1
|
Plant-Derived Type I Ribosome Inactivating Protein-Based Targeted Toxins: A Review of the Clinical Experience. Toxins (Basel) 2022; 14:toxins14080563. [PMID: 36006226 PMCID: PMC9412999 DOI: 10.3390/toxins14080563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/04/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Targeted toxins (TT) for cancer treatment are a class of hybrid biologic comprised of a targeting domain coupled chemically or genetically to a proteinaceous toxin payload. The targeting domain of the TT recognises and binds to a defined target molecule on the cancer cell surface, thereby delivering the toxin that is then required to internalise to an appropriate intracellular compartment in order to kill the target cancer cell. Toxins from several different sources have been investigated over the years, and the two TTs that have so far been licensed for clinical use in humans; both utilise bacterial toxins. Relatively few clinical studies have, however, been undertaken with TTs that utilise single-chain type I ribosome inactivating proteins (RIPs). This paper reviews the clinical experience that has so far been obtained for a range of TTs based on five different type I RIPs and concludes that the majority studied in early phase trials show significant clinical activity that justifies further clinical investigation. A range of practical issues relating to the further clinical development of TT’s are also covered briefly together with some suggested solutions to outstanding problems.
Collapse
|
2
|
Insights into Modern Therapeutic Approaches in Pediatric Acute Leukemias. Cells 2022; 11:cells11010139. [PMID: 35011701 PMCID: PMC8749975 DOI: 10.3390/cells11010139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/07/2021] [Accepted: 12/15/2021] [Indexed: 02/01/2023] Open
Abstract
Pediatric cancers predominantly constitute lymphomas and leukemias. Recently, our knowledge and awareness about genetic diversities, and their consequences in these diseases, have greatly expanded. Modern solutions are focused on mobilizing and impacting a patient’s immune system. Strategies to stimulate the immune system, to prime an antitumor response, are of intense interest. Amid those types of therapies are chimeric antigen receptor T (CAR-T) cells, bispecific antibodies, and antibody–drug conjugates (ADC), which have already been approved in the treatment of acute lymphoblastic leukemia (ALL)/acute myeloid leukemia (AML). In addition, immune checkpoint inhibitors (ICIs), the pattern recognition receptors (PRRs), i.e., NOD-like receptors (NLRs), Toll-like receptors (TLRs), and several kinds of therapy antibodies are well on their way to showing significant benefits for patients with these diseases. This review summarizes the current knowledge of modern methods used in selected pediatric malignancies and presents therapies that may hold promise for the future.
Collapse
|
3
|
Jammal N, Chew S, Jabbour E, Kantarjian H. Antibody based therapy in relapsed acute lymphoblastic leukemia. Best Pract Res Clin Haematol 2020; 33:101225. [PMID: 33279181 DOI: 10.1016/j.beha.2020.101225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 10/22/2022]
Abstract
Outcomes for relapsed and refractory acute lymphoblastic leukemia (ALL) remain poor. With the advent of targeted monoclonal antibodies and antibody constructs, these outcomes have been significantly improved both in the frontline and salvage setting. These targets include a bispecific antibody that targets both CD3 and CD19, known as blinatumomab, as well as a conjugated antibody that targets CD22, known as inotuzumab ozogamicin. These agents have been thoroughly studied and successively approved for use as monotherapy, however, more recently they have been incorporated in combination or sequentially with cytotoxic chemotherapy. In this chapter, we will discuss the role that these monoclonal antibodies play as monotherapy and in combination in the treatment of ALL in the salvage setting, and how they continue to transform the treatment management of relapsed and refractory ALL.
Collapse
Affiliation(s)
- Nadya Jammal
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Serena Chew
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elias Jabbour
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Hagop Kantarjian
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
4
|
Lu JQ, Zhu ZN, Zheng YT, Shaw PC. Engineering of Ribosome-inactivating Proteins for Improving Pharmacological Properties. Toxins (Basel) 2020; 12:toxins12030167. [PMID: 32182799 PMCID: PMC7150887 DOI: 10.3390/toxins12030167] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/23/2022] Open
Abstract
Ribosome-inactivating proteins (RIPs) are N-glycosidases, which depurinate a specific adenine residue in the conserved α-sarcin/ricin loop (α-SRL) of rRNA. This loop is important for anchoring elongation factor (EF-G for prokaryote or eEF2 for eukaryote) in mRNA translocation. Translation is inhibited after the attack. RIPs therefore may have been applied for anti-cancer, and anti-virus and other therapeutic applications. The main obstacles of treatment with RIPs include short plasma half-life, non-selective cytotoxicity and antigenicity. This review focuses on the strategies used to improve the pharmacological properties of RIPs on human immunodeficiency virus (HIV) and cancers. Coupling with polyethylene glycol (PEG) increases plasma time and reduces antigenicity. RIPs conjugated with antibodies to form immunotoxins increase the selective toxicity to target cells. The prospects for future development on the engineering of RIPs for improving their pharmacological properties are also discussed.
Collapse
Affiliation(s)
- Jia-Qi Lu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 99077, China; (J.-Q.L.); (Z.-N.Z.)
| | - Zhen-Ning Zhu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 99077, China; (J.-Q.L.); (Z.-N.Z.)
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms, National Kunming High level Biosafety Research Center for Non-human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China;
| | - Pang-Chui Shaw
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 99077, China; (J.-Q.L.); (Z.-N.Z.)
- Correspondence:
| |
Collapse
|
5
|
Deak D, Pop C, Zimta AA, Jurj A, Ghiaur A, Pasca S, Teodorescu P, Dascalescu A, Antohe I, Ionescu B, Constantinescu C, Onaciu A, Munteanu R, Berindan-Neagoe I, Petrushev B, Turcas C, Iluta S, Selicean C, Zdrenghea M, Tanase A, Danaila C, Colita A, Colita A, Dima D, Coriu D, Einsele H, Tomuleasa C. Let's Talk About BiTEs and Other Drugs in the Real-Life Setting for B-Cell Acute Lymphoblastic Leukemia. Front Immunol 2020; 10:2856. [PMID: 31921126 PMCID: PMC6934055 DOI: 10.3389/fimmu.2019.02856] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 11/20/2019] [Indexed: 01/07/2023] Open
Abstract
Background: Therapy for acute lymphoblastic leukemia (ALL) are currently initially efficient, but even if a high percentage of patients have an initial complete remission (CR), most of them relapse. Recent data shows that immunotherapy with either bispecific T-cell engagers (BiTEs) of chimeric antigen receptor (CAR) T cells can eliminate residual chemotherapy-resistant B-ALL cells. Objective: The objective of the manuscript is to present improvements in the clinical outcome for chemotherapy-resistant ALL in the real-life setting, by describing Romania's experience with bispecific antibodies for B-cell ALL. Methods: We present the role of novel therapies for relapsed B-cell ALL, including the drugs under investigation in phase I-III clinical trials, as a potential bridge to transplant. Blinatumomab is presented in a critical review, presenting both the advantages of this drug, as well as its limitations. Results: Bispecific antibodies are discussed, describing the clinical trials that resulted in its approval by the FDA and EMA. The real-life setting for relapsed B-cell ALL is described and we present the patients treated with blinatumomab in Romania. Conclusion: In the current manuscript, we present blinatumomab as a therapeutic alternative in the bridge-to-transplant setting for refractory or relapsed ALL, to gain a better understanding of the available therapies and evidence-based data for these patients in 2019.
Collapse
Affiliation(s)
- Dalma Deak
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Cristina Pop
- Department of Pharmacology, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alina-Andreea Zimta
- Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ancuta Jurj
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alexandra Ghiaur
- Department of Hematology, Fundeni Clinical Institute, Bucharest, Romania
| | - Sergiu Pasca
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Patric Teodorescu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Angela Dascalescu
- Department of Hematology, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania.,Department of Hematology, Regional Institute of Oncology, Iasi, Romania
| | - Ion Antohe
- Department of Hematology, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania.,Department of Hematology, Regional Institute of Oncology, Iasi, Romania
| | - Bogdan Ionescu
- Department of Hematology, Fundeni Clinical Institute, Bucharest, Romania
| | - Catalin Constantinescu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Anca Onaciu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Raluca Munteanu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Bobe Petrushev
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Turcas
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Sabina Iluta
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Selicean
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihnea Zdrenghea
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Alina Tanase
- Department of Stem Cell Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Catalin Danaila
- Department of Hematology, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania.,Department of Hematology, Regional Institute of Oncology, Iasi, Romania
| | - Anca Colita
- Department of Stem Cell Transplantation, Fundeni Clinical Institute, Bucharest, Romania.,Department of Pediatrics, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Andrei Colita
- Department of Hematology, Coltea Hospital, Bucharest, Romania.,Department of Hematology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Delia Dima
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Daniel Coriu
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania.,Department of Hematology, Fundeni Clinical Institute, Bucharest, Romania.,Department of Hematology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital Wurzburg, Würzburg, Germany
| | - Ciprian Tomuleasa
- Department of Hematology/Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
6
|
Shafiee F, Aucoin MG, Jahanian-Najafabadi A. Targeted Diphtheria Toxin-Based Therapy: A Review Article. Front Microbiol 2019; 10:2340. [PMID: 31681205 PMCID: PMC6813239 DOI: 10.3389/fmicb.2019.02340] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/25/2019] [Indexed: 12/26/2022] Open
Abstract
Cancer remains one of the leading causes of death worldwide. Conventional therapeutic strategies usually offer limited specificity, resulting in severe side effects and toxicity to normal tissues. Targeted cancer therapy, on the other hand, can improve the therapeutic potential of anti-cancer agents and decrease unwanted side effects. Targeted applications of cytolethal bacterial toxins have been found to be especially useful for the specific eradication of cancer cells. Targeting is either mediated by peptides or by protein-targeting moieties, such as antibodies, antibody fragments, cell-penetrating peptides (CPPs), growth factors, or cytokines. Together with a toxin domain, these molecules are more commonly referred to as immunotoxins. Targeting can also be achieved through gene delivery and cell-specific expression of a toxin. Of the available cytolethal toxins, diphtheria toxin (DT) is one of the most frequently used for these strategies. Of the many DT-based therapeutic strategies investigated to date, two immunotoxins, OntakTM and TagraxofuspTM, have gained FDA approval for clinical application. Despite some success with immunotoxins, suicide-gene therapy strategies, whereby controlled tumor-specific expression of DT is used for the eradication of malignant cells, are gaining prominence. The first part of this review focuses on DT-based immunotoxins, and it then discusses recent developments in tumor-specific expression of DT.
Collapse
Affiliation(s)
- Fatemeh Shafiee
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marc G Aucoin
- Department of Chemical Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Ali Jahanian-Najafabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
7
|
Parakh S, King D, Gan HK, Scott AM. Current Development of Monoclonal Antibodies in Cancer Therapy. Recent Results Cancer Res 2019; 214:1-70. [PMID: 31473848 DOI: 10.1007/978-3-030-23765-3_1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Exploiting the unique specificity of monoclonal antibodies has revolutionized the treatment and diagnosis of haematological and solid organ malignancies; bringing benefit to millions of patients over the past decades. Recent achievements include conjugating antibodies with toxic payloads resulting in superior efficacy and/or reduced toxicity, development of molecular imaging techniques targeting specific antigens for use as predictive and prognostic biomarkers, the development of novel bi- and tri-specific antibodies to enhance therapeutic benefit and abrogate resistance and the success of immunotherapy agents. In this chapter, we review an overview of antibody structure and function relevant to cancer therapy and provide an overview of pivotal clinical trials which have led to regulatory approval of monoclonal antibodies in cancer treatment. We further discuss resistance mechanisms and the unique side effects of each class of antibody and provide an overview of emerging therapeutic agents.
Collapse
Affiliation(s)
- Sagun Parakh
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, VIC, 3084, Australia.,Department of Medical Oncology, Olivia Newton-John Cancer and Wellness Centre, Austin Health, Heidelberg, Melbourne, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Dylan King
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, VIC, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Hui K Gan
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, VIC, 3084, Australia.,Department of Medical Oncology, Olivia Newton-John Cancer and Wellness Centre, Austin Health, Heidelberg, Melbourne, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Andrew M Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, VIC, 3084, Australia. .,School of Cancer Medicine, La Trobe University, Melbourne, Australia. .,Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia. .,Department of Medicine, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
8
|
Groth C, van Groningen LFJ, Matos TR, Bremmers ME, Preijers FWMB, Dolstra H, Reicherts C, Schaap NPM, van Hooren EHG, IntHout J, Masereeuw R, Netea MG, Levine JE, Morales G, Ferrara JL, Blijlevens NMA, van Oosterhout YVJM, Stelljes M, van der Velden WJFM. Phase I/II Trial of a Combination of Anti-CD3/CD7 Immunotoxins for Steroid-Refractory Acute Graft-versus-Host Disease. Biol Blood Marrow Transplant 2018; 25:712-719. [PMID: 30399420 DOI: 10.1016/j.bbmt.2018.10.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 10/25/2018] [Indexed: 01/01/2023]
Abstract
Effective therapies for treating patients with steroid-refractory acute graft-versus-host-disease (SR-aGVHD), particularly strategies that reduce the duration of immunosuppression following remission, are urgently needed. The investigated immunotoxin combination consists of a mixture of anti-CD3 and anti-CD7 antibodies separately conjugated to recombinant ricin A (CD3/CD7-IT), which induces in vivo depletion of T cells and natural killer (NK) cells and suppresses T cell receptor activation. We conducted a phase I/II trial to examine the safety and efficacy of CD3/CD7-IT in 20 patients with SR-aGVHD; 17 of these patients (85%) had severe SR-aGVHD, and all 20 patients had visceral organ involvement, including 18 (90%) with gastrointestinal (GI) involvement and 5 (25%) with liver involvement. A validated 2-biomarker algorithm classified the majority of patients (11 of 20) as high risk. On day 28 after the start of CD3/CD7-IT therapy, the overall response rate was 60% (12 of 20), with 10 patients (50%) achieving a complete response. The 6-month overall survival rate was 60% (12 of 20), including 64% (7 of 11) classified as high risk by biomarkers. The 1-week course of treatment with CD3/CD7-IT caused profound but transient depletion of T cells and NK cells, followed by rapid recovery of the immune system with a diverse TCR Vβ repertoire, and preservation of Epstein-Barr virus- and cytomegalovirus-specific T cell clones. Furthermore, our results indicate that CD3/CD7-IT appeared to be safe and well tolerated, with a relatively low prevalence of manageable and reversible adverse events, primarily worsening of hypoalbuminemia, microangiopathy, and thrombocytopenia. These encouraging results suggest that CD3/CD7-IT may improve patient outcomes in patients with SR-aGVHD.
Collapse
Affiliation(s)
- Christoph Groth
- Department of Medicine A/Hematology and Oncology, University Hospital of Muenster, Muenster, Germany
| | - Lenneke F J van Groningen
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tiago R Matos
- Department of Dermatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Manita E Bremmers
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frank W M B Preijers
- Department of Laboratory Medicine, Laboratory for Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Harry Dolstra
- Department of Laboratory Medicine, Laboratory for Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christian Reicherts
- Department of Medicine A/Hematology and Oncology, University Hospital of Muenster, Muenster, Germany
| | - Nicolaas P M Schaap
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Joanna IntHout
- Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Section of Biostatistics, Department for Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - John E Levine
- Tisch Cancer Institute, The Icahn School of Medicine at Mount Sinai Hospital, New York, NY
| | - George Morales
- Tisch Cancer Institute, The Icahn School of Medicine at Mount Sinai Hospital, New York, NY
| | - James L Ferrara
- Tisch Cancer Institute, The Icahn School of Medicine at Mount Sinai Hospital, New York, NY
| | - Nicole M A Blijlevens
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Matthias Stelljes
- Department of Medicine A/Hematology and Oncology, University Hospital of Muenster, Muenster, Germany
| | - Walter J F M van der Velden
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
9
|
Wolska-Washer A, Robak P, Smolewski P, Robak T. Emerging antibody-drug conjugates for treating lymphoid malignancies. Expert Opin Emerg Drugs 2017; 22:259-273. [PMID: 28792782 DOI: 10.1080/14728214.2017.1366447] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Antibody-drug conjugates (ADC) are monoclonal antibodies (Mabs) attached to biologically active drugs through specialized chemical linkers. They deliver and release cytotoxic agents at the tumor site, reducing the likelihood of systemic exposure and therefore toxicity. These agents should improve the potency of chemotherapy by increasing the accumulation of cytotoxic the drug within or near the neoplastic cells with reduced systemic effects. Areas covered: A literature review was conducted of the MEDLINE database PubMed for articles in English examining Mabs, B-cell receptor pathway inhibitors and immunomodulating drugs. Publications from 2000 through April 2017 were scrutinized. Conference proceedings from the previous five years of the American Society of Hematology, European Hematology Association, American Society of Clinical Oncology, and ACR/ARHP Annual Scientific Meetings were searched manually. Additional relevant publications were obtained by reviewing the references from the chosen articles. Expert opinion: Newer ADCs show promise as treatment for several hematologic malignancies, especially lymphoma, multiple myeloma, and leukemia. However, definitive data from ongoing and future clinical trials will aid in better defining the status of these agents in the treatment of these diseases.
Collapse
Affiliation(s)
| | - Pawel Robak
- b Department of Experimental Hematology , Medical University of Lodz , Lodz , Poland
| | - Piotr Smolewski
- b Department of Experimental Hematology , Medical University of Lodz , Lodz , Poland
| | - Tadeusz Robak
- a Department of Hematology , Medical University of Lodz , Lodz , Poland
| |
Collapse
|
10
|
Li M, Liu ZS, Liu XL, Hui Q, Lu SY, Qu LL, Li YS, Zhou Y, Ren HL, Hu P. Clinical targeting recombinant immunotoxins for cancer therapy. Onco Targets Ther 2017; 10:3645-3665. [PMID: 28790855 PMCID: PMC5530862 DOI: 10.2147/ott.s134584] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recombinant immunotoxins (RITs) are proteins that contain a toxin fused to an antibody or small molecules and are constructed by the genetic engineering technique. RITs can bind to and be internalized by cells and kill cancerous or non-cancerous cells by inhibiting protein synthesis. A wide variety of RITs have been tested against different cancers in cell culture, xenograft models, and human patients during the past several decades. RITs have shown activity in therapy of several kinds of cancers, but different levels of side effects, mainly related to vascular leak syndrome, were also observed in the treated patients. High immunogenicity of RITs limited their long-term or repeat applications in clinical cases. Recent advances in the design of immunotoxins, such as humanization of antibody fragment, PEGylation, and modification of human B- and T-cell epitopes, are overcoming the above mentioned problems, which predict the use of these immunotoxins as a potential therapeutic method to treat cancer patients.
Collapse
Affiliation(s)
- Meng Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, China-Japan Union Hospital, The First Hospital, Jilin University, Changchun
| | - Zeng-Shan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, China-Japan Union Hospital, The First Hospital, Jilin University, Changchun
| | - Xi-Lin Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, China-Japan Union Hospital, The First Hospital, Jilin University, Changchun
| | - Qi Hui
- School of Pharmacy, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Shi-Ying Lu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, China-Japan Union Hospital, The First Hospital, Jilin University, Changchun
| | - Lin-Lin Qu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, China-Japan Union Hospital, The First Hospital, Jilin University, Changchun
| | - Yan-Song Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, China-Japan Union Hospital, The First Hospital, Jilin University, Changchun
| | - Yu Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, China-Japan Union Hospital, The First Hospital, Jilin University, Changchun
| | - Hong-Lin Ren
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, China-Japan Union Hospital, The First Hospital, Jilin University, Changchun
| | - Pan Hu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, China-Japan Union Hospital, The First Hospital, Jilin University, Changchun
| |
Collapse
|
11
|
Shah NN. Antibody Based Therapies in Acute Leukemia. Curr Drug Targets 2017; 18:257-270. [PMID: 27593687 PMCID: PMC8335750 DOI: 10.2174/1389450117666160905091459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/24/2015] [Accepted: 11/09/2015] [Indexed: 01/05/2023]
Abstract
Despite great progress in the curative treatment of acute leukemia, outcomes for those with relapsed and/or chemotherapy-refractory disease remain poor. Current intensive cytotoxic therapies can be associated with significant morbidity and novel therapies are needed to improve outcomes. Immunotherapy based approaches provide an alternative mechanism of action in the treatment of acute leukemia. Due to cell surface antigen expression, leukemia in particular is amenable to targeted therapies, such as antibody-based therapy. Based on the potential for non-overlapping toxicity, the possibility of synergistic action with standard chemotherapy, and by providing a novel method to overcome chemotherapy resistance, antibody-based therapies have shown potential for benefit. Modifications to standard monoclonal antibodies, including drug conjugation and linkage to T-cells, may further enhance efficacy of antibody-based therapies. Identifying the ideal timing for incorporation of antibody-based therapies, within standard regimens, may lead to improvement in overall outcomes. This article will provide an overview of antibody-based therapies in clinical development for the treatment of acute leukemia in children and adults, with a particular focus on the current strategies and future developments.
Collapse
Affiliation(s)
- Nirali N. Shah
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Bethesda, MD, USA
| |
Collapse
|
12
|
Papadantonakis N, Advani AS. Recent advances and novel treatment paradigms in acute lymphocytic leukemia. Ther Adv Hematol 2016; 7:252-269. [PMID: 27695616 PMCID: PMC5026289 DOI: 10.1177/2040620716652289] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This is an exciting time in the treatment of acute lymphoblastic leukemia (ALL) given the advances in the relapsed/refractory setting. The development of antibody treatments (including antibody drug conjugates with toxins) offers a different treatment approach compared with conventional chemotherapy regimens. Moreover, the use of bispecific T-cell-engager antibodies (BiTEs) such as blinatumomab harness the cytotoxic activity of T cells against CD19-positive lymphoblasts. Another strategy involves the use of chimeric antigen receptor (CAR) T cells. CAR T cells have demonstrated promising results in the relapsed/refractory setting. However, the use of BiTEs and CAR T cells is also associated with a distinct set of adverse reactions that must be taken into account by the treating physician. Apart from the above strategies, the use of other targeted therapies has attracted interest. Namely, the discovery of the Philadelphia (Ph)-like signature in children and young adults with ALL has led to the use of tyrosine kinase inhibitors (TKI) in these patients. The different drugs and strategies that are being tested in the relapsed/refractory ALL setting pose a unique challenge in identifying the optimum sequence of treatment and determining which approaches should be considered for frontline treatment.
Collapse
Affiliation(s)
| | - Anjali S. Advani
- Taussig Cancer Center, Cleveland Clinic Foundation, Cleveland, OH 44120, USA
| |
Collapse
|
13
|
Parakh S, Parslow AC, Gan HK, Scott AM. Antibody-mediated delivery of therapeutics for cancer therapy. Expert Opin Drug Deliv 2015; 13:401-19. [PMID: 26654403 DOI: 10.1517/17425247.2016.1124854] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Antibody-conjugated therapies (ACTs) combine the specificity of monoclonal antibodies to target cancer cells directly with highly potent payloads, often resulting in superior efficacy and/or reduced toxicity. This represents a new approach to the treatment of cancer. There have been highly promising clinical trial results using this approach with improvements in linker and payload technology. The breadth of current trials examining ACTs in haematological malignancies and solid tumours indicate the potential for clinical impact. AREAS COVERED This review will provide an overview of ACTs currently in clinical development as well as the principles of antibody delivery and types of payloads used, including cytotoxic drugs, radiolabelled isotopes, nanoparticle-based siRNA particles and immunotoxins. EXPERT OPINION The focus of much of the clinical activity in ACTs has, understandably, been on their use as a monotherapy or in combination with standard of care drugs. This will continue, as will the search for better targets, linkers and payloads. Increasingly, as these drugs enter routine clinical care, important questions will arise regarding how to optimise ACT treatment approaches, including investigation of resistance mechanisms, biomarker and patient selection strategies, understanding of the unique toxicities of these drugs, and combinatorial approaches with standard therapies as well as emerging therapeutic agents like immunotherapy.
Collapse
Affiliation(s)
- Sagun Parakh
- a Tumour Targeting Laboratory , Olivia Newton-John Cancer Research Institute , Melbourne , Australia.,b Department of Medical Oncology, Olivia Newton-John Cancer and Wellness Centre , Austin Health , Heidelberg, Melbourne , Australia.,c School of Cancer Medicine , La Trobe University , Melbourne , Australia
| | - Adam C Parslow
- a Tumour Targeting Laboratory , Olivia Newton-John Cancer Research Institute , Melbourne , Australia.,c School of Cancer Medicine , La Trobe University , Melbourne , Australia
| | - Hui K Gan
- a Tumour Targeting Laboratory , Olivia Newton-John Cancer Research Institute , Melbourne , Australia.,b Department of Medical Oncology, Olivia Newton-John Cancer and Wellness Centre , Austin Health , Heidelberg, Melbourne , Australia.,c School of Cancer Medicine , La Trobe University , Melbourne , Australia
| | - Andrew M Scott
- a Tumour Targeting Laboratory , Olivia Newton-John Cancer Research Institute , Melbourne , Australia.,c School of Cancer Medicine , La Trobe University , Melbourne , Australia.,d Departmentof Molecular Imaging and Therapy , Austin Health , Melbourne , Australia.,e Department of Medicine , University of Melbourne , Melbourne , Australia
| |
Collapse
|
14
|
Advani AS, McDonough S, Coutre S, Wood B, Radich J, Mims M, O'Donnell M, Elkins S, Becker M, Othus M, Appelbaum FR. SWOG S0910: a phase 2 trial of clofarabine/cytarabine/epratuzumab for relapsed/refractory acute lymphocytic leukaemia. Br J Haematol 2014; 165:504-9. [PMID: 24579885 PMCID: PMC4209396 DOI: 10.1111/bjh.12778] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 12/27/2013] [Indexed: 11/27/2022]
Abstract
Precursor B-acute lymphoblastic leukaemias (pre-B ALLs) comprise the majority of ALLs and virtually all blasts express CD22 in the cytoplasm and on the cell surface. In the present study (Southwestern Oncology Group S0910), we evaluated the addition of epratuzumab, a humanized monoclonal antibody against CD22, to the combination of clofarabine and cytarabine in adults with relapsed/refractory pre-B ALL. The response rate [complete remission and complete remission with incomplete count recovery] was 52%, significantly higher than our previous trial with clofarabine/cytarabine alone, where the response rate was 17%. This result is encouraging and suggests a potential benefit to adding epratuzumab to chemotherapy for ALL; however, a randomized trial will be needed to answer this question.
Collapse
Affiliation(s)
- Anjali S Advani
- Hematologic Oncology and Blood Disorders, Taussig Cancer Institute, The Cleveland Clinic, Cleveland, OH, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Robak T, Robak E. Current Phase II antibody-drug conjugates for the treatment of lymphoid malignancies. Expert Opin Investig Drugs 2014; 23:911-24. [DOI: 10.1517/13543784.2014.908184] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Tadeusz Robak
- Medical University of Lodz, Departments of Hematology and Dermatology, Ciołkowskiego 2 93-510 Lodz, Poland
| | - Ewa Robak
- Medical University of Lodz, Departments of Dermatology and Venereology, Lodz, Poland
| |
Collapse
|
16
|
Brown P, Hunger SP, Smith FO, Carroll WL, Reaman GH. Novel targeted drug therapies for the treatment of childhood acute leukemia. Expert Rev Hematol 2014; 2:145. [PMID: 20126514 DOI: 10.1586/ehm.09.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The cure rates for childhood acute leukemia have dramatically improved to approximately 70% overal, with treatments that include intensive cytotoxic chemotherapy and, in some cases, hematopoietic stem cell transplantation. However, many children still die of their disease or of treatment-related toxicities. Even in patients that are cured, there can be significant and, not uncommonly debilitating, acute and late complications of treatment. Improved understanding of the molecular and cellular biology of leukemia and the increasing availability of high-throughput genomic techniques have facilitated the development of molecularly targeted therapies that have the potential to be more effective and less toxic than the standard approaches. In this article, we review the progress to date with agents that are showing promise in the treatment of childhood acute leukemia, including monoclonal antibodies, inhibitors of kinases and other signaling molecules (e.g., BCR-ABL, FLT3, farnesyltransferase, mTOR and γ-secretase), agents that target epigenetic regulation of gene expression (DNA methyltransferase inhibitors and histone deacetylase inhibitors) and proteasome inhibitors. For the specific agents in each of these classes, we summarize the published preclinical data and the clinical trials that have been completed, are in progress or are being planned for children with acute leukemia. Finally, we discuss potential challenges to the success of molecularly targeted therapy, including proper target identification, adequate targeting of leukemia stem cells, developing synergistic and tolerable combinations of agents and designing adequately powered clinical trials to test efficacy in molecularly defined subsets of patients.
Collapse
Affiliation(s)
- Patrick Brown
- Departments of Oncology and Pediatrics, Sidney Kimmel Comprehensive Cancer, Center and Johns Hopkins University, School of Medicine, 1650 Orleans Street, CRB1 Room 2M49, Baltimore, MD 21231, USA, Tel.: +1 410 955 8817, ,
| | | | | | | | | |
Collapse
|
17
|
Jeon J, Nim S, Teyra J, Datti A, Wrana JL, Sidhu SS, Moffat J, Kim PM. A systematic approach to identify novel cancer drug targets using machine learning, inhibitor design and high-throughput screening. Genome Med 2014; 6:57. [PMID: 25165489 PMCID: PMC4143549 DOI: 10.1186/s13073-014-0057-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 07/18/2014] [Indexed: 12/14/2022] Open
Abstract
We present an integrated approach that predicts and validates novel anti-cancer drug targets. We first built a classifier that integrates a variety of genomic and systematic datasets to prioritize drug targets specific for breast, pancreatic and ovarian cancer. We then devised strategies to inhibit these anti-cancer drug targets and selected a set of targets that are amenable to inhibition by small molecules, antibodies and synthetic peptides. We validated the predicted drug targets by showing strong anti-proliferative effects of both synthetic peptide and small molecule inhibitors against our predicted targets.
Collapse
Affiliation(s)
- Jouhyun Jeon
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1 Canada
| | - Satra Nim
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1 Canada
| | - Joan Teyra
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1 Canada
| | - Alessandro Datti
- Center for Systems Biology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON M5S 3E1 Canada
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, 06100 Italy
| | - Jeffrey L Wrana
- Center for Systems Biology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON M5S 3E1 Canada
| | - Sachdev S Sidhu
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1 Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1 Canada
| | - Jason Moffat
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1 Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1 Canada
| | - Philip M Kim
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1 Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1 Canada
- Department of Computer Science, University of Toronto, Toronto, ON M5S 3E1 Canada
| |
Collapse
|
18
|
Feld J, Barta SK, Schinke C, Braunschweig I, Zhou Y, Verma AK. Linked-in: design and efficacy of antibody drug conjugates in oncology. Oncotarget 2013; 4:397-412. [PMID: 23651630 PMCID: PMC3717303 DOI: 10.18632/oncotarget.924] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The use of antibody drug conjugates (ADCs) as targeted chemotherapies has successfully entered clinical practice and holds great promise. ADCs consist of an antibody and toxin-drug combined together via a chemical linker. While the antibody and drug are of vital importance in the direct elimination of cancer cells, more advanced linker technology was instrumental in the delivery of more potent drugs with fewer side effects. Here, we discuss the preclinical experience as well as clinical trials, with a specific emphasis on the clinical outcomes and side effects, in addition to linker strategies for five different ADCs, in order to describe different approaches in the development of this new class of anticancer agents. Brentuximab vedotin is approved for use in Hodgkin’s lymphoma and Trastuzumab emtansine is approved for breast cancer. Combotox, Inotuzumab Ozogamicin, and Moxetumomab Pasudotox are in various stages of clinical development and are showing significant efficacy in lymphoid malignancies. These ADCs illustrate the promise and future potential of targeted therapy for presently incurable malignancies.
Collapse
Affiliation(s)
- Jonathan Feld
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | | | | | |
Collapse
|
19
|
Sapra P, Shor B. Monoclonal antibody-based therapies in cancer: advances and challenges. Pharmacol Ther 2013; 138:452-69. [PMID: 23507041 DOI: 10.1016/j.pharmthera.2013.03.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 02/19/2013] [Indexed: 12/25/2022]
Abstract
Conventional anticancer therapeutics often suffer from lack of specificity, resulting in toxicities to normal healthy tissues and poor therapeutic index. Antibody-mediated delivery of anticancer drugs or toxins to tumor cells through tumor selective or overexpressed antigens is progressively being recognized as an effective strategy for increasing the therapeutic index of anticancer drugs. In this review we focus on three therapeutic modalities in the field of antibody-mediated targeting, including antibody-drug conjugates (ADCs), immunotoxins (ITs) and immunoliposomes (ILs). Design considerations for development of each of the above therapeutic modalities are discussed. Furthermore, an overview of ADCs, ITs or ILs approved for use in clinical oncology and those currently in clinical development is provided. Challenges encountered by the field of antibody-based targeting are discussed and concepts around development of the next generation of antibody therapeutics are presented.
Collapse
Affiliation(s)
- Puja Sapra
- Bioconjugates Discovery and Development, Oncology Research Unit, Pfizer Worldwide Research and Development, 401 North Middletown Road, Pearl River, NY, 10965, USA.
| | | |
Collapse
|
20
|
Abstract
Antibody-drug conjugates (ADCs) combine the cytotoxic potential of chemotherapeutic drugs with the specificity of monoclonal antibodies (mAbs). After many years of unfulfilled promise, the field of ADCs is experiencing resurgence as more is learned about each of the components of an ADC and how these components need to be combined to produce a successful therapeutic agent. Choosing an appropriate target for ADCs is a critical parameter that effects the efficacy, therapeutic window, and toxicity profile of ADCs. This review will focus on the concepts underlying the choice of the target, review specific current ADCs and their targets, and look to the future of ADCs.
Collapse
Affiliation(s)
- Rohan Mathur
- From the Holden Comprehensive Cancer Center and the Department of Internal Medicine, University of Iowa, Iowa City, IA
| | | |
Collapse
|
21
|
Robak T. Emerging monoclonal antibodies and related agents for the treatment of chronic lymphocytic leukemia. Future Oncol 2013; 9:69-91. [DOI: 10.2217/fon.12.157] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Monoclonal antibodies (mAbs) – rituximab, ofatumumab and alemtuzumab – have been approved for use in the therapy of chronic lymphocytic leukemia (CLL). Recently, a new generation of anti-CD20 mAbs has become available for preclinical studies and clinical trials. These antibodies were engineered to have augmented antitumor activity by increasing complement-dependent cytotoxicity, antibody-dependent cellular cytotoxicity and Fc-binding affinity for the low-affinity variants of the Fcγ receptor IIIa. The most promising mAb directed against CD20 is obinutuzumab (GA-101). mAbs directed against CD22, CD37 and CD40 have also shown some activity in CLL. In addition, small modular immunopharmaceuticals – TRU-015 (anti-CD20) and TRU-016 (anti-CD37) – that retain Fc-mediated effector functions have been developed and investigated in preclinical studies and clinical trials. Antibody–drug conjugates and recombinant immunotoxins are also being evaluated in lymphoid malignancies. Further studies will elucidate the role of these agents in the treatment of CLL.
Collapse
Affiliation(s)
- Tadeusz Robak
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Ul. Ciolkowskiego 2, Poland and Copernicus Memorial Hospital, 93-510 Lodz, Ul. Ciolkowskiego 2, Poland
| |
Collapse
|
22
|
Abstract
Despite progress in the treatment of B cell disorders, novel treatment approaches are still highly needed. CD19 is a pan-B cell marker that is recognized as a potential immunotherapy target for B cell disorders, including blood-borne malignancies and autoimmune diseases. Although initial attempts to target CD19 were unsuccessful, a new wave of investigational agents is currently in development. These agents are based on novel antibody-based technologies and formats that appear to better exploit CD19's therapeutic potential, and some promising clinical study data has already been reported. This review provides an overview and the rationale for the most advanced CD19-targeting programs in development.
Collapse
|
23
|
Abstract
INTRODUCTION Over a half a century ago, radiolabeled antibodies were shown to localize selectively in tissues based on the expression of unique antigens. Antibodies have since become the de facto targeting agent, even inspiring the development of non-antibody compounds for targeting purposes. AREAS COVERED In this article, we review various aspects of how antibodies are transforming the way cancer is being detected and treated, with the growing demand for unconjugated and many new antibody conjugates. While unconjugated antibodies continue to garner most of the attention, interest in new antibody drug conjugates and immunotoxins has expanded over the past few years. However, there continues to be active research with new radioimmunoconjugates for imaging and therapy, particularly with α-emitters, as well as antibody-targeted cytokines and other biological response modifiers. EXPERT OPINION The increasing number of new agents being developed and tested clinically suggests that antibody-targeted compounds will have an expanding role in the future.
Collapse
Affiliation(s)
- David M Goldenberg
- Center for Molecular Medicine and Immunology, 300 The American Road, Morris Plains, NJ 07950, USA
| | | |
Collapse
|
24
|
Barta SK, Zou Y, Schindler J, Shenoy N, Bhagat TD, Steidl U, Verma A. Synergy of sequential administration of a deglycosylated ricin A chain-containing combined anti-CD19 and anti-CD22 immunotoxin (Combotox) and cytarabine in a murine model of advanced acute lymphoblastic leukemia. Leuk Lymphoma 2012; 53:1999-2003. [PMID: 22448921 DOI: 10.3109/10428194.2012.679267] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The outcome for patients with refractory or relapsed acute lymphoblastic leukemia (ALL) treated with conventional therapy is poor. Immunoconjugates present a novel approach and have recently been shown to have efficacy in this setting. Combotox is a mixture of two ricin-conjugated monoclonal antibodies (RFB4 and HD37) directed against CD19 and CD22, respectively, and has shown activity in pediatric and adult ALL. We created a murine xenograft model of advanced ALL using the NALM/6 cell line to explore whether the combination of Combotox with the cytotoxic agent cytarabine (Ara-C) results in better outcomes. In our model the combination of both low- and high-dose Combotox and Ara-C resulted in significantly longer median survival. Sequential administration of Ara-C and Combotox, however, was shown to be superior to concurrent administration. These findings have led to a phase I clinical trial exploring this combination in adults with relapsed or refractory B-lineage ALL (ClinicalTrials.gov identifier NCT01408160).
Collapse
Affiliation(s)
- Stefan K Barta
- Albert Einstein College of Medicine, Montefiore Medical Center-Moses Division, Bronx, NY 10467, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The application of antibodies as therapeutic agents in the treatment of cancer now represents a significant proportion of the oncology drug arena. Despite this success, the ability to engineer and exploit antibodies in many different formats is ensuring that new avenues for their therapeutic application are constantly being examined. This review examines a selection of novel antibody-based therapeutic strategies that are currently in late preclinical and clinical evaluation.
Collapse
|
26
|
A comparison of the anti-tumor effects of a chimeric versus murine anti-CD19 immunotoxins on human B cell lymphoma and Pre-B acute lymphoblastic leukemia cell lines. Toxins (Basel) 2011; 3:409-19. [PMID: 22069716 PMCID: PMC3202829 DOI: 10.3390/toxins3040409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 03/30/2011] [Accepted: 03/30/2011] [Indexed: 11/30/2022] Open
Abstract
Precursor B cell acute lymphoblastic leukemia (pre-B ALL) affects five to six thousand adults and almost three thousand children every year. Approximately 25% of the children and 60% of the adults die from their disease, highlighting the need for new therapies that complement rather than overlap chemotherapy and bone marrow transplantation. Immunotherapy is a class of therapies where toxicities and mechanisms of action do not overlap with those of chemotherapy. Because CD19 is a B cell- restricted membrane antigen that is expressed on the majority of pre-B tumor cells, a CD19-based immunotherapy is being developed for ALL. In this study, the anti-tumor activities of immunotoxins (ITs) constructed by conjugating a murine monoclonal antibody (MAb), HD37, or its chimeric (c) construct to recombinant ricin toxin A chain (rRTA) were compared both in vitro using human pre-B ALL and Burkitt’s lymphoma cell lines and in vivo using a disseminated human pre-B ALL tumor cell xenograft model. The murine and chimeric HD37 IT constructs were equally cytotoxic to pre-B ALL and Burkitt’s lymphoma cells in vitro and their use in vivo resulted in equivalent increases in survival of SCID mice with human pre-B ALL tumors when compared with control mice.
Collapse
|
27
|
Schindler J, Gajavelli S, Ravandi F, Shen Y, Parekh S, Braunchweig I, Barta S, Ghetie V, Vitetta E, Verma A. A phase I study of a combination of anti-CD19 and anti-CD22 immunotoxins (Combotox) in adult patients with refractory B-lineage acute lymphoblastic leukaemia. Br J Haematol 2011; 154:471-6. [PMID: 21732928 PMCID: PMC3877839 DOI: 10.1111/j.1365-2141.2011.08762.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Novel agents are needed for patients with refractory and relapsed acute lymphoblastic leukaemia (ALL). Combotox is a 1:1 mixture of two immunotoxins (ITs), prepared by coupling deglycosylated ricin A chain (dgRTA) to monoclonal antibodies directed against CD22 (RFB4-dgRTA) and CD19 (HD37-dgRTA). Pre-clinical data demonstrated that Combotox was effective in killing both pre-B-ALL cell lines and cells from patients with pre-B ALL. A clinical study of paediatric patients in which 3 of 17 patients with ALL experienced complete remission, supported the preclinical work and motivated this study. This study was a Phase I, dose-escalation trial using Combotox in adults with refractory or relapsed B-lineage-ALL. A cycle consisted of three doses, with one dose given every other day. Dose levels were 3, 5, 6, 7 and 8 mg/m(2) per dose. Seventeen patients, aged 19-72 years, were enrolled in this multi-institution study. The maximum tolerated dose was 7 mg/m(2) /dose (21 mg/m(2) /cycle) and vascular leak syndrome was the dose-limiting toxicity. Two patients developed reversible grade 3 elevations in liver function tests. One patient achieved partial remission and proceeded to allogeneic stem cell transplantation. All patients with peripheral blasts experienced decreased blast counts following the administration of Combotox. Thus, Combotox can be safely administered to adults with refractory leukaemia.
Collapse
Affiliation(s)
- J. Schindler
- Cancer Immunobiology Center, University of Texas, Southwestern Medical Center, Dallas, TX
| | | | | | - Y. Shen
- Cancer Immunobiology Center, University of Texas, Southwestern Medical Center, Dallas, TX
| | - S. Parekh
- Albert Einstein College of Medicine, Bronx, NY
| | | | - S Barta
- Albert Einstein College of Medicine, Bronx, NY
| | - V. Ghetie
- Cancer Immunobiology Center, University of Texas, Southwestern Medical Center, Dallas, TX
| | - E. Vitetta
- Cancer Immunobiology Center, University of Texas, Southwestern Medical Center, Dallas, TX
| | - A. Verma
- Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
28
|
Challenges in developing bioanalytical assays for characterization of antibody–drug conjugates. Bioanalysis 2011; 3:677-700. [DOI: 10.4155/bio.11.30] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
With more than 34 targets being investigated and nearly 20 clinical trials at various phases of development, antibody–drug conjugates (ADCs) hold a lot of promise for improving oncological malignancy therapy. This therapeutic strategy designed to specifically or preferentially deliver a cytotoxic agent to tumor cells through conjugation to a monoclonal antibody is not new. Although this approach is relatively simple conceptually, the history of ADCs clearly attests to the high degree of complexity in their development. Each component of an ADC is important to achieve efficacy with minimal toxicity, and the ability to monitor this multicomponent therapeutic entity is deemed to be critical for their successful optimization. In this article we review the different bioanalytical strategies that have been implemented to characterize various ADCs and discuss the challenges and issues associated with these approaches.
Collapse
|
29
|
Delputte PL, Van Gorp H, Favoreel HW, Hoebeke I, Delrue I, Dewerchin H, Verdonck F, Verhasselt B, Cox E, Nauwynck HJ. Porcine sialoadhesin (CD169/Siglec-1) is an endocytic receptor that allows targeted delivery of toxins and antigens to macrophages. PLoS One 2011; 6:e16827. [PMID: 21359217 PMCID: PMC3040196 DOI: 10.1371/journal.pone.0016827] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 01/13/2011] [Indexed: 12/30/2022] Open
Abstract
Sialoadhesin is exclusively expressed on specific subpopulations of macrophages. Since sialoadhesin-positive macrophages are involved in inflammatory autoimmune diseases, such as multiple sclerosis, and potentially in the generation of immune responses, targeted delivery of drugs, toxins or antigens via sialoadhesin-specific immunoconjugates may prove a useful therapeutic strategy. Originally, sialoadhesin was characterized as a lymphocyte adhesion molecule, though recently its involvement in internalization of sialic acid carrying pathogens was shown, suggesting that sialoadhesin is an endocytic receptor. In this report, we show that porcine sialoadhesin-specific antibodies and F(ab')2 fragments trigger sialoadhesin internalization, both in primary porcine macrophages and in cells expressing recombinant porcine sialoadhesin. Using chemical inhibitors, double immunofluorescence stainings and dominant-negative constructs, porcine sialoadhesin internalization was shown to be clathrin- and Eps15-dependent and to result in targeting to early endosomes but not lysosomes. Besides characterizing the sialoadhesin endocytosis mechanism, two sialoadhesin-specific immunoconjugates were evaluated. We observed that porcine sialoadhesin-specific immunotoxins efficiently kill sialoadhesin-expressing macrophages. Furthermore, porcine sialoadhesin-specific albumin immunoconjugates were shown to be internalized in macrophages and immunization with these immunoconjugates resulted in a rapid and robust induction of albumin-specific antibodies, this compared to immunization with albumin alone. Together, these data expand sialoadhesin functionality and show that it can function as an endocytic receptor, a feature that cannot only be misused by sialic acid carrying pathogens, but that may also be used for specific targeting of toxins or antigens to sialoadhesin-expressing macrophages.
Collapse
Affiliation(s)
- Peter L Delputte
- Laboratory of Virology, Department of Virology, Parasitology, and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
IVIg modulates BCR signaling through CD22 and promotes apoptosis in mature human B lymphocytes. Blood 2010; 116:1698-704. [DOI: 10.1182/blood-2009-12-261461] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Among various mechanisms for interactions with B cells, intravenous immunoglobulin (IVIg) may operate through the insertion of its Fc part into the Fc-γ receptor, or the binding of its sialic acid (SA)–bearing glycans to the negatively regulating CD22 lectin. It appeared that IVIg reduces B lymphocyte viability in a dose- and time-dependent manner. Furthermore, we show by confocal microscopy that SA-positive IgG, but not SA-negative IgG bind to CD22. This interaction reduces the strength of B-cell receptor–mediated signaling trough down-regulating tyrosine phosphorylation of Lyn and the B-cell linker proteins, and up-regulating phospholipase Cγ2 activation. This cascade resulted in a sustained activation of Erk 1/2 and arrest of the cell cycle at the G1 phase. These changes may be accounted for the efficacy of IVIg in autoimmune diseases.
Collapse
|
31
|
Traini R, Ben-Josef G, Pastrana DV, Moskatel E, Sharma AK, Antignani A, Fitzgerald DJ. ABT-737 overcomes resistance to immunotoxin-mediated apoptosis and enhances the delivery of pseudomonas exotoxin-based proteins to the cell cytosol. Mol Cancer Ther 2010; 9:2007-15. [PMID: 20587662 DOI: 10.1158/1535-7163.mct-10-0257] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pseudomonas exotoxin (PE)-based immunotoxins (antibody-toxin fusion proteins) have achieved frequent complete remissions in patients with hairy cell leukemia but far fewer objective responses in other cancers. To address possible mechanisms of resistance, we investigated immunotoxin activity in a model system using the colon cancer cell line, DLD1. Despite causing complete inhibition of protein synthesis, there was no evidence that an immunotoxin targeted to the transferrin receptor caused apoptosis in these cells. To address a possible protective role of prosurvival Bcl-2 proteins, the BH3-only mimetic, ABT-737, was tested alone or in combination with immunotoxins. Neither the immunotoxin nor ABT-737 alone activated caspase 3, whereas the combination exhibited substantial activation. In other epithelial cell lines, ABT-737 enhanced the cytotoxicity of PE-related immunotoxins by as much as 20-fold, but did not enhance diphtheria toxin or cycloheximide. Because PE translocates to the cytosol via the endoplasmic reticulum (ER) and the other toxins do not, ABT-737-mediated effects on the ER were investigated. ABT-737 treatment stimulated increased levels of ER stress response factor, ATF4. Because of its activity in the ER, ABT-737 might be particularly well suited for enhancing the activity of immunotoxins that translocate from the ER to the cell cytosol.
Collapse
Affiliation(s)
- Roberta Traini
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Department of Health and Human Services, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
A phase 1 study of Combotox in pediatric patients with refractory B-lineage acute lymphoblastic leukemia. J Pediatr Hematol Oncol 2009; 31:936-41. [PMID: 19875969 DOI: 10.1097/mph.0b013e3181bdf211] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Acute lymphoblastic leukemia (ALL) is the most common cancer in children. Combotox is a 1:1 mixture of RFB4-dgA and HD37-dgA which are immunotoxins that target the CD22 and CD19 antigens, respectively. Combotox has different toxicities and targets than chemotherapy and is, thus, a new candidate for the treatment of patients with relapsed ALL. Preclinical data have demonstrated which Combotox is effective in killing pre-B-ALL cell lines and cells from patients with pre-B ALL. METHODS We designed and conducted a Phase 1 dose-escalation study using Combotox in children with refractory or relapsed B-lineage-ALL. Seventeen patients aged 1 to 16 years were enrolled in this multi-institution study. They were treated at 4-dose levels: 2 mg/m2, 4 mg/m2, 5 mg/m2, and 6 mg/m2. RESULTS The maximum tolerated dose was 5 mg/m2 and graft versus host disease defined the maximum tolerated dose. Three patients experienced complete remission. Six additional patients experienced a decrease of >95% in their peripheral blood blast counts, and 1 patient experienced a decrease of 75%. CONCLUSIONS Combotox can be safely administered to children with refractory leukemia. It has clinically important anticancer activity as a single agent. The recommended dose for future studies is 5 mg/m2/dose.
Collapse
|
33
|
Dijoseph JF, Dougher MM, Armellino DC, Evans DY, Damle NK. Therapeutic potential of CD22-specific antibody-targeted chemotherapy using inotuzumab ozogamicin (CMC-544) for the treatment of acute lymphoblastic leukemia. Leukemia 2007; 21:2240-5. [PMID: 17657218 DOI: 10.1038/sj.leu.2404866] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
CMC-544 (inotuzumab ozogamicin) is a CD22-specific cytotoxic immunoconjugate of calicheamicin intended for the treatment of B-lymphoid malignancies. This preclinical study investigated antitumor activity of CMC-544 against CD22+ acute lymphoblastic leukemia (ALL). CMC-544 inhibited in vitro growth of ALL cell lines more potently than that of Ramos B-lymphoma cells. When administered to nude mice with established sc xenografts of REH ALL, CMC-544 caused dose-dependent inhibition of xenograft growth producing complete tumor regression and cures in tumor-bearing mice at the highest dose of 160 microg/kg of conjugated calicheamicin. In contrast, a nonbinding control conjugate was 16-fold less effective than CMC-544 in inhibiting growth of REH ALL xenografts. When REH cells were injected intravenously in scid mice and allowed to disseminate systemically, mice developed hind-limb paralysis that was effectively prevented by treatment with CMC-544. Flow cytometric analysis of cells recovered from the bone marrow from mice with disseminated disease verified the presence of engrafted ALL cells. Significantly reduced numbers of ALL cells were recovered from the bone marrow of CMC-544-treated mice than from vehicle-treated mice with disseminated disease. The anti-leukemia activity of CMC-544 demonstrated here further supports clinical evaluation of CMC-544 for the treatment of CD22+ leukemia.
Collapse
Affiliation(s)
- J F Dijoseph
- Oncology Discovery Research, Wyeth Research, Pearl River, NY 10965, USA
| | | | | | | | | |
Collapse
|
34
|
Herrera L, Stanciu-Herrera C, Morgan C, Ghetie V, Vitetta ES. Anti-CD19 immunotoxin enhances the activity of chemotherapy in severe combined immunodeficient mice with human pre-B acute lymphoblastic leukemia. Leuk Lymphoma 2007; 47:2380-7. [PMID: 17107913 DOI: 10.1080/10428190600821989] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The anti-CD19 immunotoxin (IT) (HD37-dgRTA) is effective in killing B-lineage leukemia cells and in curing severe combined immunodeficient mice with acute lymphoblastic leukemia. The present study aimed to identify effective combinations of HD37-dgRTA and chemotherapeutic agents. The in-vitro cytotoxicity assays demonstrate that the combination of HD37-dgRTA and either daunorubicin or vincristine is effective. The in-vivo experiments using HD37-dgRTA with vincristine prolonged the survival of mice compared to the chemotherapeutic agent or IT (90.7 vs. 147.1 days). Also, 80% of the mice treated with IT plus vincristine were long-term survivors.
Collapse
Affiliation(s)
- L Herrera
- Department of Pediatrics, Division of Hematology/Oncology, Temple University Children's Medical Center, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | | | | | | | | |
Collapse
|
35
|
Gökbuget N, Hoelzer D. Novel antibody-based therapy for acute lymphoblastic leukaemia. Best Pract Res Clin Haematol 2006; 19:701-13. [PMID: 16997178 DOI: 10.1016/j.beha.2006.06.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In recent decades rapid improvements in the results of treatment of adult acute lymphoblastic leukaemia (ALL) have been achieved. This progress has been based mainly on intensification and optimization of chemotherapy, risk-adapted use of stem-cell transplantation, and improved supportive care. However, results in adult patients are still considerably inferior to those in paediatric ALL, and a barrier to further intensification of chemotherapy appears to have been reached regarding toxicity. More recently, the most significant progress has therefore been achieved by individualized and targeted therapy - for example, treatment with monoclonal antibodies (MoAbs). ALL blast cells express a variety of specific antigens which may serve as targets: e.g. CD19, CD20, CD22, CD33, and CD52. Most experience is available for anti-CD20 (rituximab). In ALL, rituximab is combined with chemotherapy mainly in mature B-ALL and Burkitt's lymphoma, and interim results are very promising. Recently studies with rituximab have also been initiated in B-precursor ALL. Other antibodies would be of interest due to a high rate of antigen (e.g. CD19) expression in ALL, but these are not yet generally available. Clinical application in smaller studies or case reports was reported for anti-CD52 and anti-CD33. Overall it can be stated that MoAb therapy in ALL is a promising treatment approach. Monotherapy with MoAbs in relapsed ALL has also occasionally achieved responses, but greater effects can be expected from combination with chemotherapy and treatment in the state of minimal residual disease. Details of these regimens - required level of antigen expression, timing, schedule, dosage and stage of disease - remain to be defined.
Collapse
Affiliation(s)
- Nicola Gökbuget
- J W Goethe University Hospital, Medical Clinic III, Theodor Stern Kai 7, 60590 Frankfurt, Germany.
| | | |
Collapse
|
36
|
Eisenberg R, Albert D. B-cell targeted therapies in rheumatoid arthritis and systemic lupus erythematosus. ACTA ACUST UNITED AC 2006; 2:20-7. [PMID: 16932648 DOI: 10.1038/ncprheum0042] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Accepted: 09/09/2005] [Indexed: 11/08/2022]
Abstract
B cells appear to have a central role in the immunopathogenesis of rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE); both autoantibody production and B-cell anomalies are characteristic of these diseases. With the recent availability of biologic agents that can deplete B cells or block their function in vivo, it has become possible to target B cells therapeutically. Evidence strongly suggests that novel B-cell targeting agents are effective. In addition, the mechanistic specificity of B-cell targeted approaches, combined with the ability to test them in large randomized controlled trials, will provide an unprecedented opportunity to study the precise roles of B cells in the immunopathogenesis of RA and SLE. The largest volume of information is available for rituximab, a chimeric monoclonal antibody that depletes B cells by binding to the CD20 cell-surface antigen. Information from multiple investigator-sponsored trials and from off-label use suggests efficacy of this antibody in RA, SLE, and other autoimmune syndromes. Randomized controlled trials have also provided solid evidence for the efficacy of rituximab in RA and are ongoing in SLE. Other therapeutic agents supported by controlled data include cytotoxic T-lymphocyte-associated protein 4 immunoglobulin and antibodies against the interleukin-6 receptor and the B-cell survival molecule BLyS. Additional agents and targets are in earlier stages of development. The concerns about infectious complications have so far not proven to be justified. We can reasonably expect important advances in the understanding and treatment of RA and SLE in the next 5-10 years, as B-cell targeting methods become more widespread and sophisticated.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Murine-Derived
- Antigens, CD/immunology
- Antigens, CD20/immunology
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/immunology
- Autoantibodies/immunology
- Autoimmune Diseases/immunology
- B-Lymphocytes/immunology
- Humans
- Leukocyte Reduction Procedures/methods
- Lupus Erythematosus, Systemic/drug therapy
- Lupus Erythematosus, Systemic/immunology
- Peptides, Cyclic/immunology
- Rituximab
- Sialic Acid Binding Ig-like Lectin 2/immunology
Collapse
Affiliation(s)
- Robert Eisenberg
- Medicine and Pathology, University of Pennsylvania, School of Medicine, Philadelphia 19104-6160, USA.
| | | |
Collapse
|
37
|
Vallera DA, Brechbiel MW, Burns LJ, Panoskaltsis-Mortari A, Dusenbery KE, Clohisy DR, Vitetta ES. Radioimmunotherapy of CD22-expressing Daudi tumors in nude mice with a 90Y-labeled anti-CD22 monoclonal antibody. Clin Cancer Res 2006; 11:7920-8. [PMID: 16278417 DOI: 10.1158/1078-0432.ccr-05-0725] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A study was undertaken to investigate the efficacy of a high affinity, rapidly internalizing anti-CD22 monoclonal antibody for selectively delivering high-energy (90)Y radioactivity to B lymphoma cells in vivo. The antibody, RFB4, was readily labeled with (90)Y using the highly stable chelate, 1B4M-diethylenetriaminepentaacetic acid. Labeled RFB4 selectively bound to the CD22(+) Burkitt's lymphoma cell line Daudi, but not to CD22(-) control cells in vitro as compared with a control antibody, and was more significantly bound (P = 0.03) to Daudi solid tumors growing in athymic nude mice. Biodistribution data correlated well with the antitumor effect. The therapeutic effect of (90)Y-labeled anti-CD22 (Y22) was dose-dependent, irreversible, and the best results were achieved in mice receiving a single i.p. dose of 196 microCi. These mice displayed a significantly better (P < 0.01) antitumor response than control mice and survived >200 days with no evidence of tumor. Histology studies showed no significant injury to kidney, liver, or small intestine. Importantly, tumor-bearing mice treated with Y22 had no radiologic bone marrow damage compared with tumor-bearing mice treated with the control-labeled antibody arguing that the presence of CD22(+) tumor protected mice from bone marrow damage. When anti-CD22 radioimmunotherapy was compared to radioimmunotherapy with anti-CD19 and anti-CD45 antibodies, all three antibodies distributed significantly high levels of radioisotope to flank tumors in vivo compared with controls (P < 0.05), induced complete remission, and produced long-term, tumor-free survivors. These findings indicate that anti-CD22 radioimmunotherapy with Y22 is highly effective in vivo against CD22-expressing malignancies and may be a useful therapy for drug-refractory B cell leukemia patients.
Collapse
Affiliation(s)
- Daniel A Vallera
- Department of Therapeutic Radiology-Radiation Oncology, University of Minnesota Cancer Center, Minneapolis, 55455, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Over the last two decades cancer cure rates have not gone up as expected, and the effectiveness of chemotherapy has reached a plateau. This has prompted a search for targeted therapies with higher efficacy and lesser toxicities. Monoclonal antibodies against cancer cells offer targeted therapies with little or no toxicities against normal tissues. In this review we will discuss the concepts behind the development of monoclonal antibodies in cancer and their present status in the clinic. Specifically, we will discuss the clinical use of Rituximab (RituxanO), Trastuzumab (HerceptinO) and Bevacizumab (AvastinO) in various cancers and the key clinical trials that have led to their incorporation in cancer therapeutics.
Collapse
Affiliation(s)
- Mani Mohindru
- Albert Einstein College of Medicine Cancer Center, Bronx, New York, USA
| | | |
Collapse
|
39
|
Vallera DA, Todhunter DA, Kuroki DW, Shu Y, Sicheneder A, Chen H. A bispecific recombinant immunotoxin, DT2219, targeting human CD19 and CD22 receptors in a mouse xenograft model of B-cell leukemia/lymphoma. Clin Cancer Res 2005; 11:3879-88. [PMID: 15897589 DOI: 10.1158/1078-0432.ccr-04-2290] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A novel bispecific single-chain fusion protein, DT2219, was assembled consisting of the catalytic and translocation domains of diphtheria toxin (DT(390)) fused to two repeating sFv subunits recognizing CD19 and CD22 and expressed in Escherichia coli. Problems with yield, purity, and aggregation in the refolding step were solved by incorporating a segment of human muscle aldolase and by using a sodium N-lauroyl-sarcosine detergent-based refolding procedure. Problems with reduced efficacy were addressed by combining the anti-CD19 and anti-CD22 on the same single-chain molecule. DT2219 had greater anticancer activity than monomeric or bivalent immunotoxins made with anti-CD19 and anti-CD22 sFv alone and it showed a higher level of binding to patient leukemia cells and to CD19(+)CD22(+) Daudi or Raji cells than did anti-CD19 and anti-CD22 parental monoclonal antibodies. The resulting DT2219, mutated to enhance its avidity, was cytotoxic to Daudi cells in vitro (IC(50) = 0.3 nmol/L). In vivo, DT2219 was effective in a flank tumor therapy model in which it significantly inhibited tumor growth (P < 0.05) and in a systemic model in which it significantly prolonged survival of severe combined immunodeficient mice with established Daudi (P < 0.008) compared with controls. DT2219 has broader reactivity in recognizing B-cell malignancies, has more killing power, and requires less toxin than using individual immunotoxin, which warrants further investigation as a new drug for treating B leukemia/lymphoma.
Collapse
MESH Headings
- Animals
- Antibodies
- Antigens, CD/immunology
- Antigens, CD19/immunology
- Antigens, Differentiation, B-Lymphocyte/immunology
- Cell Adhesion Molecules/immunology
- Cell Death
- Diphtheria Toxin/immunology
- Escherichia coli/genetics
- Escherichia coli/immunology
- Female
- Immunotoxins/immunology
- Immunotoxins/pharmacology
- Lectins/immunology
- Leukemia, B-Cell
- Lymphoma, B-Cell
- Mice
- Mice, Nude
- Mice, SCID
- Molecular Conformation
- Sialic Acid Binding Ig-like Lectin 2
- Survival Analysis
- Transplantation, Heterologous
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Daniel A Vallera
- Department of Therapeutic Radiology-Radiation Oncology, Section on Molecular Cancer Therapeutics, University of Minnesota Cancer Center, Minneapolis, Minnesota, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
Animal glycan-recognizing proteins can be broadly classified into two groups-lectins (which typically contain an evolutionarily conserved carbohydrate-recognition domain [CRD]) and sulfated glycosaminoglycan (SGAG)-binding proteins (which appear to have evolved by convergent evolution). Proteins other than antibodies and T-cell receptors that mediate glycan recognition via immunoglobulin (Ig)-like domains are called "I-type lectins." The major homologous subfamily of I-type lectins with sialic acid (Sia)-binding properties and characteristic amino-terminal structural features are called the "Siglecs" (Sia-recognizing Ig-superfamily lectins). The Siglecs can be divided into two groups: an evolutionarily conserved subgroup (Siglecs-1, -2, and -4) and a CD33/Siglec-3-related subgroup (Siglecs-3 and -5-13 in primates), which appear to be rapidly evolving. This article provides an overview of historical and current information about the Siglecs.
Collapse
Affiliation(s)
- Ajit Varki
- Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan.
| | | |
Collapse
|
41
|
Bassan R, Gatta G, Tondini C, Willemze R. Adult acute lymphoblastic leukaemia. Crit Rev Oncol Hematol 2005; 50:223-61. [PMID: 15182827 DOI: 10.1016/j.critrevonc.2003.11.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2003] [Indexed: 11/22/2022] Open
Abstract
Acute lymphoblastic leukaemia (ALL) in adults is a relatively rare neoplasm with a curability rate around 30% at 5 years. This consideration makes it imperative to dissect further the biological mechanisms of disease, in order to selectively implement an hitherto unsatisfactory success rate. The recognition of discrete ALL subtypes (some of which deserve specific therapeutic approaches, like T-lineage ALL (T-ALL) and mature B-lineage ALL (B-ALL)) is possible through an accurate combination of cytomorphology, immunophenotytpe and cytogenetic assays and has been a major result of clinical research studies conducted over the past 20 years. Two-three major prognostic groups are now easily identifiable, with a survival probability ranging from <10 to 20% (Philadelphia-positive ALL) to about 50-60% (low-risk T-ALL and selected patients with B-lineage ALL). These issues are extensively reviewed and form the basis of current knowledge. The second major point relates to the emerging importance of studies that reveal a dysregulated gene activity and its clinical counterpart. It is now clear that prognostication is a complex matter ranging from patient-related issues to cytogenetics to molecular biology, including the evaluation of minimal residual disease (MRD) and possibly gene array tests. On these bases, the role of a correct, highly personalised therapeutic choice will soon become fundamental. Therapeutic progress may be obtainable through a careful integration of chemotherapy, stem cell transplantation, and the new targeted treatments with highly specific metabolic inhibitors and humanised monoclonal antibodies.
Collapse
|
42
|
Edwards JCW, Cambridge G. Prospects for B-cell-targeted therapy in autoimmune disease. Rheumatology (Oxford) 2004; 44:151-6. [PMID: 15509628 DOI: 10.1093/rheumatology/keh446] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- J C W Edwards
- University College London Centre for Rheumatology, UK
| | | |
Collapse
|
43
|
Johnson CR, Jiffar T, Fischer UM, Ruvolo PP, Jarvis WD. Requirement for SAPK-JNK signaling in the induction of apoptosis by ribosomal stress in REH lymphoid leukemia cells. Leukemia 2003; 17:2140-8. [PMID: 12970763 DOI: 10.1038/sj.leu.2403132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The present studies examined performance of SAPK cascades and apoptotic commitment following ribosomal trauma in REH lymphoid leukemia cells. Ribostatic insults included disruption of ribosomal activity by mechanistically dissimilar agents such as blasticidin-S (BCS) (which binds 28S-rRNA to block peptidyl bond formation), kasugamycin (KSM) (which binds 18S-rRNA to prevent translational initiation), and cycloheximide (CHX) (which blocks A-site to P-site translocation of peptidyl-tRNA). Exposure of REH cells to BCS elicited DNA degradation and apoptotic cytolysis. BCS stimulated JNK1/JNK2 and p38, and their shared targets c-Jun and ATF2. Inhibition of JNK1/JNK2 (but not of p38) antagonized blasticidin-induced apoptosis, whereas targeting alternative ribosomal sites with KSM or CHX limited translation, but failed to activate the SAPK cascade or initiate apoptosis. Our findings indicate that interference with 28S-rRNA by BCS initiates apoptosis in REH cells through recruitment of SAPK-JNK signaling. Disparities between the lethal actions of BCS, KSM, and CHX appear to reflect established differences in the subribosomal targets of these agents. We propose that the SAPK cascade comprises an essential mechanism for the transduction of specific lethal stress signals emanating from active ribosomes, and that interference with the 28S-rRNA, rather than the peptidyl transfer center of the large subunit, is critical to apoptotic commitment.
Collapse
Affiliation(s)
- C R Johnson
- Department of Integrative Biology & Pharmacology, University of Texas Health Sciences Center-Houston, Houston, TX, USA
| | | | | | | | | |
Collapse
|
44
|
Silver K, Cornall RJ. Isotype Control of B Cell Signaling. Sci Signal 2003. [DOI: 10.1126/scisignal.1842003pe21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
45
|
Silver K, Cornall RJ. Isotype control of B cell signaling. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2003; 2003:pe21. [PMID: 12771436 DOI: 10.1126/stke.2003.184.pe21] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The B cell receptor (BCR) consists of an antigen-binding membrane immunoglobulin (mIg) associated with the CD79alpha and CD79beta heterodimer. Naïve B cells express the IgM and IgD isotypes, which have very short cytoplasmic tails and therefore depend on CD79alpha and CD79beta for signal transduction. After antigenic stimulation, B cells undergo isotype switching to yield IgG, IgE, or IgA. Recent research suggests that the ability of the B cell coreceptor CD22 to regulate BCR signaling depends on the isotype of the mIg cytoplasmic tail. Cell lines that express a BCR with the cytoplasmic tail from IgG, the isotype found in memory B cells, are not subject to CD22 regulation, whereas cell lines that express BCRs with IgM cytoplasmic tails are subject to CD22 regulation. Moreover, stimulation through BCRs containing an IgG cytoplasmic tail causes increased numbers of antigen-specific clones to accumulate. These observations are a valuable step toward understanding the difference in B cell signaling between na ve and memory cells. Here, we discuss the implications of these findings for CD22 regulation and signaling through the mIgG-containing BCR.
Collapse
Affiliation(s)
- Karlee Silver
- Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | | |
Collapse
|
46
|
John B, Herrin BR, Raman C, Wang YN, Bobbitt KR, Brody BA, Justement LB. The B cell coreceptor CD22 associates with AP50, a clathrin-coated pit adapter protein, via tyrosine-dependent interaction. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:3534-43. [PMID: 12646615 DOI: 10.4049/jimmunol.170.7.3534] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The B cell coreceptor CD22 plays an important role in regulating signal transduction via the B cell Ag receptor. Studies have shown that surface expression of CD22 can be modulated in response to binding of ligand (i.e., mAb). Thus, it is possible that alterations in the level of CD22 expression following binding of natural ligand(s) may affect its ability to modulate the Ag receptor signaling threshold at specific points during B cell development and differentiation. Therefore, it is important to delineate the physiologic mechanism by which CD22 expression is controlled. In the current study, yeast two-hybrid analysis was used to demonstrate that CD22 interacts with AP50, the medium chain subunit of the AP-2 complex, via tyrosine-based internalization motifs in its cytoplasmic domain. This interaction was further characterized using yeast two-hybrid analysis revealing that Tyr(843) and surrounding amino acids in the cytoplasmic tail of CD22 comprise the primary binding site for AP50. Subsequent studies using transfectant Jurkat cell lines expressing wild-type or mutant forms of CD22 demonstrated that either Tyr(843) or Tyr(863) is sufficient for mAb-mediated internalization of CD22 and that these motifs are involved in its interaction with the AP-2 complex, as determined by coprecipitation of alpha-adaptin. Finally, experiments were performed demonstrating that treatment of B cells with either intact anti-Ig Ab or F(ab')(2) blocks ligand-mediated internalization of CD22. In conclusion, these studies demonstrate that internalization of CD22 is dependent on its association with the AP-2 complex via tyrosine-based internalization motifs.
Collapse
MESH Headings
- Adaptor Protein Complex 2/genetics
- Adaptor Protein Complex 2/metabolism
- Adaptor Protein Complex mu Subunits/genetics
- Adaptor Protein Complex mu Subunits/metabolism
- Amino Acid Motifs/genetics
- Animals
- Antibodies, Monoclonal/metabolism
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/immunology
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Cell Adhesion Molecules
- Clathrin/metabolism
- Clathrin/physiology
- Cross-Linking Reagents/metabolism
- Endocytosis/genetics
- Endocytosis/immunology
- Humans
- Jurkat Cells
- Lectins/antagonists & inhibitors
- Lectins/genetics
- Lectins/immunology
- Lectins/metabolism
- Mice
- Mice, Inbred C57BL
- Protein Binding/genetics
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Sialic Acid Binding Ig-like Lectin 2
- Signal Transduction/genetics
- Signal Transduction/immunology
- Spleen/cytology
- Spleen/immunology
- Spleen/metabolism
- Transfection
- Tumor Cells, Cultured
- Tyrosine/genetics
- Tyrosine/metabolism
- Tyrosine/physiology
Collapse
Affiliation(s)
- BinuJoy John
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Herrera L, Yarbrough S, Ghetie V, Aquino DB, Vitetta ES. Treatment of SCID/human B cell precursor ALL with anti-CD19 and anti-CD22 immunotoxins. Leukemia 2003; 17:334-8. [PMID: 12592332 DOI: 10.1038/sj.leu.2402790] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2002] [Accepted: 09/11/2002] [Indexed: 11/08/2022]
Abstract
The anti-CD19 (HD37-dgRTA) and anti-CD22 (RFB4-dgRTA) immunotoxins (ITs) are murine IgG(1) monoclonal antibodies (Mabs) conjugated to a deglycosylated ricin A chain (dgRTA). They are effective in killing B-lineage non-Hodgkin's lymphoma (NHL) cells in vitro, in vivo and in adult patients with B-lineage NHL. The potential of these agents for the treatment of childhood B-precursor acute lymphoblastic leukemia (ALL) is unknown. The anti-CD19 and anti-CD22 ITs should have anti-tumor activity against childhood B-lineage ALL since both target antigens are expressed on the surface of these cells. We have previously shown that, in vitro these two ITs selectively kill leukemia cells obtained from children with leukemia. To evaluate the efficacy of our ITs in an in vivo model we injected the human pre-B ALL cell line, NALM-6-UM1, into severe combined immunodeficient (SCID) mice. We tested the ability of two ITs to prolong survival or cure mice of both early and advanced tumors. In early disease, treatment with HD37-dgRTA, RFB4-dgRTA, or Combotox (an equimolar concentration of the two ITs) significantly improved their survival. In advanced disease, treatment with RFB4-dgRTA or Combotox significantly improved survival. Overall there were 10 long-term survivors who were cured, as determined by survival beyond 150 days with no evidence of disease as determined by polymerase chain reaction (PCR) analysis.
Collapse
Affiliation(s)
- L Herrera
- Department of Pediatrics, Section of Hematology/Oncology, Scott and White Memorial Hospital/Texas A&M University Health Sciences Center, Temple, TX 76508, USA
| | | | | | | | | |
Collapse
|
48
|
Ohba H, Bakalova R, Muraki M. Cytoagglutination and cytotoxicity of Wheat Germ Agglutinin isolectins against normal lymphocytes and cultured leukemic cell lines--relationship between structure and biological activity. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1619:144-50. [PMID: 12527110 DOI: 10.1016/s0304-4165(02)00479-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The relationships between degree of lectin-cell binding, cytotoxicity and cytoagglutinating activity of three Wheat Germ Agglutinin isolectins (WGA-1, WGA-2, WGA-3) against normal lymphocytes and cultured leukemic cell lines (Jurkat, MOLT-4, Raji, Daudi, K-562) were studied. All WGA-isolectins interacted in a similar degree with normal lymphocytes, while in the case of leukemic cells, the degree of isolectin-cell binding increased in the order: WGA-1< or =WGA-3<WGA-2 at isolectin concentrations 0.5 microM and higher, and WGA-3<WGA-2< or =WGA-1 at 0.25 microM isolectin concentration. The WGA interacted in higher degree with Jurkat, Raji, Daudi and K-562, followed by MOLT-4 and normal lymphocytes. The velocity of cytoagglutination in the presence of 0.25 microM WGA-isolectins increased in the order: WGA-3<WGA-2< or =WGA-1, and was better expressed in Jurkat, Raji, Daudi and K-562, followed by MOLT-4 and normal lymphocytes. The cytotoxicity of isolectins was very well expressed against Jurkat, MOLT-4, Raji and Daudi, and less expressed against K-562 and normal lymphocytes. In the case of leukemic cells, the cytotoxic effect of WGA-isolectins increased in the order: WGA-3<WGA-2=WGA-1. A very good positive correlation was determined between velocity of cytoagglutination and degree of lectin-cell binding (r=0.77, P<0.001). A good inverse correlation was found between cytotoxicity and degree of lectin-cell binding (r=-0.34, P<0.001), and poor correlation was observed between cytotoxicity and cytoagglutinating activity of WGA-isolectins (r=0.16, P<0.01). The results suggest that the WGA-isolectins, structurally distinguishable in only several amino acid sequences, interacted in different degrees with leukemic cells and manifested different cytoagglutinating and cytotoxic activity.
Collapse
Affiliation(s)
- Hideki Ohba
- Natural Substance-Composed Materials Group, Institute for Structural and Engineering Materials, National Institute of Advanced Industrial Science and Technology, AIST-Kyushu, 807-1 Shuku, Tosu, Saga, Kyushu 841-0052, Japan.
| | | | | |
Collapse
|
49
|
Thomas DA, Cortes J, Kantarjian HM. New agents in the treatment of acute lymphocytic leukaemia. Best Pract Res Clin Haematol 2002; 15:771-90. [PMID: 12617876 DOI: 10.1053/beha.2003.0234] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The overall prognosis of adult patients with acute lymphocytic leukaemia (ALL) has improved significantly over the past few decades. Combined modality strategies (e.g. chemotherapy used with targeted therapies such as monoclonal antibodies or tyrosine kinase inhibitors) may improve long-term disease-free survival. Still, most patients succumb to complications of disease progression, with current long-term disease-free survival rates of 30-45% overall. Thus, either new strategies or refinements of old ones are needed to improve the long-term prognosis. An increasing number of unique active new chemotherapeutic and biological agents are available for study. This chapter reviews new agents with the potential to be incorporated into therapeutic strategies for the treatment of ALL.
Collapse
Affiliation(s)
- Deborah A Thomas
- Department of Leukemia, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd, Unit 428, Houston, TX, 77030, USA.
| | | | | |
Collapse
|
50
|
Ma D, McDevitt MR, Barendswaard E, Lai L, Curcio MJ, Pellegrini V, Brechbiel MW, Scheinberg DA. Radioimmunotherapy for model B cell malignancies using 90Y-labeled anti-CD19 and anti-CD20 monoclonal antibodies. Leukemia 2002; 16:60-6. [PMID: 11840264 DOI: 10.1038/sj.leu.2402320] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2001] [Accepted: 07/19/2001] [Indexed: 11/09/2022]
Abstract
In recent years, radioimmunotherapy (RIT) with beta(-) particle emitting radionuclides targeting the CD20 antigen on B cells in the treatment of non-Hodgkin's lymphoma has provided the most compelling human clinical data for the success of RIT. CD19, like CD20, is an antigen expressed on the surface of cells of the B lineage, and CD19 may provide an alternative target for radioimmunotherapy of B cell neoplasms. CD19 has been largely overlooked as a target for conventional 131I RIT, because the antigen rapidly internalizes upon binding of antibody, resulting in catabolism and significant release of 131I. Such modulation may be an advantage to RIT with radiometals such as 90Y, 177Lu, 213Bi and 225Ac. Herein, we have compared beta(-) particle RIT with antibodies targeting either CD19 or CD20. The anti-CD19 and anti-CD20 antibodies, B4 or C2B8, respectively, were appended with the SCN-CHX-A''-DTPA bifunctional chelating agent and labeled with 90Y. In the tumor model used, there were three times as many CD20 target sites on lymphoma cells as compared to CD19 sites (62000 vs 20000 binding sites, respectively). We compared the efficacy of the 90Y-labeled antibodies to reduce lymphoma in a nude mouse xenograft solid tumor model, after measurable lymphoma appeared. Reduction in tumor size began at day 3 in all three 90Y-treated groups, but tumor began to recur in many animals 9 days after the treatments. There was one cure in each specific treatment group. In contrast, the tumor in the two control groups showed no regression. There was a significant prolongation of median survival time from xenograft (P < 0.0001) in all the 90Y-labeled antibody construct-treated groups (32 days for 0.15 mCi 90Y-B4; 26 days for 0.20 mCi 90Y-C2B8, and 23 days for 0.15 mCi 90Y-C2B8) in comparison to the two control groups (11 days for 0.02 mg of C2B8 and 9 days for untreated growth controls). Specificity of the radioimmunotherapy was also shown. In conclusion, 90Y-labeled anti-CD19 antibody has efficacy comparable to 90Y-labeled anti-CD20 antibody in the treatment of mice bearing human lymphoma xenografts. These data suggest that CD19-targeted RIT merits further study.
Collapse
Affiliation(s)
- D Ma
- Department of Molecular Pharmacology and Therapeutics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|