1
|
Leck LYW, Abd El-Aziz YS, McKelvey KJ, Park KC, Sahni S, Lane DJR, Skoda J, Jansson PJ. Cancer stem cells: Masters of all traits. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167549. [PMID: 39454969 DOI: 10.1016/j.bbadis.2024.167549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Cancer is a heterogeneous disease, which contributes to its rapid progression and therapeutic failure. Besides interpatient tumor heterogeneity, tumors within a single patient can present with a heterogeneous mix of genetically and phenotypically distinct subclones. These unique subclones can significantly impact the traits of cancer. With the plasticity that intratumoral heterogeneity provides, cancers can easily adapt to changes in their microenvironment and therapeutic exposure. Indeed, tumor cells dynamically shift between a more differentiated, rapidly proliferating state with limited tumorigenic potential and a cancer stem cell (CSC)-like state that resembles undifferentiated cellular precursors and is associated with high tumorigenicity. In this context, CSCs are functionally located at the apex of the tumor hierarchy, contributing to the initiation, maintenance, and progression of tumors, as they also represent the subpopulation of tumor cells most resistant to conventional anti-cancer therapies. Although the CSC model is well established, it is constantly evolving and being reshaped by advancing knowledge on the roles of CSCs in different cancer types. Here, we review the current evidence of how CSCs play a pivotal role in providing the many traits of aggressive tumors while simultaneously evading immunosurveillance and anti-cancer therapy in several cancer types. We discuss the key traits and characteristics of CSCs to provide updated insights into CSC biology and highlight its implications for therapeutic development and improved treatment of aggressive cancers.
Collapse
Affiliation(s)
- Lionel Y W Leck
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Yomna S Abd El-Aziz
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Oral Pathology Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | - Kelly J McKelvey
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Kyung Chan Park
- Proteina Co., Ltd./Seoul National University, Seoul, South Korea
| | - Sumit Sahni
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Darius J R Lane
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
| | - Patric J Jansson
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
2
|
Zhang Y, Yin Z, Yao Z, Xu D, Jiang X, Nie X, Chen D, Zhou H, Shi P, Liu H, Liu Q, Yu G. Venetoclax added to CLAG regimen might improve the outcome of patients with relapsed/refractory acute myeloid leukemia. Ther Adv Hematol 2025; 16:20406207251319603. [PMID: 39935629 PMCID: PMC11811969 DOI: 10.1177/20406207251319603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/22/2025] [Indexed: 02/13/2025] Open
Abstract
Background We aim to analyze the efficacy and safety of Venetoclax (Ven) added to cladribine + cytarabine + granulocyte colony-stimulating factor (G-CSF) ± idarubicin or mitoxantrone (CLAG ± Ida/Mito) regimen as a salvage treatment of relapsed/refractory acute myeloid leukemia (RR-AML). Methods A single-center, retrospective, cohort study was performed. Patients with RR-AML, being treated with CLAG ± Ida/Mito with versus without Ven, were retrospectively studied. The endpoints of this study were to evaluate the rate of composite complete remission (CRc), measurable residual disease (MRD), event-free survival (EFS), overall survival (OS), and relapse between CLAG and CLAG + Ven groups. Results Sixty-nine patients were included, with a median age of 37 (range, 18-65) years. Thirty-one patients underwent one cycle of salvage treatment of CLAG ± Ida/Mito with Ven and 38 without. In the CLAG + Ven group, 24 (77.4%) patients acquired response, including 22 (71.0%) with composite complete remission (CRc) and 15 (48.4%) MRD-negative CRc, which was significantly higher than those (CRc 47.4%, p = 0.048; MRD-negative CRc 18.4%, p = 0.008) in the CLAG group. Subgroup analysis showed that patients without response after two courses of induction therapy, or patients with FLT3 mutations seemed to benefit more from CLAG ± Ida/Mito + Ven than CLAG ± Ida/Mito in acquiring CRc. With a median follow-up of 13 (95% CI 10.5-15.5) months, the CLAG + Ven group had a median OS of 22.9 (95% CI 19.6-26.2) months and EFS of 15.7 (95% CI 11.1-20.2) months. In contrast, the CLAG group had a median OS of 18.6 (95% CI 14.7-22.6) months and EFS of 10.7 (95% CI 6.6-14.8) months. Although not statistically significant, patients in the CLAG + Ven group showed a potential survival advantage compared to the CLAG group. AEs including all grade and grade 3/4 occurred at similar frequencies in the two groups. Conclusions Ven added to CLAG ± Ida/Mito might improve the outcome of the patients with RR-AML, with well toleration, and a randomized controlled trial is needed to explored.
Collapse
Affiliation(s)
- Yu Zhang
- The Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhao Yin
- The Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zurong Yao
- The Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Dan Xu
- The Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xuejie Jiang
- The Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaqi Nie
- The Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Dandan Chen
- The Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongsheng Zhou
- The Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Pengcheng Shi
- The Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hui Liu
- The Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qifa Liu
- The Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Guangzhou, Guangdong, China
| | - Guopan Yu
- The Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Yin Z, Gao Y, Bu X, Wang J, Yao Z, Liu Q, Zhang Y, Yu G, Ping B. Homoharringtonine sensitized resistant acute myeloid leukemia cells to venetoclax-induced apoptosis. Leuk Lymphoma 2024; 65:2138-2150. [PMID: 39235111 DOI: 10.1080/10428194.2024.2400228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Venetoclax (VEN), a B-cell lymphoma 2 (BCL-2) selective inhibitor, is widely used for treating acute myeloid leukemia (AML) with promising results. However, the anti-leukemic effect of VEN in relapsed/refractory (R/R)- AML requires improvement. In this study, we observed that combining homoharringtonine (HHT) with VEN plus azacitidine resulted in a significantly higher response and better survival than VA alone in patients with R/R-AML. Basic research indicates that HHT combined with VEN has a highly synergistic effect against both resistant AML cells and primary cells with/without mesenchymal stem cell (MSC) co-culture in vivo, inhibiting proliferation and colony-forming capacity of AML cells associated with concomitant cell cycle arrest. Mechanistically, HHT sensitizes AML cells to VEN by downregulating the anti-apoptotic proteins MCL-1/BCL-xL, activating reactive oxygen species (ROS), leading to mitochondrial membrane potential loss, and attenuating fatty acid (FA) uptake. These findings adding HHT to VEN-based regimens may enhance outcomes in R/R-AML patients.
Collapse
Affiliation(s)
- Zhao Yin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
- Department of Hematology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Ya Gao
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangdong, P.R. China
| | - Xiaoyin Bu
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, P.R. China
| | - Junhui Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Zurong Yao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
- Clinical Medical Research Center of Hematological Diseases of Guangdong Province, Guangzhou, Guangdong, P.R. China
| | - Yu Zhang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
- Clinical Medical Research Center of Hematological Diseases of Guangdong Province, Guangzhou, Guangdong, P.R. China
| | - Guopan Yu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
- Clinical Medical Research Center of Hematological Diseases of Guangdong Province, Guangzhou, Guangdong, P.R. China
| | - Baohong Ping
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
- Department of Hematology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
4
|
Giansanti M, Ottone T, Travaglini S, Voso MT, Graziani G, Faraoni I. Combination Treatment of Resistant Acute Promyelocytic Leukemia Cells with Arsenic Trioxide and Anti-Apoptotic Gene Inhibitors. Pharmaceuticals (Basel) 2024; 17:1529. [PMID: 39598439 PMCID: PMC11597735 DOI: 10.3390/ph17111529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/02/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Arsenic trioxide (ATO) is an anticancer agent for treating acute promyelocytic leukemia (APL). However, 5-10% of patients fail to respond, developing relapsed/refractory disease. The aim of this study was to identify potential new therapeutic approaches for ATO-unresponsive APL by targeting the anti-apoptotic genes that contribute to drug resistance. METHODS RNA expression of dysregulated genes involved in the apoptotic pathway was analyzed by comparing ATO-resistant APL cell clones generated in our lab with the corresponding sensitive clones, at basal levels and after 48 h of treatment with ATO. RESULTS ATO-resistant APL cells showed upregulation of APAF1, BCL2, BIRC3, and NOL3 genes, while CD70 and IL10 genes were downregulated, compared to ATO-sensitive cells. Treatment with ATO strongly increased the expression of the anti-apoptotic genes BIRC3, NOL3, and BCL2A1 and significantly downregulated BCL2 in ATO-sensitive clones. Although all these genes can be relevant to ATO-resistance, we selected BCL2 and BIRC3 as druggable targets. A direct correlation between BCL2 expression and the sensitivity to the BCL2 inhibitor venetoclax was observed, indicating BCL2 as predictive biomarker of the response. Moreover, the combination of venetoclax with ATO exerted synergistic cytotoxic effects, thus reverting the resistance to ATO. APL treatment with SMAC mimetics such as LCL161 and xevinapant (inhibitors of BIRC3) was not as effective as the BCL2 inhibitor as a monotherapy but exerted synergistic effects in combination with ATO in cells with low BIRC expression. CONCLUSIONS This study demonstrates the therapeutic potential of venetoclax in combination with ATO in vitro and strongly encourages further investigation of relapsed/refractory APL with high BCL2 expression.
Collapse
Affiliation(s)
- Manuela Giansanti
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Tiziana Ottone
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy (M.T.V.)
- Unit of Neuro-Oncohematology, Santa Lucia Foundation-IRCCS, 00179 Rome, Italy
| | - Serena Travaglini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy (M.T.V.)
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy (M.T.V.)
- Unit of Neuro-Oncohematology, Santa Lucia Foundation-IRCCS, 00179 Rome, Italy
| | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Isabella Faraoni
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| |
Collapse
|
5
|
Rahmé R, Braun T. Venetoclax Combined with Intensive Chemotherapy: A New Hope for Refractory and/or Relapsed Acute Myeloid Leukemia? J Clin Med 2024; 13:549. [PMID: 38256681 PMCID: PMC10816428 DOI: 10.3390/jcm13020549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Background. Primary resistance of acute myeloid leukemia (AML) to the conventional 3 + 7 intensive chemotherapy and relapses after first-line chemotherapy are two highly challenging clinical scenarios. In these cases, when allogeneic stem cell transplantation is feasible, patients are usually retreated with other chemotherapeutic regimens, as transplantation is still considered, nowadays, the only curative option. Methods. We discuss the mechanisms behind resistance to chemotherapy and offer a comprehensive review on current treatments of refractory/relapsed AML with a focus on novel approaches incorporating the BCL-2 inhibitor venetoclax. Results. Alas, complete remission rates after salvage chemotherapy remain relatively low, between 30 and 60% at best. More recently, the BCL-2 inhibitor venetoclax was combined either with hypomethylating agents or chemotherapy in refractory/relapsed patients. In particular, its combination with chemotherapy offered promising results by achieving higher rates of remission and bridging a substantial number of patients to transplantation. Conclusions. Venetoclax-based approaches might become, in the near future, the new standard of care for refractory/relapsed AML.
Collapse
Affiliation(s)
- Ramy Rahmé
- Hematology Department, Avicenne Hospital, Assistance Publique-Hôpitaux de Paris, 93000 Bobigny, France
- Faculty of Medicine, Université Sorbonne Paris Nord, 93017 Bobigny, France;
| | - Thorsten Braun
- Hematology Department, Avicenne Hospital, Assistance Publique-Hôpitaux de Paris, 93000 Bobigny, France
- Faculty of Medicine, Université Sorbonne Paris Nord, 93017 Bobigny, France;
| |
Collapse
|
6
|
Forsberg M, Konopleva M. SOHO State of the Art Updates and Next Questions: Understanding and Overcoming Venetoclax Resistance in Hematologic Malignancies. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024; 24:1-14. [PMID: 38007372 DOI: 10.1016/j.clml.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 11/27/2023]
Abstract
The discovery of Venetoclax (VEN) has transformed the therapeutic landscape of acute myeloid leukemia (AML) and chronic lymphocytic leukemia (CLL). However, the response is heterogeneous with 10% to 50% of newly diagnosed AML patients not responding to hypomethylating agent (HMA) and VEN. Furthermore, up to 40% of responding patients relapse shortly. This review discusses the mechanism of action of Venetoclax and the major mechanisms of inherent and acquired resistance to VEN. VEN is highly specific to BCL-2 binding, as such other antiapoptotic proteins in BCL-2 family induce resistance. These antiapoptotic proteins can also be upregulated via a number of compensatory cell signaling pathways including PI3K/AKT/mTOR, the MAPK/ERK pathway, and mutant FLT3-ITD. Mutations can occur in BCL-2 and BAX proteins, or they can be silenced by TP53 mutations and other epigenetic changes. Changes to mitochondrial structure and metabolism can induce resistance. Key metabolic regulators include OXPHOS and alternative amino acid metabolism. Finally microenvironmental factors can influence VEN responses. This paper evaluates subsets of AML by differentiation, histology, cytogenetics and molecular markers and their different responses to VEN; with spliceosome mutations, ASXL1, NPM1 and IDH1/2 being favorable while others such as FLT3, TP53 and BCL-2 mutations being less responsive. Currently intensive multiagent chemotherapy and Venetoclax combinations such as 7+3+VEN are favored in fit younger AML patients. However, with resistant patients' subsets targeted combination therapies are becoming an increasingly attractive option. We explore the incorporation of non-BCL-2 inhibitors, next-generation BCL-2 and multi-protein agents, other inhibitors most prominently FLT-3 inhibitors in addition to Venetoclax, and other novel approaches for resolving Venetoclax resistance.
Collapse
Affiliation(s)
- Mark Forsberg
- Department of Oncology, Montefiore Einstein Cancer Center, Bronx, NY
| | - Marina Konopleva
- Department of Oncology, Montefiore Einstein Cancer Center, Bronx, NY.
| |
Collapse
|
7
|
Kelvin JM, Jain J, Thapa A, Qui M, Birnbaum LA, Moore SG, Zecca H, Summers RJ, Switchenko JM, Costanza E, Uricoli B, Wang X, Jui NT, Fu H, Du Y, DeRyckere D, Graham DK, Dreaden EC. Constitutively Synergistic Multiagent Drug Formulations Targeting MERTK, FLT3, and BCL-2 for Treatment of AML. Pharm Res 2023; 40:2133-2146. [PMID: 37704893 DOI: 10.1007/s11095-023-03596-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/26/2023] [Indexed: 09/15/2023]
Abstract
PURPOSE Although high-dose, multiagent chemotherapy has improved leukemia survival rates, treatment outcomes remain poor in high-risk subsets, including acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) in infants. The development of new, more effective therapies for these patients is therefore an urgent, unmet clinical need. METHODS The dual MERTK/FLT3 inhibitor MRX-2843 and BCL-2 family protein inhibitors were screened in high-throughput against a panel of AML and MLL-rearranged precursor B-cell ALL (infant ALL) cell lines. A neural network model was built to correlate ratiometric drug synergy and target gene expression. Drugs were loaded into liposomal nanocarriers to assess primary AML cell responses. RESULTS MRX-2843 synergized with venetoclax to reduce AML cell density in vitro. A neural network classifier based on drug exposure and target gene expression predicted drug synergy and growth inhibition in AML with high accuracy. Combination monovalent liposomal drug formulations delivered defined drug ratios intracellularly and recapitulated synergistic drug activity. The magnitude and frequency of synergistic responses were both maintained and improved following drug formulation in a genotypically diverse set of primary AML bone marrow specimens. CONCLUSIONS We developed a nanoscale combination drug formulation that exploits ectopic expression of MERTK tyrosine kinase and dependency on BCL-2 family proteins for leukemia cell survival in pediatric AML and infant ALL cells. We demonstrate ratiometric drug delivery and synergistic cell killing in AML, a result achieved by a systematic, generalizable approach of combination drug screening and nanoscale formulation that may be extended to other drug pairs or diseases in the future.
Collapse
Affiliation(s)
- James M Kelvin
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA
| | - Juhi Jain
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
- Department of Pediatrics, University of Arizona College of Medicine, and Banner University Medical Center Tucson, Tucson, AZ, 85724, USA
| | - Aashis Thapa
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Min Qui
- Department of Pharmacology and Chemical Biology, Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Lacey A Birnbaum
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA
| | - Samuel G Moore
- Systems Mass Spectrometry Core Facility, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Henry Zecca
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Ryan J Summers
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Jeffrey M Switchenko
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA
| | - Emma Costanza
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA
| | - Biaggio Uricoli
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA
| | - Xiaodong Wang
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Nathan T Jui
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Haian Fu
- Department of Pharmacology and Chemical Biology, Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology, Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA
| | - Deborah DeRyckere
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Douglas K Graham
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA.
| | - Erik C Dreaden
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA.
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA.
- Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA.
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
8
|
Lee JC, Liu S, Wang Y, Liang Y, Jablons DM. MK256 is a novel CDK8 inhibitor with potent antitumor activity in AML through downregulation of the STAT pathway. Oncotarget 2022; 13:1217-1236. [PMCID: PMC9629815 DOI: 10.18632/oncotarget.28305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Acute myeloid leukemia (AML) is the most lethal form of AML due to disease relapse. Cyclin dependent kinase 8 (CDK8) is a serine/threonine kinase that belongs to the family of Cyclin-dependent kinases and is an emerging target for the treatment of AML. MK256, a potent, selective, and orally available CDK8 inhibitor was developed to target AML. We sought to examine the anticancer effect of MK256 on AML. In CD34+/CD38- leukemia stem cells, we found that MK256 induced differentiation and maturation. Treatment of MK256 inhibited proliferation of AML cell lines. Further studies of the inhibitory effect suggested that MK256 not only downregulated phosphorylated STAT1(S727) and STAT5(S726), but also lowered mRNA expressions of MCL-1 and CCL2 in AML cell lines. Efficacy of MK256 was shown in MOLM-14 xenograft models, and the inhibitory effect on phosphorylated STAT1(S727) and STAT5(S726) with treatment of MK256 was observed in vivo. Pharmacologic dynamics study of MK256 in MOLM-14 xenograft models showed dose-dependent inhibition of the STAT pathway. Both in vitro and in vivo studies suggested that MK256 could effectively downregulate the STAT pathway. In vitro ADME, pharmacological kinetics, and toxicity of MK256 were profiled to evaluate the drug properties of MK256. Our results show that MK256 is a novel CDK8 inhibitor with a desirable efficacy and safety profile and has great potential to be a promising drug candidate for AML through regulating the STAT pathway.
Collapse
Affiliation(s)
- Jen-Chieh Lee
- 1Thoracic Oncology, Department of Medicine, University of California, San Francisco, CA 94143, USA,2Touro University, College of Osteopathic Medicine, Vallejo, CA 94592, USA,*These authors contributed equally to this work,Correspondence to:Jen-Chieh Lee, email:
| | - Shu Liu
- 1Thoracic Oncology, Department of Medicine, University of California, San Francisco, CA 94143, USA,*These authors contributed equally to this work,Shu Liu, email:
| | - Yucheng Wang
- 1Thoracic Oncology, Department of Medicine, University of California, San Francisco, CA 94143, USA,*These authors contributed equally to this work
| | - You Liang
- 1Thoracic Oncology, Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - David M. Jablons
- 1Thoracic Oncology, Department of Medicine, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
9
|
Targeting EZH2 Promotes Chemosensitivity of BCL-2 Inhibitor through Suppressing PI3K and c-KIT Signaling in Acute Myeloid Leukemia. Int J Mol Sci 2022; 23:ijms231911393. [PMID: 36232694 PMCID: PMC9569949 DOI: 10.3390/ijms231911393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 11/26/2022] Open
Abstract
Acute myeloid leukemia (AML) is one of the most common hematological malignancies with high heterogeneity, characterized by a differentiating block at the early progenitor stage. The selective BCL-2 inhibitor, Venetoclax (Ven), has shown exciting clinical results in a certain group of AML patients. However, Ven alone is insufficient to reach an enduringly complete response, which leads to the concern of Ven resistance. Alternative combined therapies with Ven are demanded in AML. Here, we reported the synergistic effect and molecular mechanism of the enhancer of zeste homolog 2 (EZH2) inhibitor DZNeP with Ven in AML cells. Results showed that the combination of DZNeP with Ven significantly induces cell proliferation arrest compared to single-drug control in AML cells and primary samples, and CalcuSyn analysis showed their significant synergy. The combination also significantly promotes apoptosis and increases the expression of pro-apoptotic proteins. The whole transcriptome analysis showed that phosphoinositide-3-kinase-interacting protein1 (PIK3IP1), the PI3K/AKT/mTOR signaling suppressor, is upregulated upon DZNeP treatment. Moreover, EZH2 is upregulated but PIK3IP1 is downregulated in 88 newly diagnosed AML cohorts compared to 70 healthy controls, and a higher expression of EZH2 is associated with poor outcomes in AML patients. Particularly, the combination of DZNeP with Ven dramatically eliminated CD117 (c-KIT) (+) AML blasts, suggesting the effect of the combination on tumor stem cells. In summary, our data indicated that DZNeP increases the sensitivity of Ven in AML by affecting PI3K and c-KIT signaling in AML. Our results also suggested that the therapeutic targeting of both EZH2 and BCL-2 provides a novel potential combined strategy against AML.
Collapse
|
10
|
Numan Y, Abaza Y, Altman JK, Platanias LC. Advances in the pharmacological management of acute myeloid leukemia in adults. Expert Opin Pharmacother 2022; 23:1535-1543. [PMID: 35938317 PMCID: PMC9648129 DOI: 10.1080/14656566.2022.2111212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 08/05/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION With advances in molecular medicine and precision approaches, there has been significant improvement in the treatment of acute myeloid leukemia (AML) in recent years. This reflects better understanding of molecular and metabolic pathways in leukemia cells, including BCL2 upregulation that prevents apoptosis, FLT3 tyrosine kinase activating mutations that allow uncontrolled proliferation, and IDH mutations that result in differentiation block. AREAS COVERED We performed a compressive review of important pre-clinical studies in AML that involve major molecular and metabolic pathways in AML, and we discussed standard therapeutic modalities and ongoing clinical trials for patients with AML, as well as an overall update of recent efforts in this area. EXPERT OPINION Targeting these pathways has resulted in improvement in the overall survival of some groups of AML patients. Secondary AML and TP53 mutated AML remain challenging subtypes of AML with limited treatment options and represent areas of unmet research need. Ongoing work with menin inhibitors in MLL rearranged leukemia, which comprise a large portion of secondary AML cases, the development of CAR T cell products and targeting the CD47 receptor on macrophages in myeloid neoplasms including in TP53 mutated AML have provided hope for these challenging subtypes of AML.
Collapse
Affiliation(s)
- Yazan Numan
- Division of Hematology Oncology, Department of Internal
Medicine, Northwestern University-Feinberg School of Medicine, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center of Northwestern
University, Chicago, IL
| | - Yasmin Abaza
- Division of Hematology Oncology, Department of Internal
Medicine, Northwestern University-Feinberg School of Medicine, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center of Northwestern
University, Chicago, IL
| | - Jessica K Altman
- Division of Hematology Oncology, Department of Internal
Medicine, Northwestern University-Feinberg School of Medicine, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center of Northwestern
University, Chicago, IL
| | - Leonidas C Platanias
- Division of Hematology Oncology, Department of Internal
Medicine, Northwestern University-Feinberg School of Medicine, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center of Northwestern
University, Chicago, IL
- Department of Medicine, Jesse Brown VA Medical Center,
Chicago, IL
| |
Collapse
|
11
|
Wei W, Huang S, Ling Q, Mao S, Qian Y, Ye W, Li F, Pan J, Lin X, Huang J, Huang X, Zhai Y, Sun J, Jin J. Homoharringtonine is synergistically lethal with BCL-2 inhibitor APG-2575 in acute myeloid leukemia. Lab Invest 2022; 20:299. [PMID: 35794605 PMCID: PMC9258085 DOI: 10.1186/s12967-022-03497-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/21/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Despite advances in targeted agent development, effective treatment of acute myeloid leukemia (AML) remains a major clinical challenge. The B-cell lymphoma-2 (BCL-2) inhibitor exhibited promising clinical activity in AML, acute lymphoblastic leukemia (ALL) and diffuse large B-cell lymphoma (DLBCL) treatment. APG-2575 is a novel BCL-2 selective inhibitor, which has demonstrated anti-tumor activity in hematologic malignancies. Homoharringtonine (HHT), an alkaloid, exhibited anti-AML activity.
Methods
The synergistic effects of APG-2575 and HHT were studied in AML cell lines and primary samples. MTS was used to measure the cell viability. Annexin V/propidium iodide staining was used to measure the apoptosis rate by flow cytometry. AML cell xenografted mouse models were established to evaluate the anti-leukemic effect of BCL-2 inhibitor, HHT and their combination in vivo. Western blot was used to determine the expression of related proteins.
Results
APG-2575 showed comparable anti-leukemic effect to the FDA-approved BCL-2 inhibitor ABT-199 in vitro and in vivo. Combined treatment of HHT with APG-2575 synergistically inhibited AML cell growth and engraftment. Mechanistically, HHT promoted degradation of myeloid cell leukemia-1 (MCL-1), which was reported to induce BCL-2 inhibitor resistant, through the PI3K/AKT/GSK3β signaling pathway.
Conclusion
Our results provide an effective AML treatment strategy through combination of APG-2575 and HHT, which is worthy of further clinical research.
Collapse
|
12
|
Ong F, Kim K, Konopleva MY. Venetoclax resistance: mechanistic insights and future strategies. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:380-400. [PMID: 35800373 PMCID: PMC9255248 DOI: 10.20517/cdr.2021.125] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 11/12/2022]
Abstract
Acute myeloid leukemia (AML) is historically associated with poor prognosis, especially in older AML patients unfit for intensive chemotherapy. The development of Venetoclax, a potent oral BH3 (BCL-2 homology domain 3) mimetic, has transformed the AML treatment. However, the short duration of response and development of resistance remain major concerns. Understanding mechanisms of resistance is pivotal to devising new strategies and designing rational drug combination regimens. In this review, we will provide a comprehensive summary of the known mechanisms of resistance to Venetoclax and discuss Venetoclax-based combination therapies. Key contributing factors to Venetoclax resistance include dependencies on alternative anti-apoptotic BCL-2 family proteins and selection of the activating kinase mutations. Mutational landscape governing response to Venetoclax and strategic approaches developed considering current knowledge of mechanisms of resistance will be addressed.
Collapse
Affiliation(s)
| | | | - Marina Y. Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
13
|
Liu F, Zhao Q, Su Y, Lv J, Gai Y, Liu S, Lin H, Wang Y, Wang G. Cotargeting of Bcl-2 and Mcl-1 shows promising antileukemic activity against AML cells including those with acquired cytarabine resistance. Exp Hematol 2021; 105:39-49. [PMID: 34767916 DOI: 10.1016/j.exphem.2021.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 11/19/2022]
Abstract
Acute myeloid leukemia (AML) remains a clinical challenge. Venetoclax is an effective Bcl-2 selective inhibitor approved by the U.S. Food and Drug Administration (FDA) for treatment of AML in patients who are 75 years and older or who have comorbidities. However, resistance to venetoclax limits its clinical efficacy. Mcl-1 has been identified as one determinant of resistance to venetoclax treatment. In this study, we investigate the Mcl-1 inhibitor S63845 in combination with venetoclax in AML cells. We found that S63845 synergizes with venetoclax in AML cell lines and primary patient samples. Bak/Bax double knockdown and treatment with the pan-caspase inhibitor Z-VAD-FMK revealed that the combination induces intrinsic apoptosis in AML cells. Inhibition of Mcl-1 using another Mcl-1 selective inhibitor, AZD5991, also synergistically enhanced apoptosis induced by venetoclax in a caspase-dependent manner. Importantly, S63845 in combination with venetoclax can effectively combat AML cells with acquired resistance to the standard chemotherapy drug cytarabine. In light of these facts, the combined inhibition of Mcl-1 and Bcl-2 shows promise against AML cells, including relapse/refractory AML.
Collapse
Affiliation(s)
- Fangbing Liu
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Qiushi Zhao
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Yongwei Su
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Jing Lv
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Yuqing Gai
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Shuang Liu
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Hai Lin
- Department of Hematology and Oncology, First Hospital of Jilin University, Changchun, China
| | - Yue Wang
- Department of Pediatric Hematology and Oncology, First Hospital of Jilin University, Changchun, China.
| | - Guan Wang
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, China;.
| |
Collapse
|
14
|
Spontaneous apoptosis and BCL2 gene expression as predictors of early death and short overall survival in acute leukemia patients: a prospective, case cohort study. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00210-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Spontaneous apoptosis and expression of MCL1, BCL2, and BCL-XL may be useful prognostic markers in acute leukemia patients. The purpose of this study is to examine the prognosis in adult leukemia patients based on spontaneous apoptosis and anti-apoptosis gene expressions in circulating leukocytes.
Results
Early, late, and total apoptosis were significantly increased in peripheral blood leukocytes from patients diagnosed with acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) compared to controls and in cases of ALL versus AML (P < 0.001). Total apoptosis decreased significantly in AML and ALL patients who died early (ED); P = 0.001 and P = 0.002, respectively. Anti-apoptosis genes MCL1, BCL2, and BCL-XL were upregulated in 62.4%, 64.2%, and 62.4% of the acute leukemia patients, respectively. Among the AML patients, the up-regulation of BCL2 was paradoxically associated with increased apoptosis and low rates of ED. The expression levels of MCL1 and BCL-XL had no significant prognostic values; among patients diagnosed with non-acute promyelocytic leukemia (non-APL-AML), total spontaneous apoptosis, expression of BCL2, and performance status were independent predictors of overall survival (OS).
Conclusion
Total spontaneous apoptosis and BCL2 gene expression may be valuable independent markers for OS in patients with non-APL-AML. Moreover, in ALL patients decreased levels of spontaneous apoptosis were associated with ED, although this was not a significant predictor of OS.
Collapse
|
15
|
Tiribelli M, Michelutti A, Cavallin M, Di Giusto S, Simeone E, Fanin R, Damiani D. BCL-2 Expression in AML Patients over 65 Years: Impact on Outcomes across Different Therapeutic Strategies. J Clin Med 2021; 10:jcm10215096. [PMID: 34768616 PMCID: PMC8585096 DOI: 10.3390/jcm10215096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/19/2021] [Accepted: 10/28/2021] [Indexed: 12/19/2022] Open
Abstract
BCL-2 overexpression has been associated with resistance to chemotherapy and reduced survival in acute myeloid leukemia (AML), but few data are available in elderly patients, a subset accounting for majority of AML cases and with dismal prognosis. We retrospectively analyzed 113 AML patients aged ≥65 years treated with 3 + 7 chemotherapy (n = 51) or hypomethylating agents (HMAs) (n = 62), evaluating the role of BCL-2 expression on complete remission (CR) and overall survival (OS). BCL-2 was expressed in 81 patients (72%), more frequently in those with unfavorable cytogenetic-molecular risk. CR was achieved in 34.5% cases, without differences according to BCL-2 expression or induction therapy. In the whole population 1-year OS was 39%, similar in BCL-2+ and BCL-2- cases. In BCL-2 positive patients OS was superior with HMAs (56% vs. 25% with 3 + 7; p = 0.02), while no advantage for HMA was found in BCL-2 negative cases (36% vs. 27% for 3 + 7). Therapy with HMAs was the only factor associated with longer OS in BCL-2+ AML by multivariable analysis. Use of HMAs, possibly in combination with BCL-2 inhibitors, appears to be particularly appealing in BCL2+ AML, where it is associated with superior survival.
Collapse
Affiliation(s)
- Mario Tiribelli
- Division of Hematology and Stem Cell Transplantation, Azienda Sanitaria Universitaria Friuli Centrale—Ospedale S. M. Misericordia, 33100 Udine, Italy; (M.T.); (A.M.); (M.C.); (S.D.G.); (E.S.); (R.F.)
- Department of Medical Area, University of Udine, 33100 Udine, Italy
| | - Angela Michelutti
- Division of Hematology and Stem Cell Transplantation, Azienda Sanitaria Universitaria Friuli Centrale—Ospedale S. M. Misericordia, 33100 Udine, Italy; (M.T.); (A.M.); (M.C.); (S.D.G.); (E.S.); (R.F.)
| | - Margherita Cavallin
- Division of Hematology and Stem Cell Transplantation, Azienda Sanitaria Universitaria Friuli Centrale—Ospedale S. M. Misericordia, 33100 Udine, Italy; (M.T.); (A.M.); (M.C.); (S.D.G.); (E.S.); (R.F.)
| | - Sara Di Giusto
- Division of Hematology and Stem Cell Transplantation, Azienda Sanitaria Universitaria Friuli Centrale—Ospedale S. M. Misericordia, 33100 Udine, Italy; (M.T.); (A.M.); (M.C.); (S.D.G.); (E.S.); (R.F.)
| | - Erica Simeone
- Division of Hematology and Stem Cell Transplantation, Azienda Sanitaria Universitaria Friuli Centrale—Ospedale S. M. Misericordia, 33100 Udine, Italy; (M.T.); (A.M.); (M.C.); (S.D.G.); (E.S.); (R.F.)
| | - Renato Fanin
- Division of Hematology and Stem Cell Transplantation, Azienda Sanitaria Universitaria Friuli Centrale—Ospedale S. M. Misericordia, 33100 Udine, Italy; (M.T.); (A.M.); (M.C.); (S.D.G.); (E.S.); (R.F.)
- Department of Medical Area, University of Udine, 33100 Udine, Italy
| | - Daniela Damiani
- Division of Hematology and Stem Cell Transplantation, Azienda Sanitaria Universitaria Friuli Centrale—Ospedale S. M. Misericordia, 33100 Udine, Italy; (M.T.); (A.M.); (M.C.); (S.D.G.); (E.S.); (R.F.)
- Department of Medical Area, University of Udine, 33100 Udine, Italy
- Correspondence: ; Tel.: +39-0432-559662
| |
Collapse
|
16
|
Madaci L, Colle J, Venton G, Farnault L, Loriod B, Costello R. The contribution of single-cell analysis of acute leukemia in the therapeutic strategy. Biomark Res 2021; 9:50. [PMID: 34176517 PMCID: PMC8237443 DOI: 10.1186/s40364-021-00300-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/25/2021] [Indexed: 12/18/2022] Open
Abstract
After decades during which the treatment of acute myeloblastic leukemia was limited to variations around a skeleton of cytarabine/anthracycline, targeted therapies appeared. These therapies, first based on monoclonal antibodies, also rely on specific inhibitors of various molecular abnormalities. A significant but modest prognosis improvement has been observed thanks to these new treatments that are limited by a high rate of relapse, due to the intrinsic chemo and immune-resistance of leukemia stem cell, together with the acquisition of these resistances by clonal evolution. Relapses are also influenced by the equilibrium between the pro or anti-tumor signals from the bone marrow stromal microenvironment and immune effectors. What should be the place of the targeted therapeutic options in light of the tumor heterogeneity inherent to leukemia and the clonal drift of which this type of tumor is capable? Novel approaches by single cell analysis and next generation sequencing precisely define clonal heterogeneity and evolution, leading to a personalized and time variable adapted treatment. Indeed, the evolution of leukemia, either spontaneous or under therapy selection pressure, is a very complex phenomenon. The model of linear evolution is to be forgotten because single cell analysis of samples at diagnosis and at relapse show that tumor escape to therapy occurs from ancestral as well as terminal clones. The determination by the single cell technique of the trajectories of the different tumor sub-populations allows the identification of clones that accumulate factors of resistance to chemo/immunotherapy ("pan-resistant clones"), making possible to choose the combinatorial agents most likely to eradicate these cells. In addition, the single cell technique identifies the nature of each cell and can analyze, on the same sample, both the tumor cells and their environment. It is thus possible to evaluate the populations of immune effectors (T-lymphocytes, natural killer cells) for the leukemia stress-induced alteration of their functions. Finally, the single cells techniques are an invaluable tool for evaluation of the measurable residual disease since not only able to quantify but also to determine the most appropriate treatment according to the sensitivity profile to immuno-chemotherapy of remaining leukemic cells.
Collapse
Affiliation(s)
- Lamia Madaci
- Laboratoire TAGC/INSERM UMR 1090, Parc Scientifique de Luminy case 928, 163, Avenue de Luminy, Cedex 09, 13288, Marseille, France
| | - Julien Colle
- Laboratoire TAGC/INSERM UMR 1090, Parc Scientifique de Luminy case 928, 163, Avenue de Luminy, Cedex 09, 13288, Marseille, France.,Service d'Hématologie et Thérapie Cellulaire, Hôpital La Conception, Assistance Publique des Hôpitaux de Marseille, 147 boulevard Baille, 13005, Marseille, France
| | - Geoffroy Venton
- Laboratoire TAGC/INSERM UMR 1090, Parc Scientifique de Luminy case 928, 163, Avenue de Luminy, Cedex 09, 13288, Marseille, France.,Service d'Hématologie et Thérapie Cellulaire, Hôpital La Conception, Assistance Publique des Hôpitaux de Marseille, 147 boulevard Baille, 13005, Marseille, France
| | - Laure Farnault
- Laboratoire TAGC/INSERM UMR 1090, Parc Scientifique de Luminy case 928, 163, Avenue de Luminy, Cedex 09, 13288, Marseille, France.,Service d'Hématologie et Thérapie Cellulaire, Hôpital La Conception, Assistance Publique des Hôpitaux de Marseille, 147 boulevard Baille, 13005, Marseille, France
| | - Béatrice Loriod
- Laboratoire TAGC/INSERM UMR 1090, Parc Scientifique de Luminy case 928, 163, Avenue de Luminy, Cedex 09, 13288, Marseille, France.,TGML-TAGC/INSERM UMR1090 Parc Scientifique de Luminy case 928, 163, avenue de Luminy, Cedex 09, 13288, Marseille, France
| | - Régis Costello
- Laboratoire TAGC/INSERM UMR 1090, Parc Scientifique de Luminy case 928, 163, Avenue de Luminy, Cedex 09, 13288, Marseille, France. .,Service d'Hématologie et Thérapie Cellulaire, Hôpital La Conception, Assistance Publique des Hôpitaux de Marseille, 147 boulevard Baille, 13005, Marseille, France.
| |
Collapse
|
17
|
Handschuh L, Wojciechowski P, Kazmierczak M, Lewandowski K. Transcript-Level Dysregulation of BCL2 Family Genes in Acute Myeloblastic Leukemia. Cancers (Basel) 2021; 13:cancers13133175. [PMID: 34202143 PMCID: PMC8267690 DOI: 10.3390/cancers13133175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 12/19/2022] Open
Abstract
The expression of apoptosis-related BCL2 family genes, fine-tuned in normal cells, is dysregulated in many neoplasms. In acute myeloid leukemia (AML), this problem has not been studied comprehensively. To address this issue, RNA-seq data were used to analyze the expression of 26 BCL2 family members in 27 AML FAB M1 and M2 patients, divided into subgroups differently responding to chemotherapy. A correlation analysis, analysis of variance, and Kaplan-Meier analysis were applied to associate the expression of particular genes with other gene expression, clinical features, and the presence of mutations detected by exome sequencing. The expression of BCL2 family genes was dysregulated in AML, as compared to healthy controls. An upregulation of anti-apoptotic and downregulation of pro-apoptotic genes was observed, though only a decrease in BMF, BNIP1, and HRK was statistically significant. In a group of patients resistant to chemotherapy, overexpression of BCL2L1 was manifested. In agreement with the literature data, our results reveal that BCL2L1 is one of the key players in apoptosis regulation in different types of tumors. An exome sequencing data analysis indicates that BCL2 family genes are not mutated in AML, but their expression is correlated with the mutational status of other genes, including those recurrently mutated in AML and splicing-related. High levels of some BCL2 family members, in particular BIK and BCL2L13, were associated with poor outcome.
Collapse
Affiliation(s)
- Luiza Handschuh
- Laboratory of Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Correspondence: ; Tel.: +48-618-528-503
| | - Pawel Wojciechowski
- Laboratory of Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland;
| | - Maciej Kazmierczak
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, 60-569 Poznan, Poland; (M.K.); (K.L.)
| | - Krzysztof Lewandowski
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, 60-569 Poznan, Poland; (M.K.); (K.L.)
| |
Collapse
|
18
|
Schwerdtfeger M, Desiderio V, Kobold S, Regad T, Zappavigna S, Caraglia M. Long non-coding RNAs in cancer stem cells. Transl Oncol 2021; 14:101134. [PMID: 34051619 PMCID: PMC8176362 DOI: 10.1016/j.tranon.2021.101134] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/29/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Long non coding RNAs are involved in the regulation of multiple cellular processes. Cancer stemness and escape from immunological anti-cancer mechanisms are important mechanisms of resistance to anti-cancer agents and are pivotal in controlling cancer development and metastases. Long non coding RNAs have deep effects on the immune-modulation and on the control of cancer stem cells. Several pathways involved in immunological escape and cancer stemness are modulated by long non coding RNAs. Targeting long non coding RNAs is a potential new strategy to control tumor development and metastases.
In recent years, it has been evidenced that the human transcriptome includes several types of non-coding RNAs (ncRNAs) that are mainly involved in the regulation of different cellular processes. Among ncRNAs, long-non-coding RNAs (lncRNAs) are defined as longer than 200 nucleotides and have been shown to be involved in several physiological and pathological events, including immune system regulation and cancer. Cancer stem cells (CSCs) are defined as a population of cancer cells that possess characteristics, such as resistance to standard treatments, cancer initiation, ability to undergo epithelial-to-mesenchymal transition, and the ability to invade, spread, and generate metastases. The cancer microenvironment, together with genetic and epigenetic factors, is fundamental for CSC maintenance and tumor growth and progression. Unsurprisingly, lncRNAs have been involved in both CSC biology and cancer progression, prognosis and recurrence. Here we review the most recent literature on IncRNAs involvement in CSC biology and function.
Collapse
Affiliation(s)
- Melanie Schwerdtfeger
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy; Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany, Member of the German Center for Lung Research (DZL)
| | - Vincenzo Desiderio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany, Member of the German Center for Lung Research (DZL); German Center for Translational Cancer Research (DKTK), Partner site Munich, Munich, Germany
| | - Tarik Regad
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Silvia Zappavigna
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.
| |
Collapse
|
19
|
Lasica M, Anderson MA. Review of Venetoclax in CLL, AML and Multiple Myeloma. J Pers Med 2021; 11:463. [PMID: 34073976 PMCID: PMC8225137 DOI: 10.3390/jpm11060463] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/13/2021] [Accepted: 05/16/2021] [Indexed: 12/14/2022] Open
Abstract
Venetoclax is a highly selective and effective B-cell lymphoma-2 (BCL-2) inhibitor, which is able to reinstate the apoptotic potential of cancer cells. With its full repertoire yet to be explored, it has changed the therapeutic landscape in haematological malignancies, and most particularly chronic lymphocytic leukaemia (CLL), acute myeloid leukaemia (AML) and multiple myeloma (MM). In CLL, it has shown remarkable efficacy both as monotherapy and in combination therapy. Based on data from MURANO and CLL14 studies, fixed-duration combination therapy of venetoclax with anti-CD20 antibody is now the standard of care in numerous countries. In AML, although of limited efficacy as a single agent, venetoclax combination therapy has demonstrated encouraging outcomes including rapid, durable responses and acceptable toxicity, particularly in the older, unfit patient population. Multiple myeloma with translocation (t)(11;14) harbours high BCL-2/ myeloid cell leukaemia sequence-1 (MCL-1) and BCL-2/BCL-XL ratio and is, therefore, particularly suited for venetoclax-based therapy. Despite a wide ranging and evolving clinical role in these diseases, venetoclax treatment is not curative and, over time, clonal evolution and disease relapse appear to be the norm. While a variety of distinct resistance mechanisms have been identified, frequently emerging in a sub-clonal pattern, the full picture is yet to be characterised. Further illumination of the complex interplay of various factors is needed to pave the way for rational combination therapies aimed at circumventing resistance and improving durability of disease control. Serial molecular studies can aid in identification of new prognostically significant and/or targetable mutations.
Collapse
Affiliation(s)
- Masa Lasica
- Department of Haematology, St Vincent’s Hospital, Melbourne 3065, Australia
| | - Mary Ann Anderson
- Department of Haematology, Peter MacCallum Cancer Centre, Melbourne 3000, Australia;
- Department of Clinical Haematology, The Royal Melbourne Hospital, Melbourne 3000, Australia
- The Division of Blood Cells and Blood Cancer, The Walter and Eliza Hall Institute, Melbourne 3000, Australia
| |
Collapse
|
20
|
Parry N, Wheadon H, Copland M. The application of BH3 mimetics in myeloid leukemias. Cell Death Dis 2021; 12:222. [PMID: 33637708 PMCID: PMC7908010 DOI: 10.1038/s41419-021-03500-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 01/31/2023]
Abstract
Execution of the intrinsic apoptotic pathway is controlled by the BCL-2 proteins at the level of the mitochondrial outer membrane (MOM). This family of proteins consists of prosurvival (e.g., BCL-2, MCL-1) and proapoptotic (e.g., BIM, BAD, HRK) members, the functional balance of which dictates the activation of BAX and BAK. Once activated, BAX/BAK form pores in the MOM, resulting in cytochrome c release from the mitochondrial intermembrane space, leading to apoptosome formation, caspase activation, and cleavage of intracellular targets. This pathway is induced by cellular stress including DNA damage, cytokine and growth factor withdrawal, and chemotherapy/drug treatment. A well-documented defense of leukemia cells is to shift the balance of the BCL-2 family in favor of the prosurvival proteins to protect against such intra- and extracellular stimuli. Small molecule inhibitors targeting the prosurvival proteins, named 'BH3 mimetics', have come to the fore in recent years to treat hematological malignancies, both as single agents and in combination with standard-of-care therapies. The most significant example of these is the BCL-2-specific inhibitor venetoclax, given in combination with standard-of-care therapies with great success in AML in clinical trials. As the number and variety of available BH3 mimetics increases, and investigations into applying these novel inhibitors to treat myeloid leukemias continue apace the need to evaluate where we currently stand in this rapidly expanding field is clear.
Collapse
Affiliation(s)
- Narissa Parry
- Paul O'Gorman Leukaemia Research Centre, University of Glasgow, Glasgow, UK.
| | - Helen Wheadon
- Paul O'Gorman Leukaemia Research Centre, University of Glasgow, Glasgow, UK
| | - Mhairi Copland
- Paul O'Gorman Leukaemia Research Centre, University of Glasgow, Glasgow, UK
| |
Collapse
|
21
|
Shallis RM, Boddu PC, Bewersdorf JP, Zeidan AM. The golden age for patients in their golden years: The progressive upheaval of age and the treatment of newly-diagnosed acute myeloid leukemia. Blood Rev 2020; 40:100639. [DOI: 10.1016/j.blre.2019.100639] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 12/25/2022]
|
22
|
Luedtke DA, Su Y, Ma J, Li X, Buck SA, Edwards H, Polin L, Kushner J, Dzinic SH, White K, Lin H, Taub JW, Ge Y. Inhibition of CDK9 by voruciclib synergistically enhances cell death induced by the Bcl-2 selective inhibitor venetoclax in preclinical models of acute myeloid leukemia. Signal Transduct Target Ther 2020; 5:17. [PMID: 32296028 PMCID: PMC7042303 DOI: 10.1038/s41392-020-0112-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/09/2019] [Accepted: 12/16/2019] [Indexed: 12/23/2022] Open
Abstract
Venetoclax, an FDA-approved Bcl-2 selective inhibitor for the treatment of chronic lymphocytic leukemia and acute myeloid leukemia (AML), is tolerated well in elderly patients with AML and has good overall response rates; however, resistance remains a concern. In this study, we show that targeting CDK9 with voruciclib in combination with venetoclax results in synergistic antileukemic activity against AML cell lines and primary patient samples. CDK9 inhibition enhances venetoclax activity through downregulation of Mcl-1 and c-Myc. However, downregulation of Mcl-1 is transient, which necessitates an intermittent treatment schedule to allow for repeated downregulation of Mcl-1. Accordingly, an every other day schedule of the CDK9 inhibitor is effective in vitro and in vivo in enhancing the efficacy of venetoclax. Our preclinical data provide a rationale for an intermittent drug administration schedule for the clinical evaluation of the combination treatment for AML.
Collapse
Affiliation(s)
- Daniel A Luedtke
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Yongwei Su
- School of Life Sciences, Jilin University, 130021, Changchun, China
| | - Jun Ma
- School of Life Sciences, Jilin University, 130021, Changchun, China
| | - Xinyu Li
- School of Life Sciences, Jilin University, 130021, Changchun, China
| | - Steven A Buck
- Division of Pediatric Hematology and Oncology, Children's Hospital of Michigan, Detroit, MI, USA, 48201.,Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Lisa Polin
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Juiwanna Kushner
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Sijana H Dzinic
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Kathryn White
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Hai Lin
- Department of Hematology and Oncology, The First Hospital of Jilin University, 130021, Changchun, China
| | - Jeffrey W Taub
- Division of Pediatric Hematology and Oncology, Children's Hospital of Michigan, Detroit, MI, USA, 48201.,Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Yubin Ge
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, 48201, USA. .,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA. .,Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
23
|
Pollyea DA, Amaya M, Strati P, Konopleva MY. Venetoclax for AML: changing the treatment paradigm. Blood Adv 2019; 3:4326-4335. [PMID: 31869416 PMCID: PMC6929394 DOI: 10.1182/bloodadvances.2019000937] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/07/2019] [Indexed: 12/27/2022] Open
Abstract
Venetoclax is a specific B-cell lymphoma-2 (BCL-2) inhibitor that can restore activation of apoptosis in malignancies, the survival of which depends on dysregulation of this pathway. Preclinical data, using various model systems including cell lines and patient samples, suggested targeting BCL-2 could be a successful therapeutic strategy in patients with acute myeloid leukemia (AML). As predicted by this work, the use of venetoclax in the clinical setting has resulted in promising outcomes for patients with this disease. Although venetoclax showed limited activity as a single agent in the relapsed disease setting, recent studies have shown that when combined with a backbone therapy of a hypomethylating agent or low-dose cytarabine, high response rates with encouraging remission durations for older patients with newly diagnosed AML who were not candidates for intensive induction chemotherapy were observed. Furthermore, venetoclax-based therapies allowed for rapid responses and were able to effectively target the leukemia stem cell population. Here we review the preclinical data that supported the development of venetoclax in AML, as well as the results of the promising clinical trials.
Collapse
Affiliation(s)
- Daniel A Pollyea
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO; and
| | - Maria Amaya
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO; and
| | | | - Marina Y Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
24
|
Chandrasekar AP, Cummins NW, Badley AD. The Role of the BCL-2 Family of Proteins in HIV-1 Pathogenesis and Persistence. Clin Microbiol Rev 2019; 33:e00107-19. [PMID: 31666279 PMCID: PMC6822993 DOI: 10.1128/cmr.00107-19] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Advances in HIV-1 therapy have transformed the once fatal infection into a manageable, chronic condition, yet the search for a widely applicable approach to cure remains elusive. The ineffectiveness of antiretroviral therapy (ART) in reducing the size of the HIV-1 latent reservoir has prompted investigation into the mechanisms of HIV-1 latency and immune escape. One of the major regulators of apoptosis, the BCL-2 protein, alongside its homologous family members, is a major target of HIV-1-induced change. Recent studies have now demonstrated the association of this protein with cells that support proviral forms in the setting of latency and have helped identify BCL-2 as a novel and promising therapeutic target for HIV-1 therapy directed at possible cure. This review aims to systematically review the interactions of HIV-1 with BCL-2 and its homologs and to examine the possibility of using BCL-2 inhibitors in the study and elimination of the latent reservoir.
Collapse
Affiliation(s)
| | - Nathan W Cummins
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrew D Badley
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
25
|
Barbato L, Bocchetti M, Di Biase A, Regad T. Cancer Stem Cells and Targeting Strategies. Cells 2019; 8:cells8080926. [PMID: 31426611 PMCID: PMC6721823 DOI: 10.3390/cells8080926] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/05/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023] Open
Abstract
Chemoresistance is a major problem in cancer therapy as cancer cells develop mechanisms that counteract the effect of chemotherapeutic compounds, leading to relapse and the development of more aggressive cancers that contribute to poor prognosis and survival rates of treated patients. Cancer stem cells (CSCs) play a key role in this event. Apart from their slow proliferative property, CSCs have developed a range of cellular processes that involve drug efflux, drug enzymatic inactivation and other mechanisms. In addition, the microenvironment where CSCs evolve (CSC niche), effectively contributes to their role in cancer initiation, progression and chemoresistance. In the CSC niche, immune cells, mesenchymal stem cells (MSCs), endothelial cells and cancer associated fibroblasts (CAFs) contribute to the maintenance of CSC malignancy via the secretion of factors that promote cancer progression and resistance to chemotherapy. Due to these factors that hinder successful cancer therapies, CSCs are a subject of intense research that aims at better understanding of CSC behaviour and at developing efficient targeting therapies. In this review, we provide an overview of cancer stem cells, their role in cancer initiation, progression and chemoresistance, and discuss the progress that has been made in the development of CSC targeted therapies.
Collapse
Affiliation(s)
- Luisa Barbato
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Marco Bocchetti
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Anna Di Biase
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Tarik Regad
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK.
| |
Collapse
|
26
|
Zhou JD, Zhang TJ, Xu ZJ, Gu Y, Ma JC, Li XX, Guo H, Wen XM, Zhang W, Yang L, Liu XH, Lin J, Qian J. BCL2 overexpression: clinical implication and biological insights in acute myeloid leukemia. Diagn Pathol 2019; 14:68. [PMID: 31253168 PMCID: PMC6599255 DOI: 10.1186/s13000-019-0841-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/11/2019] [Indexed: 02/19/2023] Open
Abstract
Background BCL2 protein inhibitor venetoclax (ABT-199) has been authorized by Food and Drug Administration for relapsed/refractory chronic lymphoid leukemia with 17p deletion. Although venetoclax/ABT-199 also caused cell death in acute myeloid leukemia (AML), whether it could be applied to clinical treatment needs further studies. Here, we revealed clinical implication of BCL2 overexpression in de novo adult AML, and may provide theoretical basis for targeted therapy using venetoclax. Methods BCL2 expression was analyzed in adult AML patients from public datasets The Cancer Genome Atlas (TCGA) and confirmed by another independent cohort from our own data. Results BCL2 expression showed up-regulated in AML patients among TCGA data and confirmed by our own data. BCL2 overexpression was correlated with FAB-M0/M1, whereas BCL2 under-expression was related to FAB-M5. However, BCL2 expression has no effect on overall survival (OS) and leukemia-free survival (LFS) of AML patients (determined in BCL2low and BCL2high groups). Interestingly, in the BCL2low group, patients undergoing autologous or allogeneic hematopoietic stem cell transplantation (auto/allo-HSCT) had significantly better OS and LFS compared with patients only received chemotherapy, whereas, no significant difference was found in OS and LFS between chemotherapy and auto/allo-HSCT patients in the BCL2high group. BCL2 expression was found positively correlated with HOX family gene, and negatively correlated with tumor suppressor microRNA such as miR-195, miR-497, and miR-193b. Conclusions BCL2 overexpression identified specific FAB subtypes of AML, but it did not affect prognosis. Patients with BCL2 overexpression did not benefit from auto/allo-HSCT among whole-cohort-AML and cytogenetically normal AML. Electronic supplementary material The online version of this article (10.1186/s13000-019-0841-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jing-Dong Zhou
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, 212002, Zhenjiang, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Ting-Juan Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, 212002, Zhenjiang, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Zi-Jun Xu
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, 212002, Zhenjiang, Jiangsu, People's Republic of China
| | - Yu Gu
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, 212002, Zhenjiang, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Ji-Chun Ma
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, 212002, Zhenjiang, Jiangsu, People's Republic of China
| | - Xi-Xi Li
- Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Hong Guo
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, 212002, Zhenjiang, Jiangsu, People's Republic of China
| | - Xiang-Mei Wen
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, 212002, Zhenjiang, Jiangsu, People's Republic of China
| | - Wei Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, 212002, Zhenjiang, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Lei Yang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, 212002, Zhenjiang, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Xing-Hui Liu
- Department of Clinical Laboratory, Shanghai Gongli Hospital, The Second Military Medical University, Pudong New Area, Shanghai, People's Republic of China
| | - Jiang Lin
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China. .,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China. .,Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, 212002, Zhenjiang, Jiangsu, People's Republic of China.
| | - Jun Qian
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, 212002, Zhenjiang, Jiangsu, People's Republic of China. .,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China. .,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China.
| |
Collapse
|
27
|
Huemer F, Melchardt T, Jansko B, Wahida A, Jilg S, Jost PJ, Klieser E, Steiger K, Magnes T, Pleyer L, Greil-Ressler S, Rass C, Greil R, Egle A. Durable remissions with venetoclax monotherapy in secondary AML refractory to hypomethylating agents and high expression of BCL-2 and/or BIM. Eur J Haematol 2019; 102:437-441. [PMID: 30725494 PMCID: PMC6849823 DOI: 10.1111/ejh.13218] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 02/03/2023]
Abstract
Acute myeloid leukemia (AML) is a disease of the elderly population and survival remains poor after failure of hypomethylating agents (HMA). The BCL‐2 inhibitor venetoclax demonstrated activity as monotherapy and in combination with chemotherapy or HMA in AML. In this case series, patients with secondary AML (sAML) not eligible for intensive chemotherapy and refractory to HMA were treated with venetoclax within a named patient program at our tertiary cancer center in Salzburg, Austria. Between April 2017 and September 2018, seven patients with sAML received venetoclax therapy. Two out of seven patients achieved a complete remission upon venetoclax initiation with a PFS of 505 days and 352 days and another patient achieved complete peripheral blood blast clearing within nine days after start of venetoclax. Among the venetoclax responders, primary refractory disease to prior HMA therapy was documented, 2 patients harbored IDH1/IDH2 mutations and one patient had an antecedent myeloproliferative neoplasm. High BCL‐2 and/or BIM expression in myeloblasts was found in venetoclax responders and response was significantly associated with overall survival (responders: 364 days versus non‐responders: 24 days, P = 0.018). Venetoclax monotherapy is safe and is able to induce durable responses in elderly patients with secondary AML after treatment failure with HMA.
Collapse
Affiliation(s)
- Florian Huemer
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Cancer Cluster Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Thomas Melchardt
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Cancer Cluster Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Bettina Jansko
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Cancer Cluster Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Adam Wahida
- Medizinische Klinik für Hämatologie und Internistische Onkologie, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stefanie Jilg
- Medizinische Klinik für Hämatologie und Internistische Onkologie, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Philipp J Jost
- Medizinische Klinik für Hämatologie und Internistische Onkologie, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Eckhard Klieser
- Institute of Pathology, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Katja Steiger
- Comparative Experimental Pathology and Digital Pathology, Institute of Pathology and Pathological Anatomy, Technical University of Munich, Munich, Germany
| | - Teresa Magnes
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Cancer Cluster Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Lisa Pleyer
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Cancer Cluster Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Sigrun Greil-Ressler
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Cancer Cluster Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Christof Rass
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Cancer Cluster Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Richard Greil
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Cancer Cluster Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Alexander Egle
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Cancer Cluster Salzburg, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
28
|
Luedtke DA, Su Y, Liu S, Edwards H, Wang Y, Lin H, Taub JW, Ge Y. Inhibition of XPO1 enhances cell death induced by ABT-199 in acute myeloid leukaemia via Mcl-1. J Cell Mol Med 2018; 22:6099-6111. [PMID: 30596398 PMCID: PMC6237582 DOI: 10.1111/jcmm.13886] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 01/24/2023] Open
Abstract
The antiapoptotic Bcl-2 family proteins play critical roles in resistance to chemotherapy in acute myeloid leukaemia (AML). The Bcl-2-selective inhibitor ABT-199 (Venetoclax) shows promising antileukaemic activity against AML, though Mcl-1 limits its antileukaemic activity. XPO1 is a nuclear exporter overexpressed in AML cells and its inhibition decreases Mcl-1 levels in cancer cells. Thus, we hypothesized that the XPO1-selective inhibitor KPT-330 (Selinexor) can synergize with ABT-199 to induce apoptosis in AML cells through down-regulation of Mcl-1. The combination of KPT-330 and ABT-199 was found to synergistically induce apoptosis in AML cell lines and primary patient samples and cooperatively inhibit colony formation capacity of primary AML cells. KPT-330 treatment decreased Mcl-1 protein after apoptosis initiation. However, binding of Bim to Mcl-1 induced by ABT-199 was abrogated by KPT-330 at the same time as apoptosis initiation. KPT-330 treatment increased binding of Bcl-2 to Bim but was overcome by ABT-199 treatment, demonstrating that KPT-330 and ABT-199 reciprocally overcome apoptosis resistance. Mcl-1 knockdown and overexpression confirmed its critical role in the antileukaemic activity of the combination. In summary, KPT-330 treatment, alone and in combination with ABT-199, modulates Mcl-1, which plays an important role in the antileukaemic activity of the combination.
Collapse
MESH Headings
- Adult
- Aged
- Apoptosis/drug effects
- Bridged Bicyclo Compounds, Heterocyclic/administration & dosage
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Drug Resistance, Neoplasm/genetics
- Drug Synergism
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Hydrazines/administration & dosage
- Karyopherins/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Male
- Middle Aged
- Myeloid Cell Leukemia Sequence 1 Protein/genetics
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcl-2/genetics
- Receptors, Cytoplasmic and Nuclear/genetics
- Sulfonamides/administration & dosage
- Triazoles/administration & dosage
- Exportin 1 Protein
Collapse
Affiliation(s)
- Daniel A. Luedtke
- Cancer Biology Graduate ProgramWayne State University School of MedicineDetroitMIUSA
| | - Yongwei Su
- National Engineering Laboratory for AIDS VaccineSchool of Life SciencesJilin UniversityChangchunChina
| | - Shuang Liu
- National Engineering Laboratory for AIDS VaccineSchool of Life SciencesJilin UniversityChangchunChina
- Department of PediatricsWayne State University School of MedicineDetroitMIUSA
| | - Holly Edwards
- Department of OncologyWayne State University School of MedicineDetroitMIUSA
- Molecular Therapeutics ProgramKarmanos Cancer InstituteWayne State University School of MedicineDetroitMIUSA
| | - Yue Wang
- Department of Pediatric Hematology and OncologyThe First Hospital of Jilin UniversityChangchunChina
| | - Hai Lin
- Department of Hematology and OncologyThe First Hospital of Jilin UniversityChangchunChina
| | - Jeffrey W. Taub
- Department of PediatricsWayne State University School of MedicineDetroitMIUSA
- Molecular Therapeutics ProgramKarmanos Cancer InstituteWayne State University School of MedicineDetroitMIUSA
- Division of Pediatric Hematology and OncologyChildren's Hospital of MichiganDetroitMIUSA
| | - Yubin Ge
- Cancer Biology Graduate ProgramWayne State University School of MedicineDetroitMIUSA
- Department of PediatricsWayne State University School of MedicineDetroitMIUSA
- Department of OncologyWayne State University School of MedicineDetroitMIUSA
- Molecular Therapeutics ProgramKarmanos Cancer InstituteWayne State University School of MedicineDetroitMIUSA
| |
Collapse
|
29
|
Abstract
MicroRNAs (miRNAs) have been extensively reported to be associated with hematological malignancies. The loss of miR-15a/16-1 at chromosome 13q14 is a hallmark of most of human chronic lymphocytic leukemia (CLL). Deletion of murine miR-15a/16-1 and miR-15b/16-2 has been demonstrated to promote B cell malignancies. Here, we evaluate the biological role of miR-15/16 clusters, crossbreeding miR-15a/16-1 and miR-15b/16-2 knockout mice. Unexpectedly, the complete deletion of both clusters promoted myeloproliferative disorders in the majority of the mice by the age of 5 months with a penetrance of 70%. These mice showed a significant enlargement of spleen and abnormal swelling of lymph nodes. Flow cytometry characterization demonstrated an expanded CD11b/Gr-1 double-positive myeloid population both in spleen and in bone marrow. The transplantation of splenocytes harvested from double-KO mice into wild-type recipient mice resulted in the development of myeloproliferative disorders, as observed in the donors. In vivo, miR-15/16 cluster deletion up-regulated the expression of Cyclin D1, Cyclin D2, and Bcl-2. Taken together, our findings identify a driver oncogenic role for miR-15/16 cluster deletion in different leukocytic cell lineages.
Collapse
|
30
|
Riva G, Cima L, Villanova M, Ghimenton C, Sina S, Riccioni L, Munari G, Fassan M, Giangaspero F, Eccher A. Low-grade neuroepithelial tumor: Unusual presentation in an adult without history of seizures. Neuropathology 2018; 38:557-560. [PMID: 30051533 DOI: 10.1111/neup.12504] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/03/2018] [Accepted: 07/03/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Giulio Riva
- Pathology Unit, Department of Diagnostics and Public Health; University and Hospital Trust of Verona; Verona Italy
| | - Luca Cima
- Pathology Unit, Department of Diagnostics and Public Health; University and Hospital Trust of Verona; Verona Italy
| | - Manuela Villanova
- Pathology Unit, Department of Diagnostics and Public Health; University and Hospital Trust of Verona; Verona Italy
| | - Claudio Ghimenton
- Pathology Unit, Department of Diagnostics and Public Health; University and Hospital Trust of Verona; Verona Italy
| | - Sokol Sina
- Pathology Unit, Department of Diagnostics and Public Health; University and Hospital Trust of Verona; Verona Italy
| | | | - Giada Munari
- Surgical Pathology Unit, Department of Medicine (DIMED); University of Padua; Padua Italy
| | - Matteo Fassan
- Surgical Pathology Unit, Department of Medicine (DIMED); University of Padua; Padua Italy
| | - Felice Giangaspero
- Department of Radiological, Oncological and Anatomo-Pathological Sciences; Sapienza University; Rome Italy
- IRCCS Neuromed; Pozzilli Molise Italy
| | - Albino Eccher
- Pathology Unit, Department of Diagnostics and Public Health; University and Hospital Trust of Verona; Verona Italy
| |
Collapse
|
31
|
Butrym A, Łacina P, Kuliczkowski K, Bogunia-Kubik K, Mazur G. Genetic variation of the gene coding for microRNA-204 (miR-204) is a risk factor in acute myeloid leukaemia. BMC Cancer 2018; 18:107. [PMID: 29382303 PMCID: PMC5791219 DOI: 10.1186/s12885-018-4045-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 01/24/2018] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs or miRs) are small molecules known to be involved in post-transcriptional gene expression. Many of them have been shown to influence risk for various diseases. Recent studies suggest that lower expression of miR-204, a gene coding for miRNA-204, is correlated with shorter survival in patients with acute myeloid leukaemia (AML). This observation prompted us to analyse the effect of two polymorphisms of the miR-204 gene, one in the upstream flanking region (rs718447 A > G) and the other inside the gene itself (rs112062096 A > G), both also in intron 3 of the TRPM3 gene. METHODS The study was conducted on DNA samples isolated from AML patients (n = 95) and healthy individuals (n = 148), who were genotyped using the Light SNiP assays. RESULTS The miR-204 rs718447 GG homozygosity was found to constitute a risk factor associated with susceptibility to AML (73/95 vs 92/148, AML patients vs healthy controls, OR = 2.020, p = 0.017). Additionally, this genotype was more frequent in patients with subtypes M0-M1 in the French-American-British (FAB) classification as compared to patients with subtypes M2-M7 (23/25 vs 39/57, p = 0.026). We also found that presence of allele A was linked to longer survival of AML patients. CONCLUSIONS Our results show that polymorphism in miR-204 flanking region may constitute a risk and prognostic factor in AML.
Collapse
Affiliation(s)
- Aleksandra Butrym
- Department of Internal and Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wrocław, Poland.
| | - Piotr Łacina
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Kazimierz Kuliczkowski
- Department of Haematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, Wrocław, Poland
| | - Katarzyna Bogunia-Kubik
- Department of Internal and Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wrocław, Poland.,Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Grzegorz Mazur
- Department of Internal and Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
32
|
Zhao J, Niu X, Li X, Edwards H, Wang G, Wang Y, Taub JW, Lin H, Ge Y. Inhibition of CHK1 enhances cell death induced by the Bcl-2-selective inhibitor ABT-199 in acute myeloid leukemia cells. Oncotarget 2017; 7:34785-99. [PMID: 27166183 PMCID: PMC5085189 DOI: 10.18632/oncotarget.9185] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/16/2016] [Indexed: 12/20/2022] Open
Abstract
Resistance to standard chemotherapy agents remains a major obstacle for improving treatment outcomes for acute myeloid leukemia (AML). The Bcl-2-selective inhibitor ABT-199 has demonstrated encouraging preclinical results, drug resistance remains a concern. Mcl-1 has been demonstrated to contribute to ABT-199 resistance, thus combining with therapies that target Mcl-1 could overcome such resistance. In this study, we utilized a CHK1 inhibitor, LY2603618, to decrease Mcl-1 and enhance ABT-199 efficacy. We found that LY2603618 treatment resulted in abolishment of the G2/M cell cycle checkpoint and increased DNA damage, which was partially dependent on CDK activity. LY2603618 treatment resulted in decrease of Mcl-1, which coincided with the initiation of apoptosis. Overexpression of Mcl-1 in AML cells significantly attenuated apoptosis induced by LY2603618, confirming the critical role of Mcl-1 in apoptosis induced by the agent. Simultaneous treatment with LY2603618 and ABT-199 resulted in synergistic induction of apoptosis in both AML cell lines and primary patient samples. Our findings provide new insights into overcoming a mechanism of intrinsic ABT-199 resistance in AML cells and support the clinical development of combined ABT-199 and CHK1 inhibition.
Collapse
Affiliation(s)
- Jianyun Zhao
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, China.,Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA
| | - Xiaojia Niu
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Xinyu Li
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Guan Wang
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Yue Wang
- Department of Pediatric Hematology and Oncology, The First Hospital of Jilin University, Changchun, China
| | - Jeffrey W Taub
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.,Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA
| | - Hai Lin
- Department of Hematology and Oncology, The First Hospital of Jilin University, Changchun, China
| | - Yubin Ge
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
33
|
Su Y, Li X, Ma J, Zhao J, Liu S, Wang G, Edwards H, Taub JW, Lin H, Ge Y. Targeting PI3K, mTOR, ERK, and Bcl-2 signaling network shows superior antileukemic activity against AML ex vivo. Biochem Pharmacol 2017; 148:13-26. [PMID: 29208365 DOI: 10.1016/j.bcp.2017.11.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/30/2017] [Indexed: 02/03/2023]
Abstract
Acute myeloid leukemia (AML) remains challenging to treat and needs more effective treatments. The PI3K/mTOR pathway is involved in cell survival and has been shown to be constitutively active in 50-80% of AML patients. However, targeting the PI3K/mTOR pathway results in activation of the ERK pathway, which also plays an important role in cell survival. In addition, AML cells often overexpress antiapoptotic Bcl-2 family proteins (e.g., Bcl-2), preventing cell death. Thus, our strategy here is to target the PI3K, mTOR (by VS-5584, a PI3K and mTOR dual inhibitor), ERK (by SCH772984, an ERK-selective inhibitor), and Bcl-2 (by ABT-199, a Bcl-2-selective inhibitor) signaling network to kill AML cells. In this study, we show that while inhibition of PI3K, mTOR, and ERK showed superior induction of cell death compared to inhibition of PI3K and mTOR, the levels of cell death were modest in some AML cell lines and primary patient samples tested. Although simultaneous inhibition of PI3K, mTOR, and ERK caused downregulation of Mcl-1 and upregulation of Bim, immunoprecipitation of Bcl-2 revealed increased binding of Bim to Bcl-2, which was abolished by the addition of ABT-199, suggesting that Bim was bound to Bcl-2 which prevented cell death. Treatment with combined VS-5584, SCH772984, and ABT-199 showed significant increase in cell death in AML cell lines and primary patient samples and significant reduction in AML colony formation in primary patient samples, while there was no significant effect on colony formation of normal human CD34+ hematopoietic progenitor cells. Taken together, our findings show that inhibition of PI3K, mTOR, and ERK synergistically induces cell death in AML cells, and addition of ABT-199 enhances cell death further. Thus, our data support targeting the PI3K, mTOR, ERK, and Bcl-2 signaling network for the treatment of AML.
Collapse
Affiliation(s)
- Yongwei Su
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, PR China
| | - Xinyu Li
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, PR China
| | - Jun Ma
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, PR China
| | - Jianyun Zhao
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, PR China; Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA; Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Shuang Liu
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, PR China; Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA
| | - Guan Wang
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, PR China
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jeffrey W Taub
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA; Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Hai Lin
- Department of Hematology and Oncology, The First Hospital of Jilin University, Changchun, PR China.
| | - Yubin Ge
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA; Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
34
|
Sung M, Tan X, Lu B, Golas J, Hosselet C, Wang F, Tylaska L, King L, Zhou D, Dushin R, Myers JS, Rosfjord E, Lucas J, Gerber HP, Loganzo F. Caveolae-Mediated Endocytosis as a Novel Mechanism of Resistance to Trastuzumab Emtansine (T-DM1). Mol Cancer Ther 2017; 17:243-253. [PMID: 29054985 DOI: 10.1158/1535-7163.mct-17-0403] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/07/2017] [Accepted: 09/27/2017] [Indexed: 11/16/2022]
Abstract
Trastuzumab emtansine (T-DM1) is an antibody-drug conjugate (ADC) that has demonstrated clinical benefit for patients with HER2+ metastatic breast cancer; however, its clinical activity is limited by inherent or acquired drug resistance. The molecular mechanisms that drive clinical resistance to T-DM1, especially in HER2+ tumors, are not well understood. We used HER2+ cell lines to develop models of T-DM1 resistance using a cyclical dosing schema in which cells received T-DM1 in an "on-off" routine until a T-DM1-resistant population was generated. T-DM1-resistant N87 cells (N87-TM) were cross-resistant to a panel of trastuzumab-ADCs (T-ADCs) with non-cleavable-linked auristatins. N87-TM cells do not have a decrease in HER2 protein levels or an increase in drug transporter protein (e.g., MDR1) expression compared with parental N87 cells. Intriguingly, T-ADCs using auristatin payloads attached via an enzymatically cleavable linker overcome T-DM1 resistance in N87-TM cells. Importantly, N87-TM cells implanted into athymic mice formed T-DM1 refractory tumors that remain sensitive to T-ADCs with cleavable-linked auristatin payloads. Comparative proteomic profiling suggested enrichment in proteins that mediate caveolae formation and endocytosis in the N87-TM cells. Indeed, N87-TM cells internalize T-ADCs into intracellular caveolin-1 (CAV1)-positive puncta and alter their trafficking to the lysosome compared with N87 cells. T-DM1 colocalization into intracellular CAV1-positive puncta correlated with reduced response to T-DM1 in a panel of HER2+ cell lines. Together, these data suggest that caveolae-mediated endocytosis of T-DM1 may serve as a novel predictive biomarker for patient response to T-DM1. Mol Cancer Ther; 17(1); 243-53. ©2017 AACR.
Collapse
Affiliation(s)
- Matthew Sung
- Pfizer Inc., Oncology Research and Development, Pearl River, New York.
| | - Xingzhi Tan
- Pfizer Inc., Oncology Research and Development, Pearl River, New York
| | - Bingwen Lu
- Pfizer Inc., Oncology Research and Development, Pearl River, New York
| | - Jonathan Golas
- Pfizer Inc., Oncology Research and Development, Pearl River, New York
| | | | - Fang Wang
- Pfizer Inc., Oncology Research and Development, Pearl River, New York
| | | | - Lindsay King
- Pfizer Inc., Biomedicine Design, Groton, Connecticut
| | - Dahui Zhou
- Pfizer Inc., Worldwide Medicinal Chemistry, Groton, Connecticut
| | - Russell Dushin
- Pfizer Inc., Worldwide Medicinal Chemistry, Groton, Connecticut
| | - Jeremy S Myers
- Pfizer Inc., Oncology Research and Development, Pearl River, New York
| | - Edward Rosfjord
- Pfizer Inc., Oncology Research and Development, Pearl River, New York
| | - Judy Lucas
- Pfizer Inc., Oncology Research and Development, Pearl River, New York
| | | | - Frank Loganzo
- Pfizer Inc., Oncology Research and Development, Pearl River, New York
| |
Collapse
|
35
|
Inhibition of Mcl-1 enhances cell death induced by the Bcl-2-selective inhibitor ABT-199 in acute myeloid leukemia cells. Signal Transduct Target Ther 2017; 2:17012. [PMID: 29263915 PMCID: PMC5661618 DOI: 10.1038/sigtrans.2017.12] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 01/01/2023] Open
Abstract
Acute myeloid leukemia (AML) is a serious disease. The 5-year survival rates remain frustratingly low (65% for children and 26% for adults). Resistance to frontline chemotherapy (usually cytarabine) often develops; therefore a new treatment modality is needed. Bcl-2 family proteins play an important role in balancing cell survival and apoptosis. The antiapoptotic Bcl-2 family proteins have been found to be dysregulated in AML. ABT-199, a BH3 mimetic, was developed to target antiapoptotic protein Bcl-2. Although ABT-199 has demonstrated promising results, resistance occurs. Previous studies in AML show that ABT-199 alone decreases the association of proapoptotic protein Bim with Bcl-2, but this is compensated by increased association of Bim with prosurvival protein Mcl-1, stabilizing Mcl-1, resulting in resistance to ABT-199. In this study, we investigated the antileukemic activity of the Mcl-1-selective inhibitor A-1210477 in combination with ABT-199 in AML cells. We found that A-1210477 synergistically induced apoptosis with ABT-199 in AML cell lines and primary patient samples. The synergistic induction of apoptosis was decreased upon Bak, Bax and Bim knockdown. While A-1210477 treatment alone also increased Mcl-1 protein levels, combination with ABT-199 reduced binding of Bim to Mcl-1. Our results demonstrate that sequestration of Bim by Mcl-1, a mechanism of ABT-199 resistance, can be abrogated by combined treatment with the Mcl-1 inhibitor A-1201477.
Collapse
|
36
|
An mRNA expression signature for prognostication in de novo acute myeloid leukemia patients with normal karyotype. Oncotarget 2016; 6:39098-110. [PMID: 26517675 PMCID: PMC4770759 DOI: 10.18632/oncotarget.5390] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 08/30/2015] [Indexed: 12/28/2022] Open
Abstract
Although clinical features, cytogenetics, and mutations are widely used to predict prognosis in patients with acute myeloid leukemia (AML), further refinement of risk stratification is necessary for optimal treatment, especially in cytogenetically normal (CN) patients. We sought to generate a simple gene expression signature as a predictor of clinical outcome through analyzing the mRNA arrays of 158 de novo CN AML patients. We compared the gene expression profiles of patients with poor response to induction chemotherapy with those who responded well. Forty-six genes expressed differentially between the two groups. Among them, expression of 11 genes was significantly associated with overall survival (OS) in univariate Cox regression analysis in 104 patients who received standard intensive chemotherapy. We integrated the z-transformed expression levels of these 11 genes to generate a risk scoring system. Higher risk scores were significantly associated with shorter OS (median 17.0 months vs. not reached, P < 0.001) in ours and another 3 validation cohorts. In addition, it was an independent unfavorable prognostic factor by multivariate analysis (HR 1.116, 95% CI 1.035~1.204, P = 0.004). In conclusion, we developed a simple mRNA expression signature for prognostication in CN-AML patients. This prognostic biomarker will help refine the treatment strategies for this group of patients.
Collapse
|
37
|
Bolkun L, Grubczak K, Schneider G, Zembko P, Radzikowska U, Singh P, Kloczko J, Ratajczak MZ, Moniuszko M, Eljaszewicz A. Involvement of BAFF and APRIL in Resistance to Apoptosis of Acute Myeloid Leukemia. J Cancer 2016; 7:1979-1983. [PMID: 27877213 PMCID: PMC5118661 DOI: 10.7150/jca.15966] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/04/2016] [Indexed: 12/15/2022] Open
Abstract
B-cell activation factor of the TNF family (BAFF), and a proliferation-inducing ligand (APRIL), two members of the tumour necrosis factor (TNF) superfamily, beyond playing a significant role in normal B-cell development, promote survival and proliferation of malignant B cells. Both ligands interact with 3 receptors: BAFF-R, specific to BAFF, and TACI and BCMA which are shared by both BAFF and APRIL. Here we wished to investigate the potential role of these proteins in resistance of acute myeloid leukaemia (AML) blasts to apoptosis. We found that the levels of both mRNA and proteins of APRIL, BAFF and their receptors were expressed in leukaemic cells of 24 newly diagnosed, untreated AML patients. We also demonstrated that patients who did not further respond to induction therapy (NR) presented with significantly higher baseline APRIL and BAFF expression on AML blasts as compared to these subjects who, after induction, achieved complete remission (CR) following induction therapy. Moreover, we observed striking differences in baseline levels of BCMA between CR and NR patients as we did not find detectable expression of this receptor in the latter group of patients. Interestingly, we found that AML blasts collected at baseline from NR patients cultured in presence of exogenous BAFF and APRIL were significantly more resistant to spontaneous or drug-induced apoptosis as compared with cells derived from CR patients. Altogether, our data confirm that BAFF and APRIL signaling play important role in AML pathogenesis and susceptibility to cytotoxic therapy while measuring of BCMA expression on AML cells can become a novel prognostic factor for chemotherapy response.
Collapse
Affiliation(s)
- Lukasz Bolkun
- Department of Haematology, Medical University of Bialystok, Poland
| | - Kamil Grubczak
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Poland
| | - Gabriela Schneider
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, KY, USA
| | - Paula Zembko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Poland
| | - Urszula Radzikowska
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Poland
| | - Paulina Singh
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Poland
| | - Janusz Kloczko
- Department of Haematology, Medical University of Bialystok, Poland
| | - Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, KY, USA
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Poland
| | - Andrzej Eljaszewicz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Poland
| |
Collapse
|
38
|
Nagaishi M, Yokoo H, Nobusawa S, Fujii Y, Sugiura Y, Suzuki R, Tanaka Y, Suzuki K, Hyodo A. A distinctive pediatric case of low-grade glioma with extensive expression of CD34. Brain Tumor Pathol 2016; 33:71-4. [PMID: 26496909 DOI: 10.1007/s10014-015-0236-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/12/2015] [Indexed: 11/24/2022]
|
39
|
Lehmann C, Friess T, Birzele F, Kiialainen A, Dangl M. Superior anti-tumor activity of the MDM2 antagonist idasanutlin and the Bcl-2 inhibitor venetoclax in p53 wild-type acute myeloid leukemia models. J Hematol Oncol 2016; 9:50. [PMID: 27353420 PMCID: PMC4924270 DOI: 10.1186/s13045-016-0280-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/16/2016] [Indexed: 02/07/2023] Open
Abstract
Background Venetoclax, a small molecule BH3 mimetic which inhibits the anti-apoptotic protein Bcl-2, and idasanutlin, a selective MDM2 antagonist, have both shown activity as single-agent treatments in pre-clinical and clinical studies in acute myeloid leukemia (AML). In this study, we deliver the rationale and molecular basis for the combination of idasanutlin and venetoclax for treatment of p53 wild-type AML. Methods The effect of idasanutlin and venetoclax combination on cell viability, apoptosis, and cell cycle progression was investigated in vitro using established AML cell lines. In vivo efficacy was demonstrated in subcutaneous and orthotopic xenograft models generated in female nude or non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice. Mode-of-action analyses were performed by means of cell cycle kinetic studies, RNA sequencing as well as western blotting experiments. Results Combination treatment with venetoclax and idasanutlin results in synergistic anti-tumor activity compared with the respective single-agent treatments in vitro, in p53 wild-type AML cell lines, and leads to strongly superior efficacy in vivo, in subcutaneous and orthotopic AML models. The inhibitory effects of idasanutlin were cell-cycle dependent, with cells arresting in G1 in consecutive cycles and the induction of apoptosis only evident after cells had gone through at least two cell cycles. Combination treatment with venetoclax removed this dependency, resulting in an acceleration of cell death kinetics. As expected, gene expression studies using RNA sequencing showed significant alterations to pathways associated with p53 signaling and cell cycle arrest (CCND1 pathway) in response to idasanutlin treatment. Only few gene expression changes were observed for venetoclax treatment and combination treatment, indicating that their effects are mediated mainly at the post-transcriptional level. Protein expression studies demonstrated that inhibition of the anti-apoptotic protein Mcl-1 contributed to the activity of venetoclax and idasanutlin, with earlier inhibition of Mcl-1 in response to combination treatment contributing to the superior combined activity. The role of Mcl-1 was confirmed by small hairpin RNA gene knockdown studies. Conclusions Our findings provide functional and molecular insight on the superior anti-tumor activity of combined idasanutlin and venetoclax treatment in AML and support its further exploration in clinical studies. Electronic supplementary material The online version of this article (doi:10.1186/s13045-016-0280-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christian Lehmann
- Roche Pharma Research & Early Development, Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, 82377, Penzberg, Germany.
| | - Thomas Friess
- Roche Pharma Research & Early Development, Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, 82377, Penzberg, Germany
| | - Fabian Birzele
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F-Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Anna Kiialainen
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F-Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Markus Dangl
- Roche Pharma Research & Early Development, Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, 82377, Penzberg, Germany.,Present address: Medigene Immunotherapies GmbH, Planegg, Martinsried, Germany
| |
Collapse
|
40
|
da Fonseca LM, da Silva VA, Freire-de-Lima L, Previato JO, Mendonça-Previato L, Capella MAM. Glycosylation in Cancer: Interplay between Multidrug Resistance and Epithelial-to-Mesenchymal Transition? Front Oncol 2016; 6:158. [PMID: 27446804 PMCID: PMC4916178 DOI: 10.3389/fonc.2016.00158] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/10/2016] [Indexed: 12/18/2022] Open
Abstract
The expression of unusual glycan structures is a hallmark of cancer progression, and their functional roles in cancer biology have been extensively investigated in epithelial-to-mesenchymal transition (EMT) models. EMT is a physiological process involved in embryonic development and wound healing. It is characterized by loss of epithelial cell polarity and cell adhesion, permitting cell migration, and thus formation of new epithelia. However, this process is unwanted when occurring outside their physiological limit, resulting in fibrosis of organs and progression of cancer and metastasis. Several studies observed that EMT is related to the acquisition of multidrug resistance (MDR) phenotype, a condition in which cancer cells acquire resistance to multiple different drugs, which has virtually nothing in common. However, although some studies suggested interplay between these two apparently distinct phenomena, almost nothing is known about this possible relationship. A common pathway to them is the need for glycosylation, a post-translational modification that can alter biological function. Thus, this review intends to compile the main facts obtained until now in these two areas, as an effort to unravel the relationship between EMT and MDR.
Collapse
Affiliation(s)
- Leonardo Marques da Fonseca
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Rio de Janeiro , Brazil
| | - Vanessa Amil da Silva
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Rio de Janeiro , Brazil
| | - Leonardo Freire-de-Lima
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Rio de Janeiro , Brazil
| | - José Osvaldo Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Rio de Janeiro , Brazil
| | - Lucia Mendonça-Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Rio de Janeiro , Brazil
| | - Márcia Alves Marques Capella
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil; Laboratório de P&D em Práticas Integrativas e Complementares, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
41
|
Niu X, Zhao J, Ma J, Xie C, Edwards H, Wang G, Caldwell JT, Xiang S, Zhang X, Chu R, Wang ZJ, Lin H, Taub JW, Ge Y. Binding of Released Bim to Mcl-1 is a Mechanism of Intrinsic Resistance to ABT-199 which can be Overcome by Combination with Daunorubicin or Cytarabine in AML Cells. Clin Cancer Res 2016; 22:4440-51. [PMID: 27103402 DOI: 10.1158/1078-0432.ccr-15-3057] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/05/2016] [Indexed: 02/07/2023]
Abstract
PURPOSE To investigate the molecular mechanism underlying intrinsic resistance to ABT-199. EXPERIMENTAL DESIGN Western blots and real-time RT-PCR were used to determine levels of Mcl-1 after ABT-199 treatment alone or in combination with cytarabine or daunorubicin. Immunoprecipitation of Bim and Mcl-1 were used to determine the effect of ABT-199 treatment on their interactions with Bcl-2 family members. Lentiviral short hairpin RNA knockdown of Bim and CRISPR knockdown of Mcl-1 were used to confirm their role in resistance to ABT-199. JC-1 assays and flow cytometry were used to determine drug-induced apoptosis. RESULTS Immunoprecipitation of Bim from ABT-199-treated cell lines and a primary patient sample demonstrated decreased association with Bcl-2, but increased association with Mcl-1 without corresponding change in mitochondrial outer membrane potential. ABT-199 treatment resulted in increased levels of Mcl-1 protein, unchanged or decreased Mcl-1 transcript levels, and increased Mcl-1 protein half-life, suggesting that the association with Bim plays a role in stabilizing Mcl-1 protein. Combining conventional chemotherapeutic agent cytarabine or daunorubicin with ABT-199 resulted in increased DNA damage along with decreased Mcl-1 protein levels, compared with ABT-199 alone, and synergistic induction of cell death in both AML cell lines and primary patient samples obtained from AML patients at diagnosis. CONCLUSIONS Our results demonstrate that sequestration of Bim by Mcl-1 is a mechanism of intrinsic ABT-199 resistance and supports the clinical development of ABT-199 in combination with cytarabine or daunorubicin for the treatment of AML. Clin Cancer Res; 22(17); 4440-51. ©2016 AACR.
Collapse
Affiliation(s)
- Xiaojia Niu
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China. Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan
| | - Jianyun Zhao
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Jun Ma
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Chengzhi Xie
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan. Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan. Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Guan Wang
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - J Timothy Caldwell
- MD/PhD Program, Wayne State University School of Medicine, Detroit, Michigan. Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, Michigan
| | - Shengyan Xiang
- Department of Pathology and Cell Biology, USF Morsani College of Medicine, Tampa, Florida
| | - Xiaohong Zhang
- Department of Pathology and Cell Biology, USF Morsani College of Medicine, Tampa, Florida. Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Roland Chu
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan. Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan
| | - Zhihong J Wang
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan. Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan
| | - Hai Lin
- Department of Hematology and Oncology, The First Hospital of Jilin University, Changchun, China.
| | - Jeffrey W Taub
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan. Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan. Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan.
| | - Yubin Ge
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan. Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan.
| |
Collapse
|
42
|
Wang YH, Scadden DT. Harnessing the apoptotic programs in cancer stem-like cells. EMBO Rep 2015; 16:1084-98. [PMID: 26253117 DOI: 10.15252/embr.201439675] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 06/19/2015] [Indexed: 12/12/2022] Open
Abstract
Elimination of malignant cells is an unmet challenge for most human cancer types even with therapies targeting specific driver mutations. Therefore, a multi-pronged strategy to alter cancer cell biology on multiple levels is increasingly recognized as essential for cancer cure. One such aspect of cancer cell biology is the relative apoptosis resistance of tumor-initiating cells. Here, we provide an overview of the mechanisms affecting the apoptotic process in tumor cells emphasizing the differences in the tumor-initiating or stem-like cells of cancer. Further, we summarize efforts to exploit these differences to design therapies targeting that important cancer cell population.
Collapse
Affiliation(s)
- Ying-Hua Wang
- Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA, USA Harvard Stem Cell Institute, Cambridge, MA, USA Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - David T Scadden
- Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA, USA Harvard Stem Cell Institute, Cambridge, MA, USA Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
43
|
Xie C, Edwards H, Caldwell JT, Wang G, Taub JW, Ge Y. Obatoclax potentiates the cytotoxic effect of cytarabine on acute myeloid leukemia cells by enhancing DNA damage. Mol Oncol 2014; 9:409-21. [PMID: 25308513 DOI: 10.1016/j.molonc.2014.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 09/09/2014] [Accepted: 09/16/2014] [Indexed: 12/13/2022] Open
Abstract
Resistance to cytarabine and anthracycline-based chemotherapy is a major cause of treatment failure for acute myeloid leukemia (AML) patients. Overexpression of Bcl-2, Bcl-xL, and/or Mcl-1 has been associated with chemoresistance in AML cell lines and with poor clinical outcome of AML patients. Thus, inhibitors of anti-apoptotic Bcl-2 family proteins could be novel therapeutic agents. In this study, we investigated how clinically achievable concentrations of obatoclax, a pan-Bcl-2 inhibitor, potentiate the antileukemic activity of cytarabine in AML cells. MTT assays in AML cell lines and diagnostic blasts, as well as flow cytometry analyses in AML cell lines revealed synergistic antileukemic activity between cytarabine and obatoclax. Bax activation was detected in the combined, but not the individual, drug treatments. This was accompanied by significantly increased loss of mitochondrial membrane potential. Most importantly, in AML cells treated with the combination, enhanced early induction of DNA double-strand breaks (DSBs) preceded a decrease of Mcl-1 levels, nuclear translocation of Bcl-2, Bcl-xL, and Mcl-1, and apoptosis. These results indicate that obatoclax enhances cytarabine-induced apoptosis by enhancing DNA DSBs. This novel mechanism provides compelling evidence for the clinical use of BH3 mimetics in combination with DNA-damaging agents in AML and possibly a broader range of malignancies.
Collapse
Affiliation(s)
- Chengzhi Xie
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA; National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, PR China
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - J Timothy Caldwell
- MD/PhD Program, Wayne State University School of Medicine, Detroit, MI, USA; Cancer Biology Program, Wayne State University School of Medicine, Detroit, MI, USA
| | - Guan Wang
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, PR China; Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jeffrey W Taub
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA; Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA; Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yubin Ge
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA; National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, PR China.
| |
Collapse
|
44
|
Ryu Y, Hall CP, Reynolds CP, Kang MH. Caspase-dependent Mcl-1 cleavage and effect of Mcl-1 phosphorylation in ABT-737-induced apoptosis in human acute lymphoblastic leukemia cell lines. Exp Biol Med (Maywood) 2014; 239:1390-402. [PMID: 24951472 DOI: 10.1177/1535370214538745] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
ABT-737 is a BH3-mimetic that has a wide spectrum of single-agent activity against acute lymphoblastic leukemia (ALL) cell lines and xenografts. Previously, we reported that in response to ABT-737, ABT-737-resistant ALL cell lines showed an apparent increase in Mcl-1 (an anti-apoptotic Bcl-2 family protein that is not effectively inhibited by ABT-737) while ABT-737-sensitive ALL cell lines showed decreased Mcl-1 levels. Here we explored the mechanism of Mcl-1 cleavage by ABT-737 and the effect of adjacent phosphorylation sites on Mcl-1 cleavage and apoptosis induced by ABT-737 in a human B-lineage ALL cell line. Caspase cleavage sites in Mcl-1 and the effect of mutation in Mcl-1 phosphorylation sites were determined by transducing Mcl-1 variants tagged with the V5 epitope into human ALL cells. Cytotoxicity was by fluorescence-based DIMSCAN, and changes in protein by immunoblotting. ABT-737 induced a caspase-dependent cleavage of Mcl-1. Of the two Mcl-1 caspase cleavage sites (D127 and D157), D157 was the site of ABT-737-induced cleavage in ALL cells. Cells with exogenously expressed Mcl-1 Δ157 fragment showed greater caspase-3 and caspase-9 activation when they were treated with ABT-737 compared with cells expressing wild-type or D157A mutant Mcl-1. Cells with mutated phosphorylation sites on Mcl-1 (S159A and T163A) were less susceptible to Mcl-1 cleavage and apoptosis induced by ABT-737. Our data showed that Mcl-1 is post-translationally regulated in response to ABT-737 treatment, primarily via a caspase-dependent cleavage that generates a pro-apoptotic Mcl-1 fragment.
Collapse
Affiliation(s)
- YongKu Ryu
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA Cell Biology & Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Connor P Hall
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA Neuroscience and Pharmacology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - C Patrick Reynolds
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA Cell Biology & Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA Neuroscience and Pharmacology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Min H Kang
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA Cell Biology & Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA Neuroscience and Pharmacology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
45
|
Vachhani P, Bose P, Rahmani M, Grant S. Rational combination of dual PI3K/mTOR blockade and Bcl-2/-xL inhibition in AML. Physiol Genomics 2014; 46:448-56. [PMID: 24824212 DOI: 10.1152/physiolgenomics.00173.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Acute myeloid leukemia (AML) continues to represent an area of critical unmet need with respect to new and effective targeted therapies. The Bcl-2 family of pro- and antiapoptotic proteins stands at the crossroads of cellular survival and death, and the expression of and interactions between these proteins determine tumor cell fate. Malignant cells, which are often primed for apoptosis, are particularly vulnerable to the simultaneous disruption of cooperative survival signaling pathways. Indeed, the single agent activity of agents such as mammalian target of rapamycin (mTOR) and mitogen-activated protein kinase kinase (MEK) inhibitors in AML has been modest. Much work in recent years has focused on strategies to enhance the therapeutic potential of the bona fide BH3-mimetic, ABT-737, which inhibits B-cell lymphoma 2 (Bcl-2) and Bcl-xL. Most of these strategies target Mcl-1, an antiapoptotic protein not inhibited by ABT-737. The phosphatidylinositol-3-kinase (PI3K)/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways are central to the growth, proliferation, and survival of AML cells, and there is much interest currently in pharmacologically interrupting these pathways. Dual inhibitors of PI3K and mTOR overcome some intrinsic disadvantages of rapamycin and its derivatives, which selectively inhibit mTOR. In this review, we discuss why combining dual PI3K/mTOR blockade with inhibition of Bcl-2 and Bcl-xL, by virtue of allowing coordinate inhibition of three mutually synergistic pathways in AML cells, may be a particularly attractive therapeutic strategy in AML, the success of which may be predicted for by basal Akt activation.
Collapse
Affiliation(s)
- Pankit Vachhani
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Prithviraj Bose
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia; Virginia Commonwealth University Massey Cancer Center, Richmond, Virginia
| | - Mohamed Rahmani
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia; Virginia Commonwealth University Massey Cancer Center, Richmond, Virginia
| | - Steven Grant
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia; Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia; Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia; Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia; Institute of Molecular Medicine, Virginia Commonwealth University; and Virginia Commonwealth University Massey Cancer Center, Richmond, Virginia
| |
Collapse
|
46
|
Acute myeloid leukemia cells harboring MLL fusion genes or with the acute promyelocytic leukemia phenotype are sensitive to the Bcl-2-selective inhibitor ABT-199. Leukemia 2014; 28:1557-60. [PMID: 24531733 PMCID: PMC4090260 DOI: 10.1038/leu.2014.72] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
47
|
Del Principe MI, Del Poeta G, Venditti A, Buccisano F, Maurillo L, Mazzone C, Bruno A, Neri B, Irno Consalvo M, Lo Coco F, Amadori S. Apoptosis and immaturity in acute myeloid leukemia. Hematology 2013; 10:25-34. [PMID: 16019442 DOI: 10.1080/10245330400020454] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The primary cause of treatment failures in acute myeloid leukemia (AML) is the emergence of both resistant disease and early relapse. Among the most frequent agents of these phenomena are defects in the mitochondrial-mediated apoptotic pathway. This pathway is regulated by bcl-2 family of anti-apoptotic (bcl-2, bcl-xl, mcl-1) and pro-apoptotic proteins (bax, bad, bak). In particular, bcl-2 dimerizes with several members of bcl-2 family of proteins, altering the threshold of cell death. The flow cytometric quantitative measurement of bcl-2 and bax expression for the determination of bax/bcl-2 ratio provided crucial clinical information in AML: in our hands, lower bax/bcl-2 ratio conferred a very poor prognosis with decreased rates of complete remission (CR) and overall survival (OS). Moreover, striking correlations were found between lower bax/bcl-2 ratio and higher progenitor marker expression, such as CD34, CD117 and CD133 antigens, confirming the link between this apoptotic index and the maturation pathways. However, the capacity of bax/bcl-2 ratio to clearly identify patients with different prognosis with regard to CR and OS within the CD34+, CD117+ and CD133+ subgroups implies that other mechanisms, such as proliferation and/or cell cycle dysregulation may be involved to explain its clinical significance. Finally, small molecules that target both the receptor- and mitochondrial-mediated pathway of apoptosis are providing encouraging results in patients with relapsed and/or refractory disease (i.e. CDDOMe, bcl-2 antisense oligonucleotides, CEP-701, etc), confirming the key role of apoptotic mechanisms on the outcome of AML patients.
Collapse
|
48
|
Thomadaki H, Floros KV, Pavlovic S, Tosic N, Gourgiotis D, Colovic M, Scorilas A. Overexpression of the novel member of the BCL2 gene family, BCL2L12, is associated with the disease outcome in patients with acute myeloid leukemia. Clin Biochem 2012; 45:1362-7. [DOI: 10.1016/j.clinbiochem.2012.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 05/31/2012] [Accepted: 06/12/2012] [Indexed: 10/28/2022]
|
49
|
Sahu G, Jena RK. Clinical significance of P53 and Bcl-2 in acute myeloid leukemia patients of Eastern India. Hematol Rep 2011; 3:e28. [PMID: 22593819 PMCID: PMC3269804 DOI: 10.4081/hr.2011.e28] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 09/24/2011] [Accepted: 11/24/2011] [Indexed: 01/10/2023] Open
Abstract
The frequency of p53 and Bcl-2 protein expression in 100 newly diagnosed and 10 relapsed acute myeloid leukemia (AML) patients was analyzed by immunocytochemistry (ICC). The Kaplan-Meier method was used for univariate and multivariate statistical analysis to assess the relationship between p53, Bcl-2 and clinico-hematologic feature with respect to overall survival (OS) using SPSS statistical software. No statistical significance was found in univariate analysis (P=0.60). However, when the subgroups of patients (+1, +2, +3 and +4) were compared, expression of p53 and Bcl-2 protein (1-10%, 11-30%, 31-50% and >50%) was statistically significant (P<0.05). However, in multivariate analysis, p53, immunopositivity was independently associated with a shorter overall survival (OS) (P=0.038) while Bcl-2 immunopositivity was associated with longer overall survival (OS) (P=0.002). Our finding shows that p53 and Bcl-2 protein overexpression is a strong indicator of response to chemotherapy and overall survival. This study reports for the first time AML in patients from Eastern India.
Collapse
Affiliation(s)
- Geetaram Sahu
- Molecular Oncology and Medical Biotechnology Division, Institute of Life Sciences, Chandrasekharpur, Bhubaneswar, Orissa
| | - Rabindra kumar Jena
- Dept of Clinical Haematology, S.C.B Medical College Hospital, Cuttack, Orissa, India
| |
Collapse
|
50
|
BAX/BCL-XL gene expression ratio inversely correlates with disease progression in chronic myeloid leukemia. Blood Cells Mol Dis 2010; 45:192-6. [PMID: 20728382 DOI: 10.1016/j.bcmd.2010.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 07/14/2010] [Indexed: 11/21/2022]
Abstract
BCR-ABL fusion gene is implicated in the pathogenesis of chronic myeloid leukemia (CML), encoding the oncoprotein p210(BCR-ABL) with anti-apoptotic activity. The inability to undergo apoptosis is an important mechanism of drug resistance and neoplastic evolution in CML. The gene transcript expression of mitochondrial apoptotic related genes BAX and BCL-XL was evaluated by quantitative Real Time PCR (qPCR) in vitro in K562 cells and in vivo in peripheral blood of 66 CML patients in different stages of the disease: 13 cases at diagnosis, 34 in chronic phase (CP), 10 in accelerated phase (AP) and 9 in blast crisis (BC). Our results in K562 cells showed that all treatments with different tyrosine kinase inhibitors (TKIs) induced a decreased expression of the antiapoptotic oncogene BCL-XL, whereas the proapoptotic gene BAX remains constant with minor modifications. A significantly lower BAX/BCL-XL expression ratio (mean±SEM) than a group of healthy individuals (4.8±0.59) were observed in CML patients at diagnosis (1.28 ± 0.16), in AP (1.14±0.20), in BC (1.16±0.30) and in 18% of cases of patients in CP (2.71±0.40). Most CP cases (82%) showed a significantly increased ratio (10.03±1.30), indicating that the treatment with TKIs efficiently inhibited the expression of BCL-XL by blocking BCR-ABL oncoprotein. The BAX/BCL-XL ratio showed a significant inverse correlation (Spearman P<0.0001) with BCR-ABL/ABL relative expression indicating that low BAX/BCL-XL was associated with disease progression. Accordingly, the follow up of a cohort of eight cases during 6months from diagnosis showed that while the BAX/BCL-XL ratio rapidly increased after treatment in seven cases with good evolution, it decreased in the single case that showed rapid evolution and short survival. Our data suggest that BAX/BCL-XL expression ratio may be a sensitive monitor of disease progression and an early predictor of TKI therapy responsiveness in CML patients.
Collapse
|