1
|
Guerrero R, Guerrero C, Acosta O. Induction of Cell Death in the Human Acute Lymphoblastic Leukemia Cell Line Reh by Infection with Rotavirus Isolate Wt1-5. Biomedicines 2020; 8:E242. [PMID: 32722005 PMCID: PMC7460319 DOI: 10.3390/biomedicines8080242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 12/27/2022] Open
Abstract
Cancer is a major health problem that poses a great challenge to health care systems worldwide. Tools for cancer treatment have rapidly advanced in recent years, resulting in therapeutic strategies which are alternative and complementary to conventional treatment. To identify the cell surface receptors used by a tumor cell-adapted rotavirus and the cell death markers induced by its infection, we use Wt1-5, a rotavirus isolate recently adapted to tumor cells, to infect the human acute lymphoblastic leukemia cell line, Reh. The expression of cell surface receptors used by Wt1-5 was determined using flow cytometry and an antibody blocking assay to test for their implication in virus infection. Viral antigens and cell death markers induced by rotavirus infection were followed by flow cytometric analysis. The present study showed that rotavirus Wt1-5 was able to use cell surface proteins such as heat shock proteins (HSPs) 90, 70, 60 and 40, Hsc70, PDI and integrin β3. Rotavirus Wt1-5 induced cytotoxic effects including changes in cell membrane permeability, alteration of mitochondrial membrane potential, DNA fragmentation and activation of cell death signaling. Wt1-5 deserves to be further studied as a candidate oncolytic agent due to its ability to induce apoptosis in lymphoblastic leukemia-derived cells.
Collapse
Affiliation(s)
| | - Carlos Guerrero
- Department of Physiological Sciences, Faculty of Medicine, Universidad Nacional de Colombia, Carrera 30 No. 45-03 Bloque 47, Ciudad Universitaria, Bogotá 111321, Colombia; (R.G.); (O.A.)
| | | |
Collapse
|
2
|
Guo XX, Li Y, Sun C, Jiang D, Lin YJ, Jin FX, Lee SK, Jin YH. p53-dependent Fas expression is critical for Ginsenoside Rh2 triggered caspase-8 activation in HeLa cells. Protein Cell 2014; 5:224-34. [PMID: 24622841 PMCID: PMC3967063 DOI: 10.1007/s13238-014-0027-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 01/12/2014] [Indexed: 11/29/2022] Open
Abstract
We have recently reported that Ginsenoside Rh2 (G-Rh2) induces the activation of two initiator caspases, caspase-8 and caspase-9 in human cancer cells. However, the molecular mechanism of its death-inducing function remains unclear. Here we show that G-Rh2 stimulated the activation of both caspase-8 and caspase-9 simultaneously in HeLa cells. Under G-Rh2 treatment, membrane death receptors Fas and TNFR1 are remarkably upregulated. However, the induced expression of Fas but not TNFR1 was contributed to the apoptosis process. Moreover, significant increases in Fas expression and caspase-8 activity temporally coincided with an increase in p53 expression in p53-non-mutated HeLa and SK-HEP-1 cells upon G-Rh2 treatment. In contrast, Fas expression and caspase-8 activity remained constant with G-Rh2 treatment in p53-mutated SW480 and PC-3 cells. In addition, siRNA-mediated knockdown of p53 diminished G-Rh2-induced Fas expression and caspase-8 activation. These results indicated that G-Rh2-triggered extrinsic apoptosis relies on p53-mediated Fas over-expression. In the intrinsic apoptotic pathway, G-Rh2 induced strong and immediate translocation of cytosolic BAK and BAX to the mitochondria, mitochondrial cytochrome c release, and subsequent caspase-9 activation both in HeLa and in SW480 cells. p53-mediated Fas expression and subsequent downstream caspase-8 activation as well as p53-independent caspase-9 activation all contribute to the activation of the downstream effector caspase-3/-7, leading to tumor cell death. Taken together, we suggest that G-Rh2 induces cancer cell apoptosis in a multi-path manner and is therefore a promising candidate for anti-tumor drug development.
Collapse
Affiliation(s)
- Xiao-Xi Guo
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun, 130012, China
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Becker MS, Schmezer P, Breuer R, Haas SF, Essers MA, Krammer PH, Li-Weber M. The traditional Chinese medical compound Rocaglamide protects nonmalignant primary cells from DNA damage-induced toxicity by inhibition of p53 expression. Cell Death Dis 2014; 5:e1000. [PMID: 24434508 PMCID: PMC4040689 DOI: 10.1038/cddis.2013.528] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/26/2013] [Accepted: 11/27/2013] [Indexed: 12/14/2022]
Abstract
One of the main obstacles of conventional anticancer therapy is the toxicity of chemotherapeutics to normal tissues. So far, clinical approaches that aim to specifically reduce chemotherapy-mediated toxicities are rare. Recently, a number of studies have demonstrated that herbal extracts derived from traditional Chinese medicine (TCM) may reduce chemotherapy-induced side effects. Thus, we screened a panel of published cancer-inhibiting TCM compounds for their chemoprotective potential and identified the phytochemical Rocaglamide (Roc-A) as a candidate. We show that Roc-A significantly reduces apoptotic cell death induced by DNA-damaging anticancer drugs in primary human and murine cells. Investigation of the molecular mechanism of Roc-A-mediated protection revealed that Roc-A specifically blocks DNA damage-induced upregulation of the transcription factor p53 by inhibiting its protein synthesis. The essential role of p53 in Roc-A-mediated protection was confirmed by siRNA knockdown of p53 and by comparison of the effects of Roc-A on chemoprotection of splenocytes isolated from wild-type and p53-deficient mice. Importantly, Roc-A did not protect p53-deficient or -mutated cancer cells. Our data suggest that Roc-A may be used as an adjuvant to reduce the side effects of chemotherapy in patients with p53-deficient or -mutated tumors.
Collapse
Affiliation(s)
- M S Becker
- Tumorimmunology Program (D030), German Cancer Research Center (DKFZ), INF-280, D-69120 Heidelberg, Germany
| | - P Schmezer
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Centre (DKFZ), INF-280, D-69120 Heidelberg, Germany
| | - R Breuer
- Tumorimmunology Program (D030), German Cancer Research Center (DKFZ), INF-280, D-69120 Heidelberg, Germany
| | - S F Haas
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - M A Essers
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - P H Krammer
- Tumorimmunology Program (D030), German Cancer Research Center (DKFZ), INF-280, D-69120 Heidelberg, Germany
| | - M Li-Weber
- Tumorimmunology Program (D030), German Cancer Research Center (DKFZ), INF-280, D-69120 Heidelberg, Germany
| |
Collapse
|
4
|
Hafez M, Al-Tonbary Y, El-Bayoumi MA, Hatem N, Hawas S, Mansour A, Marzouk I, Hafez MM, Yahia S, Farahat N. Markers of apoptosis and proliferation related gene products as predictors of treatment outcome in childhood acute lymphoblastic leukemia. Hematology 2013; 12:209-18. [PMID: 17558696 DOI: 10.1080/10245330701214384] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The aim of the study is to characterize markers of apoptosis in children with acute lymphoblastic leukemia (ALL) in relation to treatment outcome of the disease. The study was performed on 34 children with ALL and 39 healthy children as a control group. Apoptosis was assessed by cell morphology; DNA fragmentation; ELISA and RT-PCR for CD95, CD95L, BcL-2 and nuclear factor-kappa B (NF-kappaB); and flow cytometry for CD95, CD40, CD49d and CD11a. Apoptosis was significantly lower in patients than controls. Apoptosis detected by CD95 ligand was significantly lower in cases with no remission after treatment than those who achieved remission. Anti-apoptotic factors: CD40, BcL-2, and NF-kappaB were all found to be higher in cases than controls and in cases with no remission than those achieved remission. CD49d was significantly lower in cases than controls, and significantly lower in cases with who did not achieve remission. CD11a levels were similar in the various groups. Delayed apoptosis of ALL cells is genetically controlled either directly or indirectly by a network of oncogenes and tumor suppressor genes. CD40 appeared to stimulate both T and B lineage and is considered the most potent influencer and predictor of resistance to therapy. Inhibitors for the activity of CD40, Bcl-2 and NF-kappaB as well as stimulants to CD95 could have a potential therapeutic benefit.
Collapse
Affiliation(s)
- Mohammad Hafez
- Department of Pediatrics, Faculty of Medicine, University of Mansoura, Mansoura, Egypt
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Despite advances in treatment and outcomes for patients with pediatric acute lymphoblastic leukemia (ALL), there continue to be subsets of patients who are refractory to standard chemotherapy and hematopoietic stem cell transplant. Therefore, novel gene targets for therapy are needed to further advance treatment for this disease. RNA interference technology has identified survivin as a potential therapeutic target. Survivin, a member of the inhibitor of apoptosis (IAP) proteins and chromosome passenger complex, is expressed in hematologic malignancies and overexpressed in relapsed pediatric ALL. Our studies show that survivin is uniformly expressed at high levels in multiple pediatric ALL cell lines. Furthermore, silencing of survivin expression in pediatric ALL cell lines as well as primary leukemic blasts reduces viability of these cells. This includes cell lines derived from patients with relapsed disease featuring cytogenetic anomalies such as t(12;21), Philadelphia chromosome t(9;22), t(1;19) as well as a cell line carrying t(17;19) from a patient with de novo ALL. Furthermore, inhibition of survivin increases p53-dependent apoptosis that can be rescued by inhibition of p53. Finally, a screen of randomly selected primary patient samples confirms that survivin-specific small interfering RNA and survivin-targeted drug, YM155, effectively reduce viability of leukemic blasts.
Collapse
|
6
|
Wang J, Tang R, Lv M, Wang Q, Zhang X, Guo Y, Chang H, Qiao C, Xiao H, Li X, Li Y, Shen B, Zhang J. Defective anchoring of JNK1 in the cytoplasm by MKK7 in Jurkat cells is associated with resistance to Fas-mediated apoptosis. Mol Biol Cell 2010; 22:117-27. [PMID: 21148294 PMCID: PMC3016969 DOI: 10.1091/mbc.e10-06-0492] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The c-Jun N-terminal protein kinase (JNK) plays a context-dependent role in tumorigenesis. Stress-induced redistribution of JNK from the cytoplasm to the nucleus has been demonstrated as essential for stress-induced cell death. However, accumulation of basal JNK activity in the nucleus has frequently been seen in tumor cells. Our previous report revealed aberrant nuclear entry of JNK protein in Jurkat human leukemic T-cells even without JNK hyperactivation. Because inhibition of JNK activity, especially JNK1 activity, in Jurkat cells results in augmented Fas-mediated apoptosis, it is possible that aberrant subcellular localization of JNK, especially the JNK1 isoform, contributes to the resistance to Fas-mediated apoptosis. Here we report that MKK7 works as a cytoplasmic anchoring protein for JNK1 in various types of cells, including human peripheral blood mononuclear cell (PBMC) T-cells, but exhibits aberrant nuclear entry in Jurkat cells. Ectopic expression of a JNK1 mutant defective of nuclear entry or a nuclear JNK inhibitor leads to impaired UV-induced apoptosis in both PBMC T- and Jurkat cells. The same treatment shows no effect on Fas-mediated apoptosis of PBMC T-cells but sensitizes Jurkat cells to Fas-mediated apoptosis. Taken together, our work suggests that aberrant subcellular organization of the JNK pathway might render certain tumor cells resistant to Fas-mediated apoptosis.
Collapse
Affiliation(s)
- Jing Wang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing 100850, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Cui J, Wang Q, Wang J, Lv M, Zhu N, Li Y, Feng J, Shen B, Zhang J. Basal c-Jun NH2-terminal protein kinase activity is essential for survival and proliferation of T-cell acute lymphoblastic leukemia cells. Mol Cancer Ther 2010; 8:3214-22. [PMID: 19996270 DOI: 10.1158/1535-7163.mct-09-0408] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hyperactivation of c-Jun NH2-terminal protein kinase (JNK) has been found in various malignant lymphocytes and inhibition of JNK activity leads to cell cycle arrest and apoptosis. However, the role of JNK activity in the oncogenic growth of T-cell acute lymphoblastic leukemia (T-ALL) cells remains largely unknown. Here, we report that treatment of T-ALL cells with JNK inhibitors led to cell cycle arrest and apoptosis and increased sensitivity to Fas-mediated apoptosis, whereas weak ectopic expression of MKK7-JNK1 fusion protein, which shows constitutive JNK activity, in T-ALL cells resulted in accelerated cell cycle progression and resistance to Fas-mediated apoptosis. The protein levels of c-Myc and Bcl-2 were reduced in the presence of JNK inhibitors but were enhanced with MKK7-JNK1. Small interfering RNA against JNK1, but not JNK2, exhibited similar effects to JNK inhibitors. These findings suggest that targeting JNK, especially JNK1 isoform, may have some important therapeutic implications in the treatment of T-ALL. Further exploration revealed that JNK protein and basal JNK activity in T-ALL cells showed aberrant subcellular localization, but no hyperactivation of JNK was observed. Thus, our work suggests that there might be novel mechanism(s) other than hyperactivation underlying the protumorigenic role of JNK activity.
Collapse
Affiliation(s)
- Jian Cui
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Wang CCC, Chiang YM, Kuo PL, Chang JK, Hsu YL. Norsolorinic acid from Aspergillus nidulans inhibits the proliferation of human breast adenocarcinoma MCF-7 cells via Fas-mediated pathway. Basic Clin Pharmacol Toxicol 2008; 102:491-7. [PMID: 18346044 DOI: 10.1111/j.1742-7843.2008.00237.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Norsolorinic acid, isolated from the Aspergillus nidulans, was investigated for its antiproliferative activity in human breast adenocarcinoma MCF-7 cells. To identity the anticancer mechanism of norsolorinic acid, we assayed its effect on apoptosis, cell cycle distribution, and levels of p53, p21/WAF1, Fas/APO-1 receptor and Fas ligand. The results showed that norsolorinic acid induced apoptosis of MCF-7 cells without mediation of p53 and p21/WAF1. We suggest that Fas/Fas ligand apoptotic system is the main pathway of norsolorinic acid-mediated apoptosis of MCF-7 cells. Our study reports here for the first time that the activity of the Fas/Fas ligand apoptotic system may participate in the antiproliferative activity of norsolorinic acid in MCF-7 cells.
Collapse
Affiliation(s)
- Clay C C Wang
- Department of Pharmacology and Pharmaceutical Science, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
9
|
Kuo PL, Hsu YL, Sung SC, Ni WC, Lin TC, Lin CC. Induction of apoptosis in human breast adenocarcinoma MCF-7 cells by pterocarnin A from the bark of Pterocarya stenoptera via the Fas-mediated pathway. Anticancer Drugs 2007; 18:555-62. [PMID: 17414624 DOI: 10.1097/cad.0b013e3280262437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pterocarnin A, isolated from the bark of Pterocarya stenoptera (Juylandaceae), was investigated for its antiproliferative activity in human breast adenocarcinoma MCF-7 cells. To identify the anticancer mechanism of pterocarnin A, we assayed its effects on apoptosis, cell cycle distribution, and levels of p53, p21/WAF1, Fas/APO-1 receptor and Fas ligand. The results showed that pterocarnin A induced apoptosis of MCF-7 cells without mediation of p53 and p21/WAF1. We suggest that the Fas/Fas ligand apoptotic system is the main pathway of pterocarnin A-mediated apoptosis of MCF-7 cells. Our study reports here for the first time that the activity of the Fas/Fas ligand apoptotic system may participate in the antiproliferative activity of pterocarnin A in MCF-7 cells.
Collapse
Affiliation(s)
- Po-Lin Kuo
- Department of Biotechnology, Cell Biology Laboratory, Institute of Cosmetic Science, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
10
|
Ye Z, Peng H, Fang Y, Feng J, Yang DS. The construction of the eukaryotic expression plasmid pcDNA3.1/azurin and the increased apoptosis of U2OS cells transfected with it. Cell Mol Biol Lett 2007; 12:407-21. [PMID: 17415534 PMCID: PMC6275960 DOI: 10.2478/s11658-007-0012-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Accepted: 01/11/2007] [Indexed: 01/20/2023] Open
Abstract
In our previous study, we demonstrated that azurin could selectively trigger apoptosis in human osteosarcoma cell line U2OS cells. However, the rate of apoptosis (35.8 ± 3.2%) is not very high, and azurin is too expensive to obtain readily. To solve these problems, we constructed a eukaryotic expression plasmid containing the azurin gene with an influenza virus haemagglutinin 9 peptide HA epitope tag, and transfected the recombinant plasmid pcDNA3.1(+)/azurin into U2OS cells. RT-PCR and Western blot analysis validated the successful transfection and the expression of the azurin-HA protein. Conspicuous apoptosis of the transfected cells was detected by flow cytometry (FCM) and the DNA ladder test. The apoptosis rate reached 64.3 ± 13.1%. The transcriptional levels of the Bax and p53 genes increased significantly in U2OS cells transfected with pcDNA3.1(+)/azurin, but the Bcl-2 mRNA level decreased. There was no difference in the levels of Bcl-xl mRNA and Survivin mRNA. We propose that the transfection of the recombinant plasmid pcDNA3.1(+)/azurin can significantly induce apoptosis in U2OS cells. This is closely associated with the up-regulation of the transcriptional level of the Bax and p53 genes, and the down-regulation of that of the Bcl-2 gene.
Collapse
Affiliation(s)
- Zhaoming Ye
- Department of Orthopedics, Second Affiliated Hospital, Medical College, Zhejiang University, 88 Jie Fang Road, Hangzhou, 310009 Zhejiang, P.R. China
| | - Huiqin Peng
- Department of Microbiology, Medical College, Zhejiang University, P.R. China
| | - Yongming Fang
- Institute of Cancer Research, Second Affiliated Hospital, Medical College, Zhejiang University, P.R. China
| | - Jie Feng
- Department of Orthopedics, Second Affiliated Hospital, Medical College, Zhejiang University, 88 Jie Fang Road, Hangzhou, 310009 Zhejiang, P.R. China
| | - Di-Sheng Yang
- Department of Orthopedics, Second Affiliated Hospital, Medical College, Zhejiang University, 88 Jie Fang Road, Hangzhou, 310009 Zhejiang, P.R. China
| |
Collapse
|
11
|
Hsieh YY, Lin CS. P53 codon 11, 72, and 248 gene polymorphisms in endometriosis. Int J Biol Sci 2006; 2:188-93. [PMID: 16896365 PMCID: PMC1525214 DOI: 10.7150/ijbs.2.188] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2006] [Accepted: 06/08/2006] [Indexed: 11/18/2022] Open
Abstract
Objective: Mutated p53 gene is related to the instability of cell growth and cell cycle progression. We aimed to evaluate the association between endometriosis and p53 codon 11, 72 and 248 gene polymorphisms. Patients and methods: Women were divided into two groups: (1) moderate/severe endometriosis (n=148), and (2) non-endometriosis groups (n=150). P53 gene polymorphisms include codon11 Glu/Gln or Lys (GAG->CAG or AAG), codon 72 Arg/Pro (CGC->CCC), and codon 248 Arg/Thr (CGG->TCG). These gene polymorphisms were amplified by polymerase chain reaction and detected by electrophoresis after restriction enzyme (Taq I, BstU I, Hap II) digestions. Associations between the endometriosis and p53 polymorphisms were evaluated. Results: The distributions of p53 codon 72 polymorphisms in both groups were significantly different. The proportions of Arg homozygotes/heterozygotes/Pro homozygotes in both groups were 9.5/66.2/24.3% and 30.7/50/19.3%. The proportions of Arg/Pro alleles were 42.6/57.4% and 56/44%. The distributions of p53 codon 11 and 248 polymorphisms in both groups were non-significantly different. All individuals appeared the wild genotypes (Glu11 and Arg248 homozygotes). Conclusion: Association between endometriosis and p53 codon 72 polymorphism exists. P53 codon 72*Pro-related genotype and allele are related with higher susceptibility of endometriosis. P53 codon 11 and 248 polymorphisms are not related with endometriosis susceptibility.
Collapse
Affiliation(s)
- Yao-Yuan Hsieh
- 1. Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- 2. Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
| | - Chich-Sheng Lin
- 1. Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
12
|
Kuo PL, Cho CY, Hsu YL, Lin TC, Lin CC. Putranjivain A from Euphorbia jolkini inhibits proliferation of human breast adenocarcinoma MCF-7 cells via blocking cell cycle progression and inducing apoptosis. Toxicol Appl Pharmacol 2005; 213:37-45. [PMID: 16171837 DOI: 10.1016/j.taap.2005.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 08/23/2005] [Accepted: 08/23/2005] [Indexed: 10/25/2022]
Abstract
Putranjivain A, isolated from the whole plant of Euphorbia jolkini Bioss (Euphorbiaceae), was investigated for its antiproliferative activity in human breast adenocarcinoma MCF-7 cells. The results showed that putranjivain A inhibited the proliferation of MCF-7 by blocking cell cycle progression in the G0/G1 phase and inducing apoptosis. Enzyme-linked immunosorbent assay showed that putranjivain A increased the expression of p21/WAF1 concomitantly as MCF-7 cell underwent G0/G1 arrest. An enhancement in Fas/APO-1 and its two forms of ligands, membrane-bound Fas ligand (mFasL) and soluble Fas ligand (sFasL), might be responsible for the apoptotic effect induced by putranjivain A. Our study reports here for the first time that the induction of p21/WAF1 and the activity of Fas/Fas ligand apoptotic system may participate in the antiproliferative activity of putranjivain A in MCF-7 cells.
Collapse
Affiliation(s)
- Po-Lin Kuo
- Department of Biotechnology, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan
| | | | | | | | | |
Collapse
|
13
|
Mahidhara RS, Queiroz De Oliveira PE, Kohout J, Beer DG, Lin J, Watkins SC, Robbins PD, Hughes SJ. Altered trafficking of Fas and subsequent resistance to Fas-mediated apoptosis occurs by a wild-type p53 independent mechanism in esophageal adenocarcinoma. J Surg Res 2005; 123:302-11. [PMID: 15680394 DOI: 10.1016/j.jss.2004.08.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Indexed: 01/06/2023]
Abstract
BACKGROUND Decreased cell-surface expression of Fas (CD95) results in resistance to Fas-mediated apoptosis in esophageal adenocarcinoma (EA). Because p53 is known to increase transcription of Fas and also may induce trafficking of the protein to the plasma membrane, we investigated whether the loss of wild-type (wt)-p53 function accounts for our previous findings. MATERIALS AND METHODS Surgical specimens of Barrett's Esophagus containing areas of dysplasia were immunostained for p53 and Fas protein expression. Three EA cell lines were transfected with a wt-p53 containing adenovirus to examine the effects of p53 overexpression. The p53 status of these EA cell lines was determined by sequence analysis. RESULTS Regions of dysplasia where p53 protein accumulation was observed corresponded to areas of loss of Fas expression. Sequence analysis of the p53 coding sequence in three EA cell lines (Seg-1, Bic-1, and Flo-1) that retain Fas protein within the cytoplasm, demonstrated that Seg-1 contained wt-p53, but mutations were found in Flo-1 and Bic-1 cell lines. Adenoviral transduction of the cell lines with wt-p53 resulted in cell growth arrest in Seg-1 and Bic-1 and induced cell death in Flo-1, but did not result in an increase in Fas protein expression, cell-surface expression, or restoration of sensitivity to Fas-mediated apoptosis. CONCLUSIONS These data suggest that decreased cell-surface expression of Fas and resistance to Fas-mediated apoptosis may occur independently of loss of wt p53 expression.
Collapse
Affiliation(s)
- Raja S Mahidhara
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Suarez CR, Bertolone SJ, Raj AB, Coventry S. Second malignant neoplasms in childhood acute lymphoblastic leukemia: primitive neuroectodermal tumor of the chest wall with germline p53 mutation as a second malignant neoplasm. Am J Hematol 2004; 76:52-6. [PMID: 15114597 DOI: 10.1002/ajh.20012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
About 80% of children treated for acute lymphoblastic leukemia (ALL) will be long-term survivors. Second malignant neoplasm (SMNs) are a devastating sequelae observed on these children, with an estimated cumulative risk of 2-3.3% fifteen years after diagnosis. Primitive neuroectodermal tumor of bone (PNET) is rarely observed as a SMN following treatment of childhood ALL. The authors described the occurrence of a chest wall PNET of the bone at the site of a central line placement associated with both germ-line and tumor cell p53 mutation in a 8-year-old boy 1 year after completing therapy for standard risk ALL. A review of the literature of 25,051 children treated for ALL discovered 230 SMNs (0.99%), and only one case of PNET of the bone was noted among this group. The occurrence of a SMN in children treated for ALL is a rare event. Such an occurrence, in particular the development of an unusual SMN, should be evaluated for a germline p53 mutation.
Collapse
MESH Headings
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Child, Preschool
- Combined Modality Therapy
- Humans
- Male
- Mutation
- Neoplasms, Second Primary/genetics
- Neoplasms, Second Primary/pathology
- Neoplasms, Second Primary/therapy
- Neuroectodermal Tumors, Primitive, Peripheral/genetics
- Neuroectodermal Tumors, Primitive, Peripheral/pathology
- Neuroectodermal Tumors, Primitive, Peripheral/therapy
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Thoracic Wall/metabolism
- Thoracic Wall/pathology
- Treatment Outcome
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- Carlos R Suarez
- Department of Pediatrics, Section of Hematology/Oncology, University of Louisville School of Medicine, Louisville, Kentucky, USA.
| | | | | | | |
Collapse
|
15
|
Peller S, Rotter V. TP53 in hematological cancer: low incidence of mutations with significant clinical relevance. Hum Mutat 2003; 21:277-84. [PMID: 12619113 DOI: 10.1002/humu.10190] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Inactivation of the wild-type p53 gene (TP53) by various genetic alterations is a major event in human tumorigenesis. More than 60% of human primary tumors exhibit a mutation in the p53 gene. Hematological malignancies present a rather low incidence of genetic alterations in this gene (10-20%). Nevertheless, epidemiological studies of the hematological malignancies indicate that the prognosis of patients with a mutation in the p53 gene is worse than those expressing the wild-type p53 protein. Correlations between drug resistance, altered apoptosis, and mutations in the p53 gene are found in hematological malignancies and leukemias. These issues, as well as the possibility of exploiting p53 and its various functions for new therapeutic strategies, are discussed in the present review.
Collapse
Affiliation(s)
- Shoshana Peller
- Laboratory of Hematology, Assaf-Harofeh Medical Center, Zerifin Israel.
| | | |
Collapse
|
16
|
Wang YH, Zhang Z, Burrows PD, Kubagawa H, Bridges SL, Findley HW, Cooper MD. V(D)J recombinatorial repertoire diversification during intraclonal pro-B to B-cell differentiation. Blood 2003; 101:1030-7. [PMID: 12393550 DOI: 10.1182/blood-2002-06-1828] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The initial B-cell repertoire is generated by combinatorial immunoglobulin V(D)J gene segment rearrangements that occur in a preferential sequence. Because cellular proliferation occurs during the course of these rearrangement events, it has been proposed that intraclonal diversification occurs during this phase of B-cell development. An opportunity to examine this hypothesis directly was provided by the identification of a human acute lymphoblastic leukemic cell line that undergoes spontaneous differentiation from pro-B cell to the pre-B and B-cell stages with concomitant changes in the gene expression profile that normally occur during B-cell differentiation. After confirming the clonality of the progressively differentiating cells, an analysis of immunoglobulin genes and transcripts indicated that pro-B cell members marked by the same DJ rearrangement generated daughter B cells with multiple V(H) and V(L) gene segment rearrangements. These findings validate the principle of intraclonal V(D)J diversification during B-cell generation and define a manipulable model of human B-cell differentiation.
Collapse
Affiliation(s)
- Yui-Hsi Wang
- Division of Developmental and Clinical Immunology, and Department of Medicine, University of Alabama at Birmingham and the Howard Hughes Medical Institute, Birmingham, AL 35294, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Smith KJ, Diwan H, Skelton H. Death receptors and their role in dermatology, with particular focus on tumor necrosis factor-related apoptosis-inducing ligand receptors. Int J Dermatol 2003; 42:3-17. [PMID: 12581134 DOI: 10.1046/j.1365-4362.2003.01712.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Kathleen J Smith
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | | | | |
Collapse
|
18
|
Sreedhar AS, Pardhasaradhi BVV, Khar A, Srinivas UK. Effect of C-terminal deletion of P53 on heat induced CD95 expression and apoptosis in a rat histiocytoma. Oncogene 2002; 21:4042-9. [PMID: 12037686 DOI: 10.1038/sj.onc.1205504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2001] [Revised: 03/15/2002] [Accepted: 03/19/2002] [Indexed: 11/09/2022]
Abstract
Tumor suppressor gene product p53 in its wild-type conformation, is an effector of apoptosis. A rat histiocytic tumor, AK-5 which has a rearranged and mutated p53 gene undergoes apoptosis upon heat shock through surface expression of CD95 receptor. DNA sequence analysis of p53 gene from tumor cells revealed a deletion of 'C' at nucleotide position 942 and an addition of 'A' at position 1055. Deletion of one nucleotide caused premature termination of p53 protein which resulted in shorter p53 protein with an altered sequence from amino acids 315 to 341. Altered p53 was unable to protect BC-8, a single cell clone of AK-5 cells from apoptosis upon heat shock. BC-8 cells transfected with a wild-type p53gene (3B4 cells) were resistant to heat induced apoptosis and did not show the expression CD95 death receptor. Inhibition of p53 expression by using antisense oligo induced apoptosis upon heat shock in 3B4 cells. Similarly, inhibition of CD95 expression by antisense oligo inhibited heat induced apoptosis in BC-8 cells. In addition, cell cycle regulatory molecules, cdc2 and cdk2 are differentially regulated in a non-cell cycle dependent manner in these tumor cells. These results, in view of lack of heat shock response in BC-8 cells suggest a complex interaction between p53, CD95 and hsp70 which determines the fate of the cell. In the absence of functional p53, CD95 appears to be an effector of apoptosis in BC-8 cells.
Collapse
Affiliation(s)
- Amere S Sreedhar
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | | | | | |
Collapse
|
19
|
Lam V, Findley HW, Reed JC, Freedman MH, Goldenberg GJ. Comparison of DR5 and Fas expression levels relative to the chemosensitivity of acute lymphoblastic leukemia cell lines. Leuk Res 2002; 26:503-13. [PMID: 11916527 DOI: 10.1016/s0145-2126(01)00162-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The relationship between p53 gene status and the expression of DR5 and Fas was evaluated as a function of sensitivity of 11 acute lymphoblastic leukemia cell lines to adriamycin, etoposide, vincristine, methotrexate and dexamethasone. There was up to a 37-fold increase in expression of DR5 following treatment with ADR or VP-16 only in cells with wt p53. A direct correlation was observed between enhanced DR5 expression and sensitivity to ADR and VP-16. There was no induction of DR5 following treatment with VCR, MTX or DEX. There was up to a 51-fold increase in the median level of expression of Fas following treatment with ADR and VP-16, and unlike DR5 this occurred in cells with either wild-type or mutant p53. Nevertheless, a direct correlation was observed between Fas expression and drug-sensitivity. Conversely, there was only a two-fold increase in expression of Fas after exposure to VCR, MTX and DEX. These findings suggest that DR5 mediates sensitivity to ADR and VP-16 in a p53-dependent manner, whereas, Fas appears to mediate sensitivity to these two drugs independent of p53 status. DR5 and Fas do not appear to play a major role as determinants of chemosensitivity to VCR, MTX and DEX.
Collapse
Affiliation(s)
- Viengthong Lam
- Department of Pharmacology, Interdepartmental Division of Oncology, University of Toronto, Ont., Canada
| | | | | | | | | |
Collapse
|
20
|
Blagosklonny MV. Paradox of Bcl-2 (and p53): why may apoptosis-regulating proteins be irrelevant to cell death? Bioessays 2001; 23:947-53. [PMID: 11598961 DOI: 10.1002/bies.1135] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although the Bcl-2 family members and p53 are involved in the regulation of apoptosis, the status of apoptotic machinery (eg caspases) plays a major role in determining the mode and timing of cell death. If the apoptotic machinery is lost, inhibited, or intrinsically inactivated, the "death stars", Bcl-2 and p53, may become irrelevant to cell death. In this light, high levels of Bcl-2 may indicate that downstream apoptotic pathways are still functional. This explains why Bcl-2 overexpression can be a marker of chemosensitivity and favorable prognosis in certain cancers and why retention of wild-type p53 may manifest inactivation of caspases in aggressive cancers.
Collapse
Affiliation(s)
- M V Blagosklonny
- Medicine Branch, Bldg. 10, Room 12 N 226, NIH, Bethesda, MD 20892, USA. mikhailb2box-m.nih.gov
| |
Collapse
|
21
|
Daniel PT, Wieder T, Sturm I, Schulze-Osthoff K. The kiss of death: promises and failures of death receptors and ligands in cancer therapy. Leukemia 2001; 15:1022-32. [PMID: 11455969 DOI: 10.1038/sj.leu.2402169] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Death receptors and their ligands exert important regulatory functions in the maintenance of tissue homeostasis and the physiological regulation of programmed cell death. Currently, six different death receptors are known including tumor necrosis factor (TNF) receptor-1, CD95 (Fas/APO-1), TNF receptor-related apoptosis-mediating protein (TRAMP), TNF-related apoptosis-inducing ligand (TRAIL) receptor-1 and -2, and death receptor-6 (DR6). The signaling pathways by which these receptors induce apoptosis are similar and rely on oligomerization of the receptor by death ligand binding, recruitment of an adapter protein through homophilic interaction of cytoplasmic domains, and subsequent activation of an inducer caspase which initiates execution of the cell death programme. The ability of these receptors and their ligands to kill malignant cells was discovered early and helped to coin the term 'tumor necrosis factor' for the first identified death ligand. This review summarizes the current and rapidly expanding knowledge about the signaling pathways triggered by death receptor/ligand systems, their potency in experimental cancer therapy, and their therapeutic limitations, especially regarding their toxicity for non-malignant cells.
Collapse
Affiliation(s)
- P T Daniel
- Department of Hematology, Oncology, and Tumor Immunology, University Medical Center Charité, Humboldt University, Berlin, Germany
| | | | | | | |
Collapse
|
22
|
Sharma K, Wang RX, Zhang LY, Yin DL, Luo XY, Solomon JC, Jiang RF, Markos K, Davidson W, Scott DW, Shi YF. Death the Fas way: regulation and pathophysiology of CD95 and its ligand. Pharmacol Ther 2000; 88:333-47. [PMID: 11337030 DOI: 10.1016/s0163-7258(00)00096-6] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Apoptotic cell death mediated by the members of the tumor necrosis factor receptor family is an essential process involved in the regulation of cellular homeostasis during development, differentiation, and pathophysiological conditions. Among the cell death receptors comprising the tumor necrosis factor receptor superfamily, CD95/APO-1 (Fas) is the best characterized. The specific interaction of Fas with its cognate ligand, Fas ligand (FasL), elicits the activation of a death-inducing caspase (cysteine aspartic acid proteases) cascade, occurring in a transcription-independent manner. Caspase activation executes the apoptosis process by cleaving various intracellular substrates, leading to genomic DNA fragmentation, cell membrane blebbing, and the exposure of phagocytosis signaling molecules on the cell surface. Recent studies have shown that the Fas/FasL pathway plays an important role in regulating the life and death of the immune system through activation-induced cell death. In addition, these molecules have been implicated in aging, human immunodeficiency virus infection, drug abuse, stress, and cancer development. In this review, we will focus on the mechanisms that regulate Fas and FasL expression, and how their deregulation leads to diseases.
Collapse
Affiliation(s)
- K Sharma
- Department of Immunology, Holland Laboratory, American Red Cross, 15601 Crabbs Branch Way, Rockville, MD 20855, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wuchter C, Karawajew L, Ruppert V, Schrappe M, Harbott J, Ratei R, Dörken B, Ludwig WD. Constitutive expression levels of CD95 and Bcl-2 as well as CD95 function and spontaneous apoptosis in vitro do not predict the response to induction chemotherapy and relapse rate in childhood acute lymphoblastic leukaemia. Br J Haematol 2000; 110:154-60. [PMID: 10930993 DOI: 10.1046/j.1365-2141.2000.02147.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
CD95 (Fas/APO-1) expression and function and Bcl-2 expression, as well as spontaneous apoptosis in vitro, have been shown to be predictive markers for the in vivo response to chemotherapy in acute myeloid leukaemia (AML). To determine the clinical significance of apoptosis-regulating factors in acute lymphoblastic leukaemia (ALL), we investigated cell samples of children with ALL who had been included in the German ALL Berlin-Frankfurt-Münster (BFM) study using flow cytometry for constitutive expression levels of CD95 (n = 110) and Bcl-2 (n = 110). Furthermore, we determined the extent of spontaneous apoptosis in vitro (n = 102) and susceptibility to anti-CD95-induced apoptosis (CD95-sensitivity) (n = 97). We correlated these findings with the functional activity of the multidrug resistance (MDR)-associated P-glycoprotein (P-gp), as detected by the rhodamine123 efflux test, immunophenotype, cytogenetics and clinical data of the patients examined. Good responders to initial prednisone therapy ('prednisone response') revealed significantly higher Bcl-2 expression levels [5.4 +/- 3.4 relative fluorescence intensity (RFI), n = 68] than poor responders (3.7 +/- 2.6 RFI, n = 42; P = 0.002). There was no significant correlation between the other investigated parameters and prednisone response. Moreover, neither the CD95 and Bcl-2 expression levels nor the extent of spontaneous apoptosis in vitro, CD95 sensitivity or P-gp function were correlated with the response to induction chemotherapy or relapse rate, either for B-cell precursor ALL or T-cell ALL. No consistent pattern of change in CD95 (n = 10) and Bcl-2 expression (n = 9) was noted in cases studied at both initial diagnosis and relapse. In conclusion, our findings underline the different cell biological features of primary AML and ALL cells.
Collapse
Affiliation(s)
- C Wuchter
- Department of Haematology, Oncology and Tumour Immunology, Robert-Rössle-Clinic, Charité, Humboldt-University of Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Zhou M, Gu L, Holden J, Yeager AM, Findley HW. CD40 ligand upregulates expression of the IL-3 receptor and stimulates proliferation of B-lineage acute lymphoblastic leukemia cells in the presence of IL-3. Leukemia 2000; 14:403-11. [PMID: 10720134 DOI: 10.1038/sj.leu.2401682] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The proliferative response of B cell precursor acute lymphoblastic leukemia (BCP-ALL) cells to IL-3 is dependent on the expression of functional IL-3 receptors (IL-3R). Here we report that CD40 ligand (CD40L) in the presence of recombinant IL-3 increased proliferation of BCP-ALL cells by upregulating expression of IL-3R. Upregulation of IL-3R in BCP-ALL cells was observed as early as 1 h after treatment with CD40L, and a 50- to 500-fold increase of IL-3R expression after 24 h was detected in all 12 cases studied. Moreover, expression of receptors for IL-7 (IL-7R) and stem cell factor (SCF-R, c-Kit) was also induced by CD40L in the majority of BCP-ALL cases examined; however, levels of induction were low compared to those for IL-3R. To test the functional activity of upregulated receptors for IL-3, SCF and IL-7, we evaluated the proliferation and growth of BCP-ALL cells cultured in serum-free media with CD40L plus these factors. When CD40L was added with either a single cytokine (IL-3, SCF and IL-7) or their combinations, cell proliferation was significantly increased as detected by DNA synthesis assay. Combinations of CD40L plus IL-3 and either SCF or IL-7 were able to support long-term growth of BCP-ALL cells for at least 8 weeks in three of the seven cases studied. Immunophenotyping and gene rearrangement studies indicated that cells in long-term cultures were monoclonal and retained their original phenotypes. The leukemic cells remained primarily dependent on the presence of IL-3 and its receptor for long-term growth, as shown by selective withdrawal of growth factors or antibody blockade of receptors. These results suggest an important role for CD40L in upregulating expression of IL-3R on BCP-ALL cells and enabling these cells to proliferate in long-term cultures in the presence of IL-3 and either SCF or IL-7.
Collapse
MESH Headings
- Burkitt Lymphoma/pathology
- CD40 Ligand
- Cell Division/drug effects
- Child
- Child, Preschool
- Culture Media, Serum-Free/pharmacology
- DNA, Neoplasm/genetics
- Female
- Gene Expression Regulation, Leukemic/drug effects
- Gene Rearrangement, B-Lymphocyte
- Genes, Immunoglobulin
- Humans
- Immunoglobulin Heavy Chains/genetics
- Immunophenotyping
- Infant
- Interleukin-3/pharmacology
- Interleukin-7/pharmacology
- Male
- Membrane Glycoproteins/pharmacology
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Polymerase Chain Reaction
- Proto-Oncogene Proteins c-kit/biosynthesis
- Proto-Oncogene Proteins c-kit/genetics
- Receptors, Interleukin-3/biosynthesis
- Receptors, Interleukin-3/genetics
- Receptors, Interleukin-7/biosynthesis
- Receptors, Interleukin-7/genetics
- Stem Cell Factor/pharmacology
- Tumor Cells, Cultured/drug effects
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- M Zhou
- Division of Pediatric Hematology/Oncology/Bone Marrow Transplantation, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
25
|
Drexler HG, Fombonne S, Matsuo Y, Hu ZB, Hamaguchi H, Uphoff CC. p53 alterations in human leukemia-lymphoma cell lines: in vitroartifact or prerequisite for cell immortalization? Leukemia 2000; 14:198-206. [PMID: 10637496 DOI: 10.1038/sj.leu.2401604] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Alteration of the p53 gene is one of the most frequent events in human tumorigenesis. The inactivation of p53 tumor suppressor function can be caused by chromosome deletion, gene deletion, or mainly by point mutations. p53 mutations occur moderately often in hematopoietic malignancies. A significantly higher frequency of p53 alterations in cell lines vs primary samples has been observed for all types of malignant hematopoietic cell lines. It has been postulated that p53 gene abnormalities arise in cell lines during in vitro establishment of the culture or prolonged culture; but it is also conceivable that those cases that carry p53 mutations may be more suitable for in vitro establishment as permanent cell lines. We analyzed data on the p53 gene status in a panel of matched primary hematopoietic tumor cells and the respective cell lines derived from this original material. In 85% (53/62) of the pairs of matched primary cells and cell lines, the in vivo and in vitro data were identical (both with p53 wild-type or both with the same p53 mutation). In some instances, serial clinical samples (eg at presentation and relapse) and serial sister cell lines were available. These cases showed that a clinical sample at presentation often had a p53 wild-type configuration whereas the derived cell line and a relapse specimen carried an identical p53 point mutation. These findings suggest that a minor clone, at first undetectable by standard analysis, represents a reservoir for the outgrowth of resistant cells in vivo and also a pool of cells with a growth advantage in vitro, providing a significantly higher chance of immortalization in culture. This was further supported by studies employing mutant allele-specific gene amplifications, a technique which is significantly more sensitive (100- to 1000-fold) than the commonly applied SSCP assay with a sensitivity threshold of about 10% mutated cells within a pool of wild-type cells. Taken together, this analysis confirms the usefulness of human hematopoietic cell lines as in vitro model systems for the study of the biology of hematopoietic malignancies. It further underlines the notion that p53 gene alterations confer a survival advantage to, at least some, malignant cells in vitro and presumably also in vivo; however, it is highly unlikely that a p53 mutation alone would suffice for the immortalization of a cell line in vitro or tumor development in vivo. Leukemia (2000) 14, 198-206.
Collapse
Affiliation(s)
- H G Drexler
- DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Human and Animal Cell Cultures, Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|