydroxyadenine (2,8-DHA) crystal formation with a second-harmonics generation (SHG) signal and the morphological deterioration of renal tubules with autofluorescence using a single 920 nm two-photon excitation. The longitudinal in vivo two-photon imaging results of increasing 2,8-DHA crystals and decreasing tubular area ratio visualized by SHG and autofluorescence signal, respectively, were highly correlated with the CKD progression monitored by a blood test showing increased cystatin C and blood urea nitrogen (BUN) levels over time. This result suggests the potential of label-free second-harmonics generation crystal imaging as a novel optical technique for in vivo CKD progression monitoring.
Collapse
Affiliation(s)
- Jieun Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Min-Sun Choi
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, 31151, Republic of Korea
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Jehwi Jeon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jieun Moon
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jingu Lee
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Eunji Kong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Stephani Edwina Lucia
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sujung Hong
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Ji-Hye Lee
- Department of Pathology, Soonchunhyang University Cheonan Hospital, Cheonan, 31151, Republic of Korea
| | - Eun Young Lee
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, 31151, Republic of Korea
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Pilhan Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
2
|
Abstract
Fluorescence microscopy has represented a crucial technique to explore the cellular and molecular mechanisms in the field of biomedicine. However, the conventional one-photon microscopy exhibits many limitations when living samples are imaged. The new technologies, including two-photon microscopy (2PM), have considerably improved the in vivo study of pathophysiological processes, allowing the investigators to overcome the limits displayed by previous techniques. 2PM enables the real-time intravital imaging of the biological functions in different organs at cellular and subcellular resolution thanks to its improved laser penetration and less phototoxicity. The development of more sensitive detectors and long-wavelength fluorescent dyes as well as the implementation of semi-automatic software for data analysis allowed to gain insights in essential physiological functions, expanding the frontiers of cellular and molecular imaging. The future applications of 2PM are promising to push the intravital microscopy beyond the existing limits. In this review, we provide an overview of the current state-of-the-art methods of intravital microscopy, focusing on the most recent applications of 2PM in kidney physiology.
Collapse
|
3
|
Molitoris BA, Sandoval RM, Wagner MC. Intravital Multiphoton Microscopy as a Tool for Studying Renal Physiology, Pathophysiology and Therapeutics. Front Physiol 2022; 13:827280. [PMID: 35399274 PMCID: PMC8988037 DOI: 10.3389/fphys.2022.827280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Intravital multiphoton microscopy has empowered investigators to study dynamic cell and subcellular processes in vivo within normal and disease organs. Advances in hardware, software, optics, transgenics and fluorescent probe design and development have enabled new quantitative approaches to create a disruptive technology pioneering advances in understanding of normal biology, disease pathophysiology and therapies. Offering superior spatial and temporal resolution with high sensitivity, investigators can follow multiple processes simultaneously and observe complex interactions between different cell types, intracellular organelles, proteins and track molecules for cellular uptake, intracellular trafficking, and metabolism in a cell specific fashion. The technique has been utilized in the kidney to quantify multiple dynamic processes including capillary flow, permeability, glomerular function, proximal tubule processes and determine the effects of diseases and therapeutic mechanisms. Limitations include the depth of tissue penetration with loss of sensitivity and resolution due to scattered emitted light. Tissue clearing technology has virtually eliminated penetration issues for fixed tissue studies. Use of multiphoton microscopy in preclinical animal models offers distinct advantages resulting in new insights into physiologic processes and the pathophysiology and treatment of diseases.
Collapse
|
4
|
The Probe for Renal Organic Cation Secretion (4-Dimethylaminostyryl)-N-Methylpyridinium (ASP+)) Shows Amplified Fluorescence by Binding to Albumin and Is Accumulated In Vivo. Mol Imaging 2022; 2022:7908357. [PMID: 35418808 PMCID: PMC8979605 DOI: 10.1155/2022/7908357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/22/2022] [Accepted: 03/07/2022] [Indexed: 12/29/2022] Open
Abstract
Accumulation of uremic toxins may lead to the life-threatening condition “uremic syndrome” in patients with advanced chronic kidney disease (CKD) requiring renal replacement therapy. Clinical evaluation of proximal tubular secretion of organic cations (OC), of which some are uremic toxins, is desired, but difficult. The biomedical knowledge on OC secretion and cellular transport partly relies on studies using the fluorescent tracer 4-dimethylaminostyryl)-N-methylpyridinium (ASP+), which has been used in many studies of renal excretion mechanisms of organic ions and which could be a candidate as a PET tracer. This study is aimed at expanding the knowledge of the tracer characteristics of ASP+ by recording the distribution and intensity of ASP+ signals in vivo both by fluorescence and by positron emission tomography (PET) imaging and at investigating if the fluorescence signal of ASP+ is influenced by the presence of albumin. Two-photon in vivo microscopy of male Münich Wistar Frömter rats showed that a bolus injection of ASP+ conferred a fluorescence signal to the blood plasma lasting for about 30 minutes. In the renal proximal tubule, the bolus resulted in a complex pattern of fluorescence including a rapid and strong transient signal at the brush border, a very low signal in the luminal fluid, and a slow transient intracellular signal. PET imaging using 11C-labelled ASP+ showed accumulation in the liver, heart, and kidney. Fluorescence emission spectra recorded in vitro of ASP+ alone and in the presence of albumin using both 1-photon excitation and two-photon excitation showed that albumin strongly enhance the emission from ASP+ and induce a shift of the emission maximum from 600 to 570 nm. Conclusion. The renal pattern of fluorescence observed from ASP+ in vivo is likely affected by the local concentration of albumin, and quantification of ASP+ fluorescent signals in vivo cannot be directly translated to ASP+ concentrations.
Collapse
|
5
|
Dunn KW, Molitoris BA, Dagher PC. The Indiana O'Brien Center for Advanced Renal Microscopic Analysis. Am J Physiol Renal Physiol 2021; 320:F671-F682. [PMID: 33682441 DOI: 10.1152/ajprenal.00007.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Indiana O'Brien Center for Advanced Microscopic Analysis is a National Institutes of Health (NIH) P30-funded research center dedicated to the development and dissemination of advanced methods of optical microscopy to support renal researchers throughout the world. The Indiana O'Brien Center was founded in 2002 as an NIH P-50 project with the original goal of helping researchers realize the potential of intravital multiphoton microscopy as a tool for understanding renal physiology and pathophysiology. The center has since expanded into the development and implementation of large-scale, high-content tissue cytometry. The advanced imaging capabilities of the center are made available to renal researchers worldwide via collaborations and a unique fellowship program. Center outreach is accomplished through an enrichment core that oversees a seminar series, an informational website, and a biennial workshop featuring hands-on training from members of the Indiana O'Brien Center and imaging experts from around the world.
Collapse
Affiliation(s)
- Kenneth W Dunn
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Bruce A Molitoris
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Pierre C Dagher
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
6
|
Dunn KW, Sutton TA, Sandoval RM. Live-Animal Imaging of Renal Function by Multiphoton Microscopy. ACTA ACUST UNITED AC 2018; 83:12.9.1-12.9.25. [PMID: 29345326 DOI: 10.1002/cpcy.32] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Intravital microscopy, microscopy of living animals, is a powerful research technique that combines the resolution and sensitivity found in microscopic studies of cultured cells with the relevance and systemic influences of cells in the context of the intact animal. The power of intravital microscopy has recently been extended with the development of multiphoton fluorescence microscopy systems capable of collecting optical sections from deep within the kidney at subcellular resolution, supporting high-resolution characterizations of the structure and function of glomeruli, tubules, and vasculature in the living kidney. Fluorescent probes are administered to an anesthetized, surgically prepared animal, followed by image acquisition for up to 3 hr. Images are transferred via a high-speed network to specialized computer systems for digital image analysis. This general approach can be used with different combinations of fluorescent probes to evaluate processes such as glomerular permeability, proximal tubule endocytosis, microvascular flow, vascular permeability, mitochondrial function, and cellular apoptosis/necrosis. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Kenneth W Dunn
- Indiana University School of Medicine, Indianapolis, Indiana
| | | | | |
Collapse
|
7
|
Sandoval RM, Molitoris BA. Intravital multiphoton microscopy as a tool for studying renal physiology and pathophysiology. Methods 2017; 128:20-32. [PMID: 28733090 DOI: 10.1016/j.ymeth.2017.07.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/12/2017] [Accepted: 07/17/2017] [Indexed: 01/10/2023] Open
Abstract
The kidney is a complex and dynamic organ with over 40 cell types, and tremendous structural and functional diversity. Intravital multi-photon microscopy, development of fluorescent probes and innovative software, have rapidly advanced the study of intracellular and intercellular processes within the kidney. Researchers can quantify the distribution, behavior, and dynamic interactions of up to four labeled chemical probes and proteins simultaneously and repeatedly in four dimensions (time), with subcellular resolution in near real time. Thus, multi-photon microscopy has greatly extended our ability to investigate cell biology intravitally, at cellular and subcellular resolutions. Therefore, the purpose of the chapter is to demonstrate how the use in intravital multi-photon microscopy has advanced the understanding of both the physiology and pathophysiology of the kidney.
Collapse
Affiliation(s)
- Ruben M Sandoval
- Indiana University School of Medicine, Roudebush VAMC, Indiana Center for Biological Microscopy, Indianapolis, IN 46202, USA
| | - Bruce A Molitoris
- Indiana University School of Medicine, Roudebush VAMC, Indiana Center for Biological Microscopy, Indianapolis, IN 46202, USA.
| |
Collapse
|
8
|
Intravital imaging of the kidney. Methods 2017; 128:33-39. [PMID: 28410977 DOI: 10.1016/j.ymeth.2017.03.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/24/2017] [Accepted: 03/30/2017] [Indexed: 02/06/2023] Open
Abstract
Two-photon intravital microscopy is a powerful tool that allows the examination of dynamic cellular processes in the live animal with unprecedented resolution. Indeed, it offers the ability to address unique biological questions that may not be solved by other means. While two-photon intravital microscopy has been successfully applied to study many organs, the kidney presents its own unique challenges that need to be overcome in order to optimize and validate imaging data. For kidney imaging, the complexity of renal architecture and salient autofluorescence merit special considerations as these elements directly impact image acquisition and data interpretation. Here, using illustrative cases, we provide practical guides and discuss issues that may arise during two-photon live imaging of the rodent kidney.
Collapse
|
9
|
Ciarimboli G, Schlatter E. Organic Cation Transport Measurements Using Fluorescence Techniques. NEUROMETHODS 2016. [DOI: 10.1007/978-1-4939-3765-3_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
10
|
Klotho has dual protective effects on cisplatin-induced acute kidney injury. Kidney Int 2013; 85:855-70. [PMID: 24304882 PMCID: PMC3972320 DOI: 10.1038/ki.2013.489] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 09/11/2013] [Accepted: 09/19/2013] [Indexed: 02/07/2023]
Abstract
Klotho protects the kidney from ischemia-reperfusion injury, but its effect on nephrotoxins is unknown. Here we determined whether Klotho protects the kidney from cisplatin toxicity. Cisplatin increased plasma creatinine and induced tubular injury, which were exaggerated in Klotho haplosufficient (Kl/+) and ameliorated in transgenic Klotho overexpressing (Tg-Kl) mice. Neutrophil gelatinase-associated lipocalin and active caspase-3 protein and the number of apoptotic cells in the kidney were higher in Kl/+ and lower in Tg-Kl compared with wild-type mice. Klotho suppressed basolateral uptake of cisplatin by the normal rat kidney cell line (NRK), an effect similar to cimetidine, a known inhibitor of organic cation transport (OCT). A decrease in cell surface and total OCT2 protein and OCT activity by Klotho was mimicked by β-glucuronidase. The Klotho effect was attenuated by β-glucuronidase inhibition. On the other hand, OCT2 mRNA was reduced by Klotho but not by β-glucuronidase. Moreover, cimetidine inhibited OCT activity but not OCT2 expression. Unlike cimetidine, Klotho reduced cisplatin-induced apoptosis from either the basolateral or apical side and even when added after NRK cells were already loaded with cisplatin. Thus, Klotho protects the kidney against cisplatin nephrotoxicity by reduction of basolateral uptake of cisplatin by OCT2 and a direct anti-apoptotic effect independent of cisplatin uptake. Klotho may be a useful agent to prevent and treat cisplatin-induced nephrotoxicity.
Collapse
|
11
|
Hall AM, Rhodes GJ, Sandoval RM, Corridon PR, Molitoris BA. In vivo multiphoton imaging of mitochondrial structure and function during acute kidney injury. Kidney Int 2013; 83:72-83. [PMID: 22992467 PMCID: PMC4136483 DOI: 10.1038/ki.2012.328] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mitochondrial dysfunction has been implicated in the pathogenesis of acute kidney injury due to ischemia and toxic drugs. Methods for imaging mitochondrial function in cells using confocal microscopy are well established; more recently, it was shown that these techniques can be utilized in ex vivo kidney tissue using multiphoton microscopy. We extended this approach in vivo and found that kidney mitochondrial structure and function can be imaged in anesthetized rodents using multiphoton excitation of endogenous and exogenous fluorophores. Mitochondrial nicotinamide adenine dinucleotide increased markedly in rat kidneys in response to ischemia. Following intravenous injection, the mitochondrial membrane potential-dependent dye TMRM was taken up by proximal tubules; in response to ischemia, the membrane potential dissipated rapidly and mitochondria became shortened and fragmented in proximal tubules. In contrast, the mitochondrial membrane potential and structure were better maintained in distal tubules. Changes in mitochondrial structure, nicotinamide adenine dinucleotide, and membrane potential were found in the proximal, but not distal, tubules after gentamicin exposure. These changes were sporadic, highly variable among animals, and were preceded by changes in non-mitochondrial structures. Thus, real-time changes in mitochondrial structure and function can be imaged in rodent kidneys in vivo using multiphoton excitation of endogenous and exogenous fluorophores in response to ischemia-reperfusion injury or drug toxicity.
Collapse
MESH Headings
- Acute Kidney Injury/etiology
- Acute Kidney Injury/pathology
- Acute Kidney Injury/physiopathology
- Animals
- Gentamicins/adverse effects
- Glutathione/metabolism
- Ischemia/complications
- Kidney/blood supply
- Kidney Tubules, Distal/metabolism
- Kidney Tubules, Distal/pathology
- Kidney Tubules, Distal/physiopathology
- Kidney Tubules, Proximal/metabolism
- Kidney Tubules, Proximal/pathology
- Kidney Tubules, Proximal/physiopathology
- Male
- Membrane Potential, Mitochondrial/physiology
- Mice
- Mice, Inbred C57BL
- Microscopy, Fluorescence, Multiphoton/methods
- Mitochondria/pathology
- Mitochondria/physiology
- NAD/metabolism
- Rats
- Rats, Sprague-Dawley
- Rats, Wistar
- Reactive Oxygen Species/metabolism
Collapse
Affiliation(s)
- Andrew M Hall
- University College London Centre for Nephrology, Royal Free Hospital, London, UK.
| | | | | | | | | |
Collapse
|
12
|
Brown AS, Bernal LM, Micotto TL, Smith EL, Wilson JN. Fluorescent neuroactive probes based on stilbazolium dyes. Org Biomol Chem 2011; 9:2142-8. [DOI: 10.1039/c0ob00849d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Abstract
The molecular weight cutoff for glomerular filtration is thought to be 30-50 kDa. Here we report rapid and efficient filtration of molecules 10-20 times that mass and a model for the mechanism of this filtration. We conducted multimodal imaging studies in mice to investigate renal clearance of a single-walled carbon nanotube (SWCNT) construct covalently appended with ligands allowing simultaneous dynamic positron emission tomography, near-infrared fluorescence imaging, and microscopy. These SWCNTs have a length distribution ranging from 100 to 500 nm. The average length was determined to be 200-300 nm, which would yield a functionalized construct with a molecular weight of approximately 350-500 kDa. The construct was rapidly (t(1/2) approximately 6 min) renally cleared intact by glomerular filtration, with partial tubular reabsorption and transient translocation into the proximal tubular cell nuclei. Directional absorption was confirmed in vitro using polarized renal cells. Active secretion via transporters was not involved. Mathematical modeling of the rotational diffusivity showed the tendency of flow to orient SWCNTs of this size to allow clearance via the glomerular pores. Surprisingly, these results raise questions about the rules for renal filtration, given that these large molecules (with aspect ratios ranging from 100:1 to 500:1) were cleared similarly to small molecules. SWCNTs and other novel nanomaterials are being actively investigated for potential biomedical applications, and these observations-that high aspect ratio as well as large molecular size have an impact on glomerular filtration-will allow the design of novel nanoscale-based therapeutics with unusual pharmacologic characteristics.
Collapse
|
14
|
Hall AM, Unwin RJ, Parker N, Duchen MR. Multiphoton imaging reveals differences in mitochondrial function between nephron segments. J Am Soc Nephrol 2009; 20:1293-302. [PMID: 19470684 PMCID: PMC2689904 DOI: 10.1681/asn.2008070759] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 01/22/2009] [Indexed: 11/03/2022] Open
Abstract
Mitochondrial dysfunction may play a role in the pathogenesis of several renal diseases. Although functional roles and metabolic demands differ among tubule segments, relatively little is known about the properties of mitochondria in different parts of the nephron. Clinically, the proximal tubule seems particularly vulnerable to mitochondrial toxicity. In this study, we used multiphoton imaging of live rat kidney slices to investigate differences in mitochondrial function along the nephron. The mitochondrial membrane potential was markedly higher in distal than proximal tubules. Inhibition of respiration rapidly collapsed the membrane potential in proximal tubules, but potential was better maintained in distal tubules. Inhibition of the F1F(o)-ATPase abolished this difference, suggesting that maintenance of potential via ATPase activity is more effective in distal than proximal tubules. Immunostaining revealed that the ratio of the expression of ATPase to IF1, an endogenous inhibitor of the mitochondrial ATPase, was lower in proximal tubules than in distal tubules. Production of reactive oxygen species was higher in proximal than distal cells, but inhibition of NADPH oxidase eliminated this difference. Glutathione levels were higher in proximal tubules. Overall, mitochondria in the proximal tubules were in a more oxidized state than those in the distal tubules. In summary, there are axial differences in mitochondrial function along the nephron, which may contribute to the pattern and pathophysiology of some forms of renal injury.
Collapse
Affiliation(s)
- Andrew M Hall
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK.
| | | | | | | |
Collapse
|
15
|
Molitoris BA, Sandoval RM. Techniques to study nephron function: microscopy and imaging. Pflugers Arch 2009; 458:203-9. [PMID: 19145447 DOI: 10.1007/s00424-008-0629-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 12/23/2008] [Indexed: 11/26/2022]
Abstract
Recent advances in optics, computer sciences, fluorophores, and molecular techniques allow investigators the opportunity to study dynamic events within the functioning kidney with subcellular resolution. Investigators can now use two-photon microscopy to follow several complex heterogenous processes in organs such as the kidney with high spacial and temporal resolution. Repeat determinations over time within the same animal are possible and minimize animal use and interanimal variability. Furthermore, the ability to obtain volumetric data (3D) makes quantitative 4D (time) analysis possible. Finally, use of multiple fluorophores concurrently allows for three different or interactive processes to be observed simultaneously. Therefore, this approach compliments existing molecular, biochemical, and pharmacologic techniques by advancing in vivo data analysis and interpretation to subcellular levels for molecules without the requirement for fixation. Its use in the kidney is in its infancy but offers much promise for unraveling the complex interdependent physiologic and pathophysiologic processes known to contribute to cell function and disease.
Collapse
Affiliation(s)
- Bruce A Molitoris
- Department of Medicine, Indiana University School of Medicine, Indianapolis, 46202, USA.
| | | |
Collapse
|
16
|
Wotzlaw C, Berchner-Pfannschmidt U, Fandrey J, Acker H. Two-photon imaging of cellular activities in oxygen sensing tissues. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2008; 14:519-525. [PMID: 18986605 DOI: 10.1017/s1431927608080847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The cellular oxygen sensing system of the body ensures appropriate adaptation of cellular functions toward hypoxia by regulating gene expression and ion channel activity. Two-photon laser microscopy is an ideal tool to study and prove the relevance of the molecular mechanisms within oxygen sensing pathways on the cellular and complex tissue or organ level. Images of hypoxia inducible factor 1 (HIF-1) subunit nuclear mobility and protein-protein interaction in living cells, of hypoxia-induced changes in membrane potential and intracellular calcium of live ex vivo carotid bodies as well as of rat kidney proximal tubulus function in vivo, will be shown.
Collapse
Affiliation(s)
- Christoph Wotzlaw
- Institut für Physiologie, Universität Duisburg-Essen, Hufelandstrasse 55, D-45122 Essen, Germany
| | | | | | | |
Collapse
|
17
|
Critical issues related to real-time fluorescence imaging of renal tissues using confocal microscopy. Kidney Int 2008; 73:656; author reply 656-7. [DOI: 10.1038/sj.ki.5002754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Hörbelt M, Pietruck F. Response to ‘Critical issues related to real-time fluorescence imaging of renal tissues using confocal microscopy’. Kidney Int 2008. [DOI: 10.1038/sj.ki.5002759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Koepsell H. In vivo two-photon fluorescence microscopy opens a new area for investigation of the excretion of cationic drugs in the kidney. Kidney Int 2007; 72:387-8. [PMID: 17687378 DOI: 10.1038/sj.ki.5002239] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Polyspecific transporters mediate excretion and reabsorption of organic cations in kidney. With in vivo two-photon fluorescence microscopy, excretion and reabsorption of a fluorescent cation in rat renal proximal tubules was resolved. In combination with specific inhibitors, the contribution of individual cation transporters can be determined.
Collapse
Affiliation(s)
- H Koepsell
- Institut für Anatomie und Zellbiologie, Julius-Maximilians-Universität, Würzburg, Germany.
| |
Collapse
|