1
|
Rasouli M, Troester S, Grebien F, Goemans BF, Zwaan CM, Heidenreich O. NUP98 oncofusions in myeloid malignancies: An update on molecular mechanisms and therapeutic opportunities. Hemasphere 2024; 8:e70013. [PMID: 39323480 PMCID: PMC11423334 DOI: 10.1002/hem3.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/12/2024] [Accepted: 08/28/2024] [Indexed: 09/27/2024] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematological malignancy with a heterogeneous molecular landscape. In the pediatric context, the NUP98 gene is a frequent target of chromosomal rearrangements that are linked to poor prognosis and unfavorable treatment outcomes in different AML subtypes. The translocations fuse NUP98 to a diverse array of partner genes, resulting in fusion proteins with novel functions. NUP98 fusion oncoproteins induce aberrant biomolecular condensation, abnormal gene expression programs, and re-wired protein interactions which ultimately cause alterations in the cell cycle and changes in cellular structures, all of which contribute to leukemia development. The extent of these effects is steered by the functional domains of the fusion partners and the influence of concomitant somatic mutations. In this review, we discuss the complex characteristics of NUP98 fusion proteins and potential novel therapeutic approaches for NUP98 fusion-driven AML.
Collapse
Affiliation(s)
- Milad Rasouli
- Princess Maxima Center for Pediatric OncologyUtrechtThe Netherlands
- Department of Pediatric Hematology/OncologyErasmus MC‐Sophia Children's HospitalRotterdamThe Netherlands
| | - Selina Troester
- Department of Biological Sciences and PathobiologyUniversity of Veterinary Medicine ViennaViennaAustria
| | - Florian Grebien
- Department of Biological Sciences and PathobiologyUniversity of Veterinary Medicine ViennaViennaAustria
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | | | - C. Michel Zwaan
- Princess Maxima Center for Pediatric OncologyUtrechtThe Netherlands
- Department of Pediatric Hematology/OncologyErasmus MC‐Sophia Children's HospitalRotterdamThe Netherlands
| | - Olaf Heidenreich
- Princess Maxima Center for Pediatric OncologyUtrechtThe Netherlands
- Department of HematologyUniversity Medical Center UtrechtUtrechtThe Netherlands
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
2
|
Hino C, Xu Y, Xiao J, Baylink DJ, Reeves ME, Cao H. The potential role of the thymus in immunotherapies for acute myeloid leukemia. Front Immunol 2023; 14:1102517. [PMID: 36814919 PMCID: PMC9940763 DOI: 10.3389/fimmu.2023.1102517] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/20/2023] [Indexed: 02/09/2023] Open
Abstract
Understanding the factors which shape T-lymphocyte immunity is critical for the development and application of future immunotherapeutic strategies in treating hematological malignancies. The thymus, a specialized central lymphoid organ, plays important roles in generating a diverse T lymphocyte repertoire during the infantile and juvenile stages of humans. However, age-associated thymic involution and diseases or treatment associated injury result in a decline in its continuous role in the maintenance of T cell-mediated anti-tumor/virus immunity. Acute myeloid leukemia (AML) is an aggressive hematologic malignancy that mainly affects older adults, and the disease's progression is known to consist of an impaired immune surveillance including a reduction in naïve T cell output, a restriction in T cell receptor repertoire, and an increase in frequencies of regulatory T cells. As one of the most successful immunotherapies thus far developed for malignancy, T-cell-based adoptive cell therapies could be essential for the development of a durable effective treatment to eliminate residue leukemic cells (blasts) and prevent AML relapse. Thus, a detailed cellular and molecular landscape of how the adult thymus functions within the context of the AML microenvironment will provide new insights into both the immune-related pathogenesis and the regeneration of a functional immune system against leukemia in AML patients. Herein, we review the available evidence supporting the potential correlation between thymic dysfunction and T-lymphocyte impairment with the ontogeny of AML (II-VI). We then discuss how the thymus could impact current and future therapeutic approaches in AML (VII). Finally, we review various strategies to rejuvenate thymic function to improve the precision and efficacy of cancer immunotherapy (VIII).
Collapse
Affiliation(s)
- Christopher Hino
- Department of Internal Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Yi Xu
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA, United States.,Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, United States.,Loma Linda University Cancer Center, Loma Linda, CA, United States
| | - Jeffrey Xiao
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - David J Baylink
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Mark E Reeves
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA, United States.,Loma Linda University Cancer Center, Loma Linda, CA, United States
| | - Huynh Cao
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA, United States.,Loma Linda University Cancer Center, Loma Linda, CA, United States
| |
Collapse
|
3
|
Thymic precursor cells generate acute myeloid leukemia in NUP98-PHF23/NUP98-HOXD13 double transgenic mice. Sci Rep 2019; 9:17213. [PMID: 31748606 PMCID: PMC6868234 DOI: 10.1038/s41598-019-53610-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/02/2019] [Indexed: 11/23/2022] Open
Abstract
Transgenic mice that express either a NUP98–PHF23 (NP23) or NUP98-HOXD13 (NHD13) fusion in the hematopoietic compartment develop a wide spectrum of leukemias, including myeloid, erythroid, megakaryocytic and lymphoid, at age 9–14 months. NP23-NHD13 double transgenic mice were generated by interbreeding NP23 and NHD13 mice. Remarkably, 100% of the NP23-NHD13 double transgenic mice developed acute myeloid leukemia (AML) within three months, characterized by replacement of the thymus with leukemic myeloblasts. The marked infiltration of thymus led to the intriguing hypothesis that AML generated in NP23-NHD13 mice arose in the thymus, as opposed to the bone marrow (BM). Transplantation of CD4-CD8- double negative (DN) thymocytes (which were also negative for Mac1 and Gr1) from leukemic NHD13/NP23 mice demonstrated that DN thymocytes could transmit AML, and limiting dilution studies showed that leukemia initiating cells were increased 14-fold in the thymus compared to BM. Further thymocyte fractionation demonstrated that DN1 and DN2, but not DN3 or DN4 fractions transmitted AML, and a marked expansion (100-fold) of Lineage-Sca1 + Kit + (LSK) cells in the thymus of the NP23-NHD13 mice. Taken together, these results show that the thymus of NP23-NHD13 mice acts as a reservoir for AML initiating cells and that thymic progenitors can transmit AML.
Collapse
|
4
|
Abstract
Nuclear pore complexes (NPCs) are the sole gateways between the nucleus and the cytoplasm of eukaryotic cells and they mediate all macromolecular trafficking between these cellular compartments. Nucleocytoplasmic transport is highly selective and precisely regulated and as such an important aspect of normal cellular function. Defects in this process or in its machinery have been linked to various human diseases, including cancer. Nucleoporins, which are about 30 proteins that built up NPCs, are critical players in nucleocytoplasmic transport and have also been shown to be key players in numerous other cellular processes, such as cell cycle control and gene expression regulation. This review will focus on the three nucleoporins Nup98, Nup214, and Nup358. Common to them is their significance in nucleocytoplasmic transport, their multiple other functions, and being targets for chromosomal translocations that lead to haematopoietic malignancies, in particular acute myeloid leukaemia. The underlying molecular mechanisms of nucleoporin-associated leukaemias are only poorly understood but share some characteristics and are distinguished by their poor prognosis and therapy outcome.
Collapse
|
5
|
Gorello P, Nofrini V, Brandimarte L, Pierini V, Crescenzi B, Nozza F, Daniele G, Storlazzi CT, Di Giacomo D, Matteucci C, La Starza R, Mecucci C. Inv(11)(p15q22)/NUP98-DDX10 fusion and isoforms in a new case of de novo acute myeloid leukemia. Cancer Genet 2013; 206:92-6. [PMID: 23522748 DOI: 10.1016/j.cancergen.2013.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 02/05/2013] [Accepted: 02/12/2013] [Indexed: 01/31/2023]
Abstract
We set up a diagnostic double-color double-fusion fluorescence in situ hybridization (DCDF-FISH) assay to investigate a case of a de novo acute myeloid leukemia (AML)-M4 bearing an inv(11)(p15q22). DCDF-FISH detected the NUP98-DDX10 rearrangement as two fusion signals, at the short and the long arms of the inv(11). Reverse transcription-polymerase chain reaction (RT-PCR) and cloning experiments confirmed the NUP98-DDX10 fusion and identified two splicing fusion isoforms: the known "type II fusion," originating from the fusion of NUP98 exon 14 to DDX10 exon 7 and a new in-frame fusion transcript between NUP98 exon 15 and DDX10 exon 7, which we termed "type III fusion."
Collapse
Affiliation(s)
- Paolo Gorello
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
FLT3 is a receptor tyrosine kinase that is expressed in CD34+ hematopoietic stem/progenitor cells (HSPCs) and is important for both normal myeloid and lymphoid differentiation. FLT3 expression in Pax5 negative lymphoid precursors coincides with a window of multilineage differentiation potential in mice and humans. Recent work has shown that FLT3 activating mutations can collaborate with a Nup98-HoxD13 mutation to induce an aggressive acute leukemia. The leukemic initiating population in this model displayed properties of both lymphoid and myeloid precursors, making it a useful tool to study the role of FLT3 in lineage plasticity. Through a variety of assays, the leukemic initiating population was shown to be restricted to myeloid differentiation, suggesting that the B-lineage properties in these cells are due to the priming of lymphoid transcription programs in multipotent progenitors rather than a true capacity for B-cell maturation. The development of an undifferentiated myeloid leukemia in this model, also has implications for the role of FLT3 in the inhibition of myeloid differentiation. Here we discuss the insights gained from this model.
Collapse
Affiliation(s)
- Sarah Greenblatt
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
7
|
Emerenciano M, Meyer C, Macedo-Silva ML, de Meis E, Dobbin JA, Marschalek R, Pombo-de-Oliveira MS. Backtracking to birth of the NUP98-HOXD13 gene fusion in an infant acute myeloid leukemia. Leukemia 2011; 25:1192-4. [PMID: 21494261 DOI: 10.1038/leu.2011.51] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Abstract
Chromosomal aberrations occur with great frequency and some specificity in leukemia and other hematologic malignancies. The most common outcome of these rearrangements is the formation of a fusion gene, comprising portions of 2 genes normally present in the cell. These fusion proteins are presumed to be oncogenic; in many cases, animal models have proven them to be oncogenic. One of the most promiscuous fusion partner genes is the newly identified NUP98 gene, located on chromosome 11p15.5, which to date has been observed fused to 15 different fusion partners. NUP98 encodes a 98 kD protein that is an important component of the nuclear pore complex, which mediates nucleo-cytoplasmic transport of protein and RNA. The fusion partners of NUP98 form 2 distinct groups: homeobox genes and non-homeobox genes. All NUP98 fusions join the N-terminal GLFG repeats of NUP98 to the C-terminal portion of the partner gene, which, in the case of the homeobox gene partners, includes the homeodomain. Clinical findings are reviewed here, along with the findings of several in vivo and in vitro models have been employed to investigate the mechanisms by which NUP98 fusion genes contribute to the pathogenesis of leukemia.
Collapse
MESH Headings
- Acute Disease
- Antineoplastic Agents/pharmacology
- Cell Transformation, Neoplastic/genetics
- Chromosome Breakage
- Chromosomes, Human, Pair 11/genetics
- DNA Topoisomerases, Type II/physiology
- Enzyme Inhibitors/pharmacology
- Genes, Homeobox
- Hematologic Neoplasms/genetics
- Hematologic Neoplasms/metabolism
- Homeodomain Proteins/genetics
- Homeodomain Proteins/physiology
- Humans
- Leukemia/genetics
- Leukemia/metabolism
- Models, Genetic
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Nuclear Pore/physiology
- Nuclear Pore Complex Proteins/genetics
- Nuclear Pore Complex Proteins/physiology
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/physiology
- Protein Structure, Tertiary
- Topoisomerase II Inhibitors
- Translocation, Genetic
Collapse
Affiliation(s)
- Christopher Slape
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Navy 8, Room 5101, Bethesda, Maryland, MD 20889-5105, USA
| | | |
Collapse
|
9
|
Transplantation of a myelodysplastic syndrome by a long-term repopulating hematopoietic cell. Proc Natl Acad Sci U S A 2008; 105:14088-93. [PMID: 18768819 DOI: 10.1073/pnas.0804507105] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The myelodysplastic syndromes (MDS) comprise a group of premalignant hematologic disorders characterized by ineffective hematopoiesis, dysplasia, and transformation to acute myeloid leukemia (AML). Although it is well established that many malignancies can be transplanted, there is little evidence to demonstrate that a premalignant disease entity, such as MDS or colonic polyps, can be transplanted and subsequently undergo malignant transformation in vivo. Using mice that express a NUP98-HOXD13 (NHD13) transgene in hematopoietic tissues, we show that a MDS can be transplanted to WT recipients. Recipients of the MDS bone marrow displayed all of the critical features of MDS, including peripheral blood cytopenias, dysplasia, and transformation to AML. Even when transplanted with a 10-fold excess of WT cells, the NHD13 cells outcompeted the WT cells over a 38-week period. Limiting-dilution experiments demonstrated that the frequency of the cell that could transmit the disease was approximately 1/6,000-1/16,000 and that the MDS was also transferable to secondary recipients as a premalignant condition. Transformation to AML in primary transplant recipients was generally delayed (46-49 weeks after transplant); however, 6 of 10 secondary transplant recipients developed AML. These findings demonstrate that MDS originates in a transplantable, premalignant, long-term repopulating, MDS-initiating cell.
Collapse
|
10
|
Ida CM, Rolig KA, Hulshizer RL, Van Dyke DL, Randolph JL, Jenkins RB, Nascimento AG, Oliveira AM. Myxoinflammatory fibroblastic sarcoma showing t(2;6)(q31;p21.3) as a sole cytogenetic abnormality. ACTA ACUST UNITED AC 2007; 177:139-42. [PMID: 17854670 DOI: 10.1016/j.cancergencyto.2007.05.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2007] [Revised: 05/17/2007] [Accepted: 05/22/2007] [Indexed: 11/29/2022]
Abstract
Myxoinflammatory fibroblastic sarcoma (MIFS) is a rare, low-grade sarcoma characterized by distinctive, large, and bizarre Reed--Sternberg--like cells associated with an intense inflammatory infiltrate. The biology of MIFS is still poorly understood, and only two previous cases had been studied cytogenetically. In the present case, analysis of MIFS in the foot of a 53-year-old man revealed the chromosome translocation t(2;6)(q31;p21.3) as the only cytogenetic abnormality. This finding is distinct from the two cases previously reported. Additional studies are needed to verify whether any of these chromosome rearrangements are involved recurrently in MIFS.
Collapse
Affiliation(s)
- Cristiane M Ida
- Division of Anatomic Pathology, Hospital das Clinicas (C.M.I.), São Paulo University School of Medicine, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Hidaka E, Tanaka M, Matsuda K, Ishikawa-Matsumura M, Yamauchi K, Sano K, Honda T, Wakui K, Yanagisawa R, Nakazawa Y, Sakashita K, Shiohara M, Ishii E, Koike K. A complex karyotype, including a three-way translocation generating a NUP98-HOXD13 transcript, in an infant with acute myeloid leukemia. ACTA ACUST UNITED AC 2007; 176:137-43. [PMID: 17656257 DOI: 10.1016/j.cancergencyto.2007.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 04/02/2007] [Accepted: 04/09/2007] [Indexed: 10/23/2022]
Abstract
We report the case of an infant with acute myeloblastic leukemia who had the abnormal karyotype 46,XX,t(2;11;9)(q31;p15;q22),t(6;11;15)(q21;q23;q22),t(8;10)(q13;q22). At relapse, a different three-way translocation emerged. Fluorescence in situ hybridization and a reverse transcription-polymerase chain reaction assay detected the NUP98-HOXD13 fusion gene in bone marrow cells of the patient at diagnosis and at relapse. Sequence analysis showed that exon 12 of NUP98 was fused in-frame with exon 2 of HOXD13. The patient had neither a rearrangement of the MLL gene nor aberrations for FLT3, KIT, NRAS, KRAS, or PTPN11. The NUP98-HOXD13 fusion transcript created by t(2;11;9)(q31;p15;q22) may play an important role in the leukemogenesis in this case.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Chromosomes, Human, Pair 10
- Chromosomes, Human, Pair 11
- Chromosomes, Human, Pair 15
- Chromosomes, Human, Pair 2
- Chromosomes, Human, Pair 6
- Chromosomes, Human, Pair 8
- Chromosomes, Human, Pair 9
- Female
- Homeodomain Proteins/genetics
- Humans
- Infant
- Karyotyping
- Leukemia, Myeloid, Acute/genetics
- Molecular Sequence Data
- Nuclear Pore Complex Proteins/genetics
- Oncogene Proteins, Fusion/genetics
- Translocation, Genetic
Collapse
Affiliation(s)
- Eiko Hidaka
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Haferlach T, Bacher U, Haferlach C, Kern W, Schnittger S. Insight into the molecular pathogenesis of myeloid malignancies. Curr Opin Hematol 2007; 14:90-7. [PMID: 17255785 DOI: 10.1097/moh.0b013e3280168490] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Molecular mutations play an increasing role for classification, prognostication, and therapeutic strategies in acute myeloid leukemia and myelodysplastic syndrome. Due to the rapid expansion of known molecular markers, this paper aims to outline some of the recent progress to improve understanding of the pathogenesis in these myeloid malignancies. RECENT FINDINGS Novel concepts conceive myelodysplastic syndrome and acute myeloid leukemia as endpoints of a continuous process of leukemogenesis, which is characterized by the interaction of mutations interfering with transcription and differentiation with activating mutations enhancing proliferation. The detection of novel molecular mutations such as NPM1 widened the spectrum of molecular markers in acute myeloid leukemia. Finally, attention focusses on detailed subtyping of already known molecular markers. SUMMARY The fast progress in the molecular characterization of acute myeloid leukemia and myelodysplastic syndrome in recent years provides the basis for an optimization of therapeutic concepts. The introduction of new methods such as gene expression profiling catalyzes this process.
Collapse
|
13
|
Romana SP, Radford-Weiss I, Ben Abdelali R, Schluth C, Petit A, Dastugue N, Talmant P, Bilhou-Nabera C, Mugneret F, Lafage-Pochitaloff M, Mozziconacci MJ, Andrieu J, Lai JL, Terre C, Rack K, Cornillet-Lefebvre P, Luquet I, Nadal N, Nguyen-Khac F, Perot C, Van den Akker J, Fert-Ferrer S, Cabrol C, Charrin C, Tigaud I, Poirel H, Vekemans M, Bernard OA, Berger R. NUP98 rearrangements in hematopoietic malignancies: a study of the Groupe Francophone de Cytogénétique Hématologique. Leukemia 2006; 20:696-706. [PMID: 16467868 DOI: 10.1038/sj.leu.2404130] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The NUP98 gene is fused with 19 different partner genes in various human hematopoietic malignancies. In order to gain additional clinico-hematological data and to identify new partners of NUP98, the Groupe Francophone de Cytogénétique Hématologique (GFCH) collected cases of hematological malignancies where a 11p15 rearrangement was detected. Fluorescence in situ hybridization (FISH) analysis showed that 35% of these patients (23/66) carried a rearrangement of the NUP98 locus. Genes of the HOXA cluster and the nuclear-receptor set domain (NSD) genes were frequently fused to NUP98, mainly in de novo myeloid malignancies whereas the DDX10 and TOP1 genes were equally rearranged in de novo and in therapy-related myeloid proliferations. Involvement of ADD3 and C6ORF80 genes were detected, respectively, in myeloid disorders and in T-cell acute lymphoblastic leukemia (T-ALL), whereas the RAP1GDS1 gene was fused to NUP98 in T-ALL. Three new chromosomal breakpoints: 3q22.1, 7p15 (in a localization distinct from the HOXA locus) and Xq28 were detected in rearrangements with the NUP98 gene locus. The present study as well as a review of the 73 cases previously reported in the literature allowed us to delineate some chromosomal, clinical and molecular features of patients carrying a NUP98 gene rearrangements.
Collapse
Affiliation(s)
- S P Romana
- Service de cytogénétique, Centre Hospitalier Universitaire (CHU) Necker-Enfants Malades, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kulesz-Martin M, Lagowski J, Fei S, Pelz C, Sears R, Powell MB, Halaban R, Johnson J. Melanocyte and keratinocyte carcinogenesis: p53 family protein activities and intersecting mRNA expression profiles. J Investig Dermatol Symp Proc 2005; 10:142-52. [PMID: 16363065 DOI: 10.1111/j.1087-0024.2005.200405.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Melanocytes and keratinocytes were analyzed for potential roles of p53, p73, and p63 tumor suppressor family proteins and of malignancy-specific gene expression changes in the etiology of multi-step cancer. Melanocytes expressed deltaNp73alpha, two p63 isoforms and p53. Although p21 and Noxa mRNA levels increased following DNA damage, p53 family member binding to p21 and Noxa DNA probes was undetectable, suggesting p53 family-independent responses. In contrast, keratinocytes expressed multiple isoforms each of p73 and p63 that were induced to bind p21 and Noxa DNA probes after ionizing (IR) or after ultraviolet B (UVB) irradiation, correlating with p21 and Noxa mRNA induction and with apoptosis. Interestingly, IR-resistant malignant melanocytes and keratinocytes both exhibited Noxa mRNA induction after UVB treatment, correlating with DNA binding of p53 family proteins to the Noxa probe only in keratinocytes. To uncover other malignancy-specific events, we queried mouse initiated keratinocyte clones for early changes that were exacerbated in malignant derivatives and also differentially expressed in human advanced melanoma versus normal melanocytes. Using a new method for ranking and normalization of microarray data for 5000 probe sets, 27 upregulated and 13 downregulated genes satisfied our query. Of these, the majority was associated with late-stage human cancers and six were novel genes. Thus, clonal lineage mouse models representing early through late cancer progression stages may inform the focus on early, potentially causal events from microarray studies of human cancers, facilitating prognosis and molecular therapy.
Collapse
Affiliation(s)
- Molly Kulesz-Martin
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon 97239, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Redner RL, Liu JM. Leukemia fusion proteins and co-repressor complexes: changing paradigms. J Cell Biochem 2005; 94:864-9. [PMID: 15669080 DOI: 10.1002/jcb.20368] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Many cases of acute myelogenous leukemia (AML) are characterized by non-random chromosomal translocations that fuse a DNA-binding protein with a transcriptional regulator, which in turn may aberrantly recruit a co-repressor complex. The similarities in this pattern between different AML chimeric fusions have led to a paradigm that stresses the importance of the co-repressor complex in altering the pattern of expression of genes targeted by the DNA-binding moiety of the fusion. Such findings beg the question of whether the fusion proteins merely serve as anchors to recruit the co-repressor complex or whether they play other significant roles in leukemogenesis. The answers to this question may have therapeutic importance since we now have the ability to target various components of the co-repressor complex, such as the histone deacetylase (HDAC) enzymes. In this Prospect, we wish to highlight some of the complexities and difficulties with the existing molecular paradigm of this challenging group of disorders.
Collapse
Affiliation(s)
- Robert L Redner
- Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
16
|
Nebral K, Schmidt HH, Haas OA, Strehl S. NUP98 Is Fused to Topoisomerase (DNA) IIβ 180 kDa (TOP2B) in a Patient with Acute Myeloid Leukemia with a New t(3;11)(p24;p15). Clin Cancer Res 2005; 11:6489-94. [PMID: 16166424 DOI: 10.1158/1078-0432.ccr-05-0150] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The nucleoporin 98 kDa (NUP98) gene has been reported to be fused to 17 different partner genes in various hematologic malignancies with 11p15 aberrations. Cytogenetic analysis of an adult de novo acute myelogenous leukemia (M5a) revealed a t(3;11)(p24;p15), suggesting rearrangement of NUP98 with a novel partner gene. EXPERIMENTAL DESIGN Fluorescence in situ hybridization (FISH) was used to confirm the involvement of NUP98 in the t(3;11)(p24;p15). Selection of possible NUP98 partner genes was done by computer-aided analysis of the 3p24 region using the University of California Santa Cruz genome browser. Fusion gene-specific FISH and reverse transcription-PCR analyses were done to verify the presence of the new NUP98 fusion. RESULTS FISH analysis using a NUP98-specific clone showed a split signal, indicating that the NUP98 gene was affected by the translocation. Of the genes localized at 3p24, TOP2B was selected as a possible fusion partner candidate gene. Dual-color fusion gene-specific FISH and reverse transcription-PCR analysis verified that NUP98 was indeed fused to TOP2B. In addition to reciprocal NUP98-TOP2B and TOP2B-NUP98 in-frame fusion transcripts, an alternatively spliced out-of-frame TOP2B-NUP98 transcript that resulted in a premature stop codon was detected. Analysis of the genomic breakpoints revealed typical signs of nonhomologous end joining resulting from error-prone DNA repair. CONCLUSIONS TOP2B encodes a type II topoisomerase, which is involved in DNA transcription, replication, recombination, and mitosis, and besides TOP1, represents the second NUP98 fusion partner gene that belongs to the topoisomerase gene family. This finding emphasizes the important role of topoisomerases in malignant transformation processes.
Collapse
MESH Headings
- Acute Disease
- Amino Acid Sequence
- Base Sequence
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 3/genetics
- DNA Topoisomerases, Type II/genetics
- DNA-Binding Proteins/genetics
- Humans
- In Situ Hybridization, Fluorescence
- Leukemia, Myeloid/genetics
- Male
- Middle Aged
- Molecular Sequence Data
- Nuclear Pore Complex Proteins/genetics
- Oncogene Proteins, Fusion/genetics
- Poly-ADP-Ribose Binding Proteins
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Nucleic Acid
- Translocation, Genetic
Collapse
Affiliation(s)
- Karin Nebral
- Children's Cancer Research Institute, Vienna, Austria
| | | | | | | |
Collapse
|
17
|
Affiliation(s)
- H J Lawrence
- Department of Medicine, Division of Hematology and Medical Oncology, University of California School of Medicine, VA Medical Center, San Francisco, CA 94121, USA.
| | | | | |
Collapse
|
18
|
Kobzev YN, Martinez-Climent J, Lee S, Chen J, Rowley JD. Analysis of translocations that involve theNUP98 gene in patients with 11p15 chromosomal rearrangements. Genes Chromosomes Cancer 2004; 41:339-52. [PMID: 15390187 DOI: 10.1002/gcc.20092] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The NUP98 gene has been reported to be fused with at least 15 partner genes in leukemias with 11p15 translocations. We report the results of screening of cases with cytogenetically documented rearrangements of 11p15 and the subsequent identification of involvement of NUP98 and its partner genes. We identified 49 samples from 46 hematology patients with 11p15 (including a few with 11p14) abnormalities, and using fluorescence in situ hybridization (FISH), we found that NUP98 was disrupted in 7 cases. With the use of gene-specific FISH probes, in 6 cases, we identified the partner genes, which were PRRX1 (PMX1; in 2 cases), HOXD13, RAP1GDS1, HOXC13, and TOP1. In the 3 cases for which RNA was available, RT-PCR was performed, which confirmed the FISH results and identified the location of the breakpoints in patient cDNA. Our data confirm the previous findings that NUP98 is a recurrent target in various types of leukemia.
Collapse
Affiliation(s)
- Yuri N Kobzev
- Section of Hematology/Oncology, Department of Medicine, Biological Sciences Division, University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
19
|
Mugneret F, Callier P, Favre-Audry B. [Chromosomal abnormalities in acute myeloid leukaemias]. PATHOLOGIE-BIOLOGIE 2003; 51:314-28. [PMID: 12927889 DOI: 10.1016/s0369-8114(03)00114-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cytogenetic studies of acute myeloid leukaemias reveal non-random chromosomal abnormalities in 50-70% of karyotypes. Some are correlated with morphological and immunological parameters and constitute a prognostic factor independent of the other factors of risk: favourable for acute leukaemias myeloid with translocations t(8;21), t(15;17) and inversion or translocation of the chromosome 16, inv(16)/t(16;16), poor with deletion of the long arm of chromosome 5 del(5q), rearrangement of the 11q23 region and complex karyotypes. The distribution of the anomalies depends on the age: 11q23 and t(8;21) more frequent for the child, del(5q) and complex anomalies more frequent for the adult. The karyotypes are essential for the diagnosis, the follow-up of the patients and the evaluation of the relapse. It plays a fundamental part in the detection of new genes and their partners implied in the leucemogenese. The knowledge of their function is essential to open new therapeutic ways.
Collapse
Affiliation(s)
- F Mugneret
- Laboratoire de cytogénétique, CHU Le-Bocage, 21034 Dijon, France.
| | | | | |
Collapse
|
20
|
Pineault N, Buske C, Feuring-Buske M, Abramovich C, Rosten P, Hogge DE, Aplan PD, Humphries RK. Induction of acute myeloid leukemia in mice by the human leukemia-specific fusion gene NUP98-HOXD13 in concert with Meis1. Blood 2003; 101:4529-38. [PMID: 12543865 DOI: 10.1182/blood-2002-08-2484] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
HOX genes, notably members of the HOXA cluster, and HOX cofactors have increasingly been linked to human leukemia. Intriguingly, HOXD13, a member of the HOXD cluster not normally expressed in hematopoietic cells, was recently identified as a partner of NUP98 in a t(2;11) translocation associated with t-AML/MDS. We have now tested directly the leukemogenic potential of the NUP98-HOXD13 t(2; 11) fusion gene in the murine hematopoietic model. NUP98-HOXD13 strongly promoted growth and impaired differentiation of early hematopoietic progenitor cells in vitro; this effect was dependent on the NUP98 portion and an intact HOXD13 homeodomain. Expression of the NUP98-HOXD13 fusion gene in vivo resulted in a partial impairment of lymphopoiesis but did not induce evident hematologic disease until late after transplantation (more than 5 months), when some mice developed a myeloproliferative-like disease. In contrast, mice transplanted with bone marrow (BM) cells cotransduced with NUP98-HOXD13 and the HOX cofactor Meis1 rapidly developed lethal and transplantable acute myeloid leukemia (AML), with a median disease onset of 75 days. In summary, this study demonstrates that NUP98-HOXD13 can be directly implicated in the molecular process leading to leukemic transformation, and it supports a model in which the transforming properties of NUP98-HOXD13 are mediated through HOX-dependent pathways.
Collapse
|
21
|
Thompson A, Quinn MF, Grimwade D, O'Neill CM, Ahmed MR, Grimes S, McMullin MF, Cotter F, Lappin TRJ. Global down-regulation of HOX gene expression in PML-RARalpha + acute promyelocytic leukemia identified by small-array real-time PCR. Blood 2003; 101:1558-65. [PMID: 12560242 DOI: 10.1182/blood.v101.4.1558] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acute promyelocytic leukemia (APL) is associated with a reciprocal and balanced translocation involving the retinoic acid receptor-alpha (RARalpha). All-trans retinoic acid (ATRA) is used to treat APL and is a potent morphogen that regulates HOX gene expression in embryogenesis and organogenesis. HOX genes are also involved in hematopoiesis and leukemogenesis. Thirty-nine mammalian HOX genes have been identified and classified into 13 paralogous groups clustered on 4 chromosomes. They encode a complex network of transcription regulatory proteins whose precise targets remain poorly understood. The overall function of the network appears to be dictated by gene dosage. To investigate the mechanisms involved in HOX gene regulation in hematopoiesis and leukemogenesis by precise measurement of individual HOX genes, a small-array real-time HOX (SMART-HOX) quantitative polymerase chain reaction (PCR) platform was designed and validated. Application of SMART-HOX to 16 APL bone marrow samples revealed a global down-regulation of 26 HOX genes compared with normal controls. HOX gene expression was also altered during differentiation induced by ATRA in the PML-RARalpha(+) NB4 cell line. PML-RARalpha fusion proteins have been reported to act as part of a repressor complex during myeloid cell differentiation, and a model linking HOX gene expression to this PML-RARalpha repressor complex is now proposed.
Collapse
MESH Headings
- Bone Marrow/chemistry
- Cell Differentiation/drug effects
- Cloning, Molecular
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Hematopoiesis/genetics
- Homeodomain Proteins/genetics
- Humans
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Neoplasm Proteins/analysis
- Oncogene Proteins, Fusion/analysis
- Polymerase Chain Reaction
- Sequence Analysis, DNA
- Tretinoin/pharmacology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Alexander Thompson
- Department of Haematology, Cancer Research Centre, Queen's University, Belfast, Northern Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Terui K, Kitazawa J, Takahashi Y, Tohno C, Hayashi Y, Taketani T, Taki T, Ito E. Successful treatment of acute myelomonocytic leukaemia with NUP98-HOXD11 fusion transcripts and monitoring of minimal residual disease. Br J Haematol 2003; 120:274-6. [PMID: 12542486 DOI: 10.1046/j.1365-2141.2003.04052.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Patients with haematological malignancies involving the NUP98 gene have been reported to have an aggressive clinical course and a poor outcome. We report successful treatment of a 15-year-old Japanese boy with acute myelomonocytic leukaemia having t(2;11)(q31;p15) and a novel fusion transcript, NUP98-HOXD11. He achieved complete remission by combined chemotherapy, and underwent unrelated cord blood transplantation 4 months after diagnosis. He is in complete remission 24 months after diagnosis. Monitoring of minimal residual disease (MRD) showed the absence of fusion transcript 12 months after transplantation. This is the first report of monitoring MRD in a patient with haematological malignancy involving NUP98 fusion transcripts.
Collapse
MESH Headings
- Adolescent
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Chromosomes, Human, Pair 11
- Chromosomes, Human, Pair 2
- Combined Modality Therapy
- Cord Blood Stem Cell Transplantation
- Gene Rearrangement
- Humans
- Karyotyping
- Leukemia, Myelomonocytic, Acute/drug therapy
- Leukemia, Myelomonocytic, Acute/genetics
- Leukemia, Myelomonocytic, Acute/surgery
- Male
- Neoplasm, Residual
- Oncogene Proteins, Fusion/genetics
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Kiminori Terui
- Department of Paediatrics, Hirosaki University School of Medicine, Aomori, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Lee JY, Lee CH, Shim SH, Seo HK, Kyhm JH, Cho S, Cho YH. Molecular cytogenetic analysis of the monoblastic cell line U937. karyotype clarification by G-banding, whole chromosome painting, microdissection and reverse painting, and comparative genomic hybridization. CANCER GENETICS AND CYTOGENETICS 2002; 137:124-32. [PMID: 12393283 DOI: 10.1016/s0165-4608(02)00565-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous reports on the analysis of the human monoblastic cell line U937 had described several sublines containing unidentified rearrangements and marker chromosomes. In order to determine the true nature of the rearrangements, conventional banding analysis was carried out with various combinations of molecular cytogenetic techniques: comparative genomic hybridization, fluorescence in situ hybridization (FISH) with whole chromosome painting probes, and microdissection and reverse painting FISH. The origins of the marker chromosomes were identified and the composite karyotype is described.
Collapse
Affiliation(s)
- Ji-Yun Lee
- Department of Medical Genetics, College of Medicine, Hanyang University, Seoul 133-791, South Korea
| | | | | | | | | | | | | |
Collapse
|
24
|
Thangavelu M, Huang B, Lemieux M, Tom W, Richkind KE. A t(4;11)(q21;p15) in a case of T-cell lymphoma and a case of acute myelogenous leukemia. CANCER GENETICS AND CYTOGENETICS 2002; 132:109-15. [PMID: 11850070 DOI: 10.1016/s0165-4608(01)00534-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The translocation (4;11)(q21;p15) has been observed in acute lymphoblastic as well as acute myeloid leukemias (ALL and AML, respectively). We report the first case of T-cell lymphoma with t(4;11)(q21;p15) and a case of AML. The clinical history of and cytogenetics in the latter is suggestive of a secondary leukemia; his karyotype revealed emergence of a t(3;11)(q21;q13) in addition to the t(4;11). Previously reported cases with t(4;11)(q21;p15) are reviewed, clinical and morphological characteristics of cases with t(4;11)(q21;q23) and t(4;11)(q21;p15) are compared, and chromosome abnormalities involving the NUP98 gene in hematologic malignant disorders are reviewed.
Collapse
Affiliation(s)
- Maya Thangavelu
- Genzyme Genetics, 1054 Town and Country Road, Orange, CA 92868, USA.
| | | | | | | | | |
Collapse
|
25
|
Abstract
Acute leukemia is associated with a wide spectrum of recurrent, non-random chromosomal translocations. Molecular analysis of the genes involved in these translocations has led to a better understanding of both the causes of chromosomal rearrangements as well as the mechanisms of leukemic transformation. Recently, a number of laboratories have cloned translocations involving the NUP98 gene on chromosome 11p15.5, from patients with acute myelogenous leukemia (AML), myelodysplastic syndrome (MDS), chronic myelogenous leukemia (CML), and T cell acute lymphoblastic leukemia (T-ALL). To date, at least eight different chromosomal rearrangements involving NUP98 have been identified. The resultant chimeric transcripts encode fusion proteins that juxtapose the N-terminal GLFG repeats of NUP98 to the C-terminus of the partner gene. Of note, several of these translocations have been found in patients with therapy-related acute myelogenous leukemia (t-AML) or myelodysplastic syndrome (t-MDS), suggesting that genotoxic chemotherapeutic agents may play an important role in generating chromosomal rearrangements involving NUP98.
Collapse
Affiliation(s)
- D H Lam
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | |
Collapse
|
26
|
Shimada H, Arai Y, Sekiguchi S, Ishii T, Tanitsu S, Sasaki M. Generation of the NUP98-HOXD13 fusion transcript by a rare translocation, t(2;11)(q31;p15), in a case of infant leukaemia. Br J Haematol 2000; 110:210-3. [PMID: 10931000 DOI: 10.1046/j.1365-2141.2000.02172.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report a case of de novo acute myelomonocytic leukaemia with the t(2;11)(q31;p15) translocation in a Japanese female infant. The NUP98-HOXD13 fusion transcript generated by the translocation was detected in the patient's bone marrow cells by reverse transcription-polymerase chain reaction (RT-PCR). Additionally, ectopic expression of the normal allele of the HOXD13 gene was observed in this patient, suggesting that it might be associated with leukaemogenic development. This case is the third report of t(2;11) leukaemia with NUP98-HOXD13 and the first report showing that NUP98 rearrangements are associated with infant leukaemia, as well as therapy-related acute myelogenous leukaemia or myelodysplastic syndrome.
Collapse
MESH Headings
- Aged
- Antigens, CD
- Antigens, Differentiation, Myelomonocytic
- Artificial Gene Fusion
- CD13 Antigens
- Child
- Chromosomes, Human, Pair 11
- Chromosomes, Human, Pair 2
- Female
- HLA-DR Antigens
- Homeodomain Proteins/genetics
- Humans
- Immunophenotyping
- Infant
- Leukemia, Myelomonocytic, Acute/genetics
- Leukemia, Myelomonocytic, Acute/immunology
- Male
- Membrane Proteins/genetics
- Nuclear Pore Complex Proteins
- Nuclear Proteins/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Sialic Acid Binding Ig-like Lectin 3
- Transcription Factors
- Translocation, Genetic
Collapse
Affiliation(s)
- H Shimada
- Cancer Genomics Division, National Cancer Centre Research Institute, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
27
|
Funasaka Y, Sato H, Chakraborty AK, Ohashi A, Chrousos GP, Ichihashi M. Expression of proopiomelanocortin, corticotropin-releasing hormone (CRH), and CRH receptor in melanoma cells, nevus cells, and normal human melanocytes. J Investig Dermatol Symp Proc 1999; 4:105-9. [PMID: 10536983 DOI: 10.1038/sj.jidsp.5640192] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Proopiomelanocortin (POMC) is a 31 kDa prohormone that is processed to various bioactive peptides, including adrenocorticotropin (ACTH), melanotropins (alpha, beta, gamma-MSH), lipotropins, and endorphins. POMC is expressed not only in the pituitary gland but also in a variety of nonpituitary organs and tumors, including melanomas. We previously showed that normal human melanocytes produce and secrete alpha-MSH and ACTH, and furthermore, that advanced melanoma cells generally produce higher amounts of POMC peptides that correlate with tumor progression. To elucidate the mechanism of this upregulation, the expression of genes encoding corticotropin-releasing hormone (CRH) and its receptor, CRH-R, as well as POMC and the MSH receptor (MC1-R), was evaluated by reverse transcriptase-polymerase chain reaction using cultured human melanoma cells, nevus cells, and normal melanocytes. Our results show that all melanocytic cells express CRH, CRH-R, POMC, and MC1-R, with highest intensities in melanoma cells. Furthermore, immunohistochemistry shows that CRH as well as POMC is strongly expressed in advanced melanomas, such as vertically growing lesions of acral lentiginous, nodular and metastatic melanomas, in contrast to negative expression in nevus cells. These results indicate that tumor progression accentuates CRH, CRH-R, and POMC expression by melanoma cells.
Collapse
Affiliation(s)
- Y Funasaka
- Department of Dermatology, Kobe University School of Medicine, Japan.
| | | | | | | | | | | |
Collapse
|