1
|
Garbayo E, El Moukhtari SH, Rodríguez-Nogales C, Agirre X, Rodriguez-Madoz JR, Rodriguez-Marquez P, Prósper F, Couvreur P, Blanco-Prieto MJ. RNA-loaded nanoparticles for the treatment of hematological cancers. Adv Drug Deliv Rev 2024; 214:115448. [PMID: 39303823 DOI: 10.1016/j.addr.2024.115448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/07/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
Hematological cancers encompass a diverse group of malignancies affecting the blood, bone marrow, lymph nodes, and spleen. These disorders present unique challenges due to their complex etiology and varied clinical manifestations. Despite significant advancements in understanding and treating hematological malignancies, innovative therapeutic approaches are continually sought to enhance patient outcomes. This review highlights the application of RNA nanoparticles (RNA-NPs) in the treatment of hematological cancers. We delve into detailed discussions on in vitro and preclinical studies involving RNA-NPs for adult patients, as well as the application of RNA-NPs in pediatric hematological cancer. The review also addresses ongoing clinical trials involving RNA-NPs and explores the emerging field of CAR-T therapy engineered by RNA-NPs. Finally, we discuss the challenges still faced in translating RNA-NP research to clinics.
Collapse
Affiliation(s)
- Elisa Garbayo
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain
| | - Souhaila H El Moukhtari
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain
| | - Carlos Rodríguez-Nogales
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain
| | - Xabier Agirre
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain; Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pío XII 55, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Juan R Rodriguez-Madoz
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain; Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pío XII 55, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Paula Rodriguez-Marquez
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain; Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pío XII 55, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Felipe Prósper
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain; Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pío XII 55, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain; Departmento de Hematología and CCUN, Clínica Universidad de Navarra, University of Navarra, Avenida Pío XII 36, 31008 Pamplona, Spain
| | - Patrick Couvreur
- Institut Galien Paris-Sud, UMR CNRS 8612, Université Paris-Saclay, Orsay Cedex, France.
| | - María J Blanco-Prieto
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain.
| |
Collapse
|
2
|
Wang H, Wang L, Luan H, Xiao J, Zhao Z, Yu P, Deng M, Liu Y, Ji S, Ma J, Zhou Y, Zhang J, Meng X, Zhang J, Zhao X, Li C, Li F, Wang D, Wei S, Hui L, Nie S, Jin C, An Z, Zhang N, Wang Y, Zhang CC, Li Z. LILRB4 on multiple myeloma cells promotes bone lesion by p-SHP2/NF-κB/RELT signal pathway. J Exp Clin Cancer Res 2024; 43:183. [PMID: 38951916 PMCID: PMC11218313 DOI: 10.1186/s13046-024-03110-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Leukocyte Ig-like receptor B family 4 (LILRB4) as an immune checkpoint on myeloid cells is a potential target for tumor therapy. Extensive osteolytic bone lesion is the most characteristic feature of multiple myeloma. It is unclear whether ectopic LILRB4 on multiple myeloma regulates bone lesion. METHODS The conditioned medium (CM) from LILRB4-WT and -KO cells was used to analyze the effects of LILRB4 on osteoclasts and osteoblasts. Xenograft, syngeneic and patient derived xenograft models were constructed, and micro-CT, H&E staining were used to observe the bone lesion. RNA-seq, cytokine array, qPCR, the activity of luciferase, Co-IP and western blotting were used to clarify the mechanism by which LILRB4 mediated bone damage in multiple myeloma. RESULTS We comprehensively analyzed the expression of LILRB4 in various tumor tissue arrays, and found that LILRB4 was highly expressed in multiple myeloma samples. The patient's imaging data showed that the higher the expression level of LILRB4, the more serious the bone lesion in patients with multiple myeloma. The conditioned medium from LILRB4-WT not -KO cells could significantly promote the differentiation and maturation of osteoclasts. Xenograft, syngeneic and patient derived xenograft models furtherly confirmed that LILRB4 could mediate bone lesion of multiple myeloma. Next, cytokine array was performed to identify the differentially expressed cytokines, and RELT was identified and regulated by LILRB4. The overexpression or exogenous RELT could regenerate the bone damage in LILRB4-KO cells in vitro and in vivo. The deletion of LILRB4, anti-LILRB4 alone or in combination with bortezomib could significantly delay the progression of bone lesion of multiple myeloma. CONCLUSIONS Our findings indicated that LILRB4 promoted the bone lesion by promoting the differentiation and mature of osteoclasts through secreting RELT, and blocking LILRB4 singling pathway could inhibit the bone lesion.
Collapse
Affiliation(s)
- Hongying Wang
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Lei Wang
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Huiwen Luan
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Jing Xiao
- Department of Hematology, Yantaishan Hospital, Yantai, Shandong, 264003, P.R. China
| | - Zhiling Zhao
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Pengfei Yu
- Department of Biopharmaceutical, School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Mi Deng
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
- Peking University International Cancer Institute, Peking University, CN 38 Xueyuan Rd. Haidian Dis., Beijing, 100191, P.R. China
| | - Yifan Liu
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Shuhao Ji
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Junjie Ma
- Department of Hematology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, 264009, P.R. China
| | - Yan Zhou
- Department of Gastrointestinalstrointestinal Surgery, Yantaishan Hospital, Yantai, Shandong, 264003, P.R. China
| | - Jiashen Zhang
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, P.R. China
| | - Xianhui Meng
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Juan Zhang
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Xinyu Zhao
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Chunling Li
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Fangmin Li
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Dapeng Wang
- Department of Pathophysiology, Bengbu Medical College, Anhui, 233000, P.R. China
| | - Shujuan Wei
- R&D Center, Luye Pharma Group, Yantai, Shandong, 264005, P.R. China
| | - Lijun Hui
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Siman Nie
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Changzhu Jin
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Yaopeng Wang
- Department of Thoracic Surgery, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, Shandong, 266011, P.R. China.
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA.
| | - Zunling Li
- Department of Biochemistry and Molecular Biology, Shandong Tumour Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China.
| |
Collapse
|
3
|
Sathya P, Kayal S, Hamide A, Kar R. Immunophenotypic Profile and Measurable Residual Disease Monitoring in Multiple Myeloma: A Prospective Study From a Tertiary Care Centre in Southern India. Cureus 2024; 16:e61504. [PMID: 38952609 PMCID: PMC11216634 DOI: 10.7759/cureus.61504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Multiple myeloma (MM) immunophenotyping (IPT) and measurable residual disease (MRD) monitoring by flow cytometry is a surrogate for progression-free survival and overall survival in clinical trials. However, plasma cell enumeration is challenging owing to morphological discrepancies and plasma cell (PC) loss during the sample processing. METHODS In (n=87) newly diagnosed MM patients, we evaluated the immunophenotype of PCs at baseline, and for a subset of 35 patients MRD at post-induction was quantified and analyzed for association with outcomes and survival. The software Statistical Package for Social Sciences (SPSS), version 16.0 (SPSS Inc., Chicago, IL, USA) was used for all the statistical analysis. RESULTS Immunophenotyping showed strong positive expression of CD56 (83%), CD200 (94%), CD38 (92%), and CD117 (91%) and negative/weak expression of CD19 (83%), CD45 (89%), CD27 (74%), and CD81 (90%) respectively. Negative/weak expression of CD19 was significantly associated with age ≥56 years (p<0.048), with lower albumin (<3.4g/dL, p<0.001). Strong positive CD56 expression was significantly associated with the presence of M-protein (p<0.03). Strong positive CD117 expression was significantly associated with lower albumin (p<0.02). Strong positive CD200 expression was significantly associated with a good response (p<0.02). The median (IQR) value of bone marrow (BM)-MRD% was 0.005 (0.002-0.034). We found that there was no significant difference in the correlation, association, and survival outcomes with MRD%. CONCLUSION This study sheds light on the utility of IPT as an invaluable diagnostic tool in disease management. The findings of this study could be important when it comes to modifying the criteria for high-risk diseases and implementing a risk-adapted first therapy in clinical practice.
Collapse
Affiliation(s)
- Pandurangan Sathya
- Pathology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, IND
| | - Smita Kayal
- Medical Oncology, Regional Cancer Centre, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, IND
| | - Abdoul Hamide
- Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, IND
| | - Rakhee Kar
- Pathology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, IND
| |
Collapse
|
4
|
Maldonado VV, Pokharel S, Powell JG, Samsonraj RM. Phenotypic and Functional Characterization of Bovine Adipose-Derived Mesenchymal Stromal Cells. Animals (Basel) 2024; 14:1292. [PMID: 38731296 PMCID: PMC11083126 DOI: 10.3390/ani14091292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are increasingly trialed in cellular therapy applications in humans. They can also be applied to treat a range of diseases in animals, particularly in cattle to combat inflammatory conditions and aging-associated degenerative disorders. We sought to demonstrate the feasibility of obtaining MSCs from adipose tissue and characterizing them using established assays. METHODS Bovine adipose MSCs (BvAdMSCs) were isolated using in-house optimized tissue digestion protocols and characterized by performing a colony formation assay, cell growth assessments, cell surface marker analysis by immunocytochemistry and flow cytometry, osteogenic and adipogenic differentiation, and secretion of indoleamine 2,3-dioxygenease (IDO). RESULTS Our results demonstrate the feasibility of successful MSC isolation and culture expansion from bovine adipose tissues with characteristic features of colony formation, in vitro multilineage differentiation into osteogenic and adipogenic lineages, and cell surface marker expression of CD105, CD73, CD90, CD44, and CD166 with negative expression of CD45. BvAdMSCs secreted significant amounts of IDO with or without interferon-gamma stimulation, indicating ability for immunomodulation. CONCLUSIONS We report a viable approach to obtaining autologous adipose-derived MSCs that can be applied as potential adjuvant cell therapy for tissue repair and regeneration in cattle. Our methodology can be utilized by veterinary cell therapy labs for preparing MSCs for disease management in cattle.
Collapse
Affiliation(s)
- Vitali V. Maldonado
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (V.V.M.); (S.P.)
| | - Sriya Pokharel
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (V.V.M.); (S.P.)
| | - Jeremy G. Powell
- Department of Animal Science, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Rebekah M. Samsonraj
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (V.V.M.); (S.P.)
- Interdisciplinary Graduate Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, AR 72701, USA
- Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
5
|
Giannakoulas A, Nikolaidis M, Amoutzias GD, Giannakoulas N. A comparative analysis of transcriptomics of newly diagnosed multiple myeloma: exploring drug repurposing. Front Oncol 2024; 14:1390105. [PMID: 38690165 PMCID: PMC11058662 DOI: 10.3389/fonc.2024.1390105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
Multiple myeloma (MM) is an incurable malignant plasma cell disorder characterized by the infiltration of clonal plasma cells in the bone marrow compartment. Gene Expression Profiling (GEP) has emerged as a powerful investigation tool in modern myeloma research enabling the dissection of the molecular background of MM and allowing the identification of gene products that could potentially serve as targets for therapeutic intervention. In this study we investigated shared transcriptomic abnormalities across newly diagnosed multiple myeloma (NDMM) patient cohorts. In total, publicly available transcriptomic data of 7 studies from CD138+ cells from 281 NDMM patients and 44 healthy individuals were integrated and analyzed. Overall, we identified 28 genes that were consistently differentially expressed (DE) between NDMM patients and healthy donors (HD) across various studies. Of those, 9 genes were over/under-expressed in more than 75% of NDMM patients. In addition, we identified 4 genes (MT1F, PURPL, LINC01239 and LINC01480) that were not previously considered to participate in MM pathogenesis. Meanwhile, by mining three drug databases (ChEMBL, IUPHAR/BPS and DrugBank) we identified 31 FDA-approved and 144 experimental drugs that target 8 of these 28 over/under-expressed MM genes. Taken together, our study offers new insights in MM pathogenesis and importantly, it reveals potential new treatment options that need to be further investigated in future studies.
Collapse
Affiliation(s)
- Angelos Giannakoulas
- Department of Hematology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Marios Nikolaidis
- Bioinformatics Laboratory, Department of Biochemistry & Biotechnology, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Grigorios D. Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry & Biotechnology, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Nikolaos Giannakoulas
- Department of Hematology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
6
|
Shi L, Yan W, Xu J, Li L, Cui J, Liu Y, Du C, Yu T, Zhang S, Sui W, Deng S, Xu Y, Zou D, Wang H, Qiu L, An G. Immunophenotypic profile defines cytogenetic stability and unveils distinct prognoses in patients with newly-diagnosed multiple myeloma (NDMM). Ann Hematol 2024; 103:1305-1315. [PMID: 38049586 DOI: 10.1007/s00277-023-05573-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Prognostic significance of multiple immune antigens in multiple myeloma has been well established. However, a level of uncertainty remains regarding the intrinsic relationship between immunophenotypes and cytogenetic stability and precise risk stratification. To address these unresolved issues, we conducted a study involving 1389 patients enrolled in the National Longitudinal Cohort of Hematological Diseases in China (NCT04645199). Our results revealed that the correlation between antigen expression and cytogenetics is more prominent than cytopenia or organ dysfunction. Most immune antigens, apart from CD38, CD138, and CD81, exhibit significant associations with the incidence of at least one cytogenetic abnormality. In turn, we identified CD138-low/CD27-neg as specific adverse immunophenotypic profile, which remaining independent impact on progression-free survival (HR, 1.49; P = 0.007) and overall survival (HR, 1.77; P < 0.001) even in the context of cytogenetics. Importantly, CD138-low/CD27-neg profile was also associated with inferior survival after first relapse (P < 0.001). Moreover, the antigen expression profiles were not strictly similar when comparing diagnosis and relapse; in particular, the CD138-low/CD27-neg pattern was notably increased after disease progression (19.1 to 29.1%; P = 0.005). Overall, our study demonstrates that diverse immune profiles are strongly associated with cytogenetic stability, and a specific immunophenotype (CD138-low/CD27-neg) could effectively predict prognoses across different disease stages.
Collapse
Affiliation(s)
- Lihui Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Wenqiang Yan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Jingyu Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Lingna Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Jian Cui
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yuntong Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Chenxing Du
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Tengteng Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Shuaishuai Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Weiwei Sui
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Shuhui Deng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yan Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Dehui Zou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Huijun Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Gang An
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
7
|
Al Barashdi MAS, Ali A, McMullin MF, Mills K. CD45 inhibition in myeloid leukaemia cells sensitizes cellular responsiveness to chemotherapy. Ann Hematol 2024; 103:73-88. [PMID: 37917373 PMCID: PMC10761371 DOI: 10.1007/s00277-023-05520-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023]
Abstract
Myeloid malignancies are a group of blood disorders characterized by the proliferation of one or more haematopoietic myeloid cell lineages, predominantly in the bone marrow, and are often caused by aberrant protein tyrosine kinase activity. The protein tyrosine phosphatase CD45 is a trans-membrane molecule expressed on all haemopoietic blood cells except that of platelets and red cells. CD45 regulates various cellular physiological processes including proliferation, apoptosis, and lymphocyte activation. However, its role in chemotherapy response is still unknown; therefore, the aim of this study was to investigate the role of CD45 in myeloid malignancies in terms of cellular growth, apoptosis, and response to chemotherapy. The expression of CD45 on myeloid leukaemia primary cells and cell lines was heterogeneous with HEL and OCI-AML3 cells showing the highest level. Inhibition of CD45 resulted in increased cellular sensitivity to cytarabine and ruxolitinib, the two main therapies for AML and MPN. Bioinformatics analysis identified genes whose expression was correlated with CD45 expression such as JAK2, ACTR2, THAP3 Serglycin, and PBX-1 genes, as well as licensed drugs (alendronate, allopurinol, and balsalazide), which could be repurposed as CD45 inhibitors which effectively increases sensitivity to cytarabine and ruxolitinib at low doses. Therefore, CD45 inhibition could be explored as a potential therapeutic partner for treatment of myeloid malignancies in combination with chemotherapy such as cytarabine especially for elderly patients and those showing chemotherapy resistance.
Collapse
Affiliation(s)
- Maryam Ahmed S Al Barashdi
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Ahlam Ali
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Mary Frances McMullin
- Haematology Department, C-Floor Tower Block, Belfast City Hospital, Belfast, Northern Ireland, UK
| | - Ken Mills
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, UK.
| |
Collapse
|
8
|
Xu F, Li L, Jiang L, Zhang J. Identification of key genes and immune infiltration in multiple myeloma by bioinformatics analysis. Hematology 2023; 28:2264517. [PMID: 37815499 DOI: 10.1080/16078454.2023.2264517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/24/2023] [Indexed: 10/11/2023] Open
Abstract
OBJECTIVE Multiple Myeloma (MM) is a hematologic malignant disease with unclear molecular mechanisms. This integrated bioinformatic study aimed to identify key genes, pathways and immune cell infiltration pattern in MM. METHODS Differentially expressed genes (DEGs) from GSE6477 and GSE16558 dataset were filtrated with R package 'limma', whose function were explored by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The key genes were selected from Protein-protein interaction network (PPI) and logistic regression model. The correlation between key genes and survival in MM was evaluated using the survival and survminer package. Additionally, immune filtration analysis was accomplished by CIBERSORT tools. RESULTS 118 DEGs (92 up-regulated and 26 down-regulated) from two GSE datasets were identified, which were closely related with B cell receptor signaling pathway and Epstein-Barr virus infection. Furthermore, CD24 and PTPRC of five hub genes identified in PPI network were further screened out by the logistic regression model. Besides, CD24 and PTPRC expression were significantly correlated to the survival time in MM patients. Finally, MM might cause different infiltrating immune cell compositions, including increased infiltrations of B cells memory, Plasma cells, T cells CD4 memory resting, T cells follicular helper, Tregs, NK cells resting, Macrophages(M0/M1), Dendritic cells resting and Mast cells activating, and lower proportions of B cells naïve, T cells CD4 naïve, Macrophages M2 and Neutrophils. CONCLUSION Targeting CD24 and PTPRC as molecular markers of MM is valuable to MM therapy. Moreover, the immune cell infiltration will provide new insights into MM immunopathology.
Collapse
Affiliation(s)
- Fei Xu
- Department of Hematology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Ling Li
- Department of Hematology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - LiMei Jiang
- Department of Hematology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Jing Zhang
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| |
Collapse
|
9
|
Cao Z, Li P, Li Y, Zhang M, Hao M, Li W, Mao X, Mo L, Yang C, Ding X, Yang YY, Yuan P, Shi S, Kou X. Encapsulation of Nano-Bortezomib in Apoptotic Stem Cell-Derived Vesicles for the Treatment of Multiple Myeloma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301748. [PMID: 37282762 DOI: 10.1002/smll.202301748] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/25/2023] [Indexed: 06/08/2023]
Abstract
Extracellular vesicles (EVs) are lipid bilayer nanovesicles released from living or apoptotic cells that can transport DNA, RNA, protein, and lipid cargo. EVs play critical roles in cell-cell communication and tissue homeostasis, and have numerous therapeutic uses including serving as carriers for nanodrug delivery. There are multiple ways to load EVs with nanodrugs, such as electroporation, extrusion, and ultrasound. However, these approaches may have limited drug-loading rates, poor EV membrane stability, and high cost for large-scale production. Here, it is shown that apoptotic mesenchymal stem cells (MSCs) can encapsulate exogenously added nanoparticles into apoptotic vesicles (apoVs) with a high loading efficiency. When nano-bortezomib is incorporated into apoVs in culture-expanded apoptotic MSCs, nano-bortezomib-apoVs show a synergistic combination effect of bortezomib and apoVs to ameliorate multiple myeloma (MM) in a mouse model, along with significantly reduced side effects of nano-bortezomib. Moreover, it is shown that Rab7 regulates the nanoparticle encapsulation efficiency in apoptotic MSCs and that activation of Rab7 can increase nanoparticle-apoV production. In this study, a previously unknown mechanism to naturally synthesize nano-bortezomib-apoVs to improve MM therapy is revealed.
Collapse
Affiliation(s)
- Zeyuan Cao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Peiyi Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Yuzhen Li
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Manjin Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510055, China
| | - Meng Hao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Wenwen Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Xueli Mao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Lijie Mo
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Chuan Yang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Centros #06-01, Singapore, 138669, Singapore
| | - Xin Ding
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yi Yan Yang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Centros #06-01, Singapore, 138669, Singapore
| | - Peiyan Yuan
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Songtao Shi
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Xiaoxing Kou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| |
Collapse
|
10
|
Baughn LB, Jessen E, Sharma N, Tang H, Smadbeck JB, Long MD, Pearce K, Smith M, Dasari S, Sachs Z, Linden MA, Cook J, Keith Stewart A, Chesi M, Mitra A, Leif Bergsagel P, Van Ness B, Kumar SK. Mass Cytometry reveals unique phenotypic patterns associated with subclonal diversity and outcomes in multiple myeloma. Blood Cancer J 2023; 13:84. [PMID: 37217482 PMCID: PMC10203138 DOI: 10.1038/s41408-023-00851-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/24/2023] Open
Abstract
Multiple myeloma (MM) remains an incurable plasma cell (PC) malignancy. Although it is known that MM tumor cells display extensive intratumoral genetic heterogeneity, an integrated map of the tumor proteomic landscape has not been comprehensively evaluated. We evaluated 49 primary tumor samples from newly diagnosed or relapsed/refractory MM patients by mass cytometry (CyTOF) using 34 antibody targets to characterize the integrated landscape of single-cell cell surface and intracellular signaling proteins. We identified 13 phenotypic meta-clusters across all samples. The abundance of each phenotypic meta-cluster was compared to patient age, sex, treatment response, tumor genetic abnormalities and overall survival. Relative abundance of several of these phenotypic meta-clusters were associated with disease subtypes and clinical behavior. Increased abundance of phenotypic meta-cluster 1, characterized by elevated CD45 and reduced BCL-2 expression, was significantly associated with a favorable treatment response and improved overall survival independent of tumor genetic abnormalities or patient demographic variables. We validated this association using an unrelated gene expression dataset. This study represents the first, large-scale, single-cell protein atlas of primary MM tumors and demonstrates that subclonal protein profiling may be an important determinant of clinical behavior and outcome.
Collapse
Affiliation(s)
- Linda B Baughn
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| | - Erik Jessen
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Neeraj Sharma
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Hongwei Tang
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - James B Smadbeck
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Mark D Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Kathryn Pearce
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Matthew Smith
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Surendra Dasari
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Zohar Sachs
- Division of Hematology, Oncology, and Transplantation, Department of Medicine and Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Michael A Linden
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Joselle Cook
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Marta Chesi
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Amit Mitra
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
| | - P Leif Bergsagel
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Brian Van Ness
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Shaji K Kumar
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
11
|
Lebel E, Nachmias B, Pick M, Gross Even-Zohar N, Gatt ME. Understanding the Bioactivity and Prognostic Implication of Commonly Used Surface Antigens in Multiple Myeloma. J Clin Med 2022; 11:jcm11071809. [PMID: 35407416 PMCID: PMC9000075 DOI: 10.3390/jcm11071809] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) progression is dependent on its interaction with the bone marrow microenvironment and the immune system and is mediated by key surface antigens. Some antigens promote adhesion to the bone marrow matrix and stromal cells, while others are involved in intercellular interactions that result in differentiation of B-cells to plasma cells (PC). These interactions are also involved in malignant transformation of the normal PC to MM PC as well as disease progression. Here, we review selected surface antigens that are commonly used in the flow cytometry analysis of MM for identification of plasma cells (PC) and the discrimination between normal and malignant PC as well as prognostication. These include the markers: CD38, CD138, CD45, CD19, CD117, CD56, CD81, CD27, and CD28. Furthermore, we will discuss the novel marker CD24 and its involvement in MM. The bioactivity of each antigen is reviewed, as well as its expression on normal vs. malignant PC, prognostic implications, and therapeutic utility. Understanding the role of these specific surface antigens, as well as complex co-expressions of combinations of antigens, may allow for a more personalized prognostic monitoring and treatment of MM patients.
Collapse
|
12
|
Cossarizza A, Chang HD, Radbruch A, Abrignani S, Addo R, Akdis M, Andrä I, Andreata F, Annunziato F, Arranz E, Bacher P, Bari S, Barnaba V, Barros-Martins J, Baumjohann D, Beccaria CG, Bernardo D, Boardman DA, Borger J, Böttcher C, Brockmann L, Burns M, Busch DH, Cameron G, Cammarata I, Cassotta A, Chang Y, Chirdo FG, Christakou E, Čičin-Šain L, Cook L, Corbett AJ, Cornelis R, Cosmi L, Davey MS, De Biasi S, De Simone G, del Zotto G, Delacher M, Di Rosa F, Di Santo J, Diefenbach A, Dong J, Dörner T, Dress RJ, Dutertre CA, Eckle SBG, Eede P, Evrard M, Falk CS, Feuerer M, Fillatreau S, Fiz-Lopez A, Follo M, Foulds GA, Fröbel J, Gagliani N, Galletti G, Gangaev A, Garbi N, Garrote JA, Geginat J, Gherardin NA, Gibellini L, Ginhoux F, Godfrey DI, Gruarin P, Haftmann C, Hansmann L, Harpur CM, Hayday AC, Heine G, Hernández DC, Herrmann M, Hoelsken O, Huang Q, Huber S, Huber JE, Huehn J, Hundemer M, Hwang WYK, Iannacone M, Ivison SM, Jäck HM, Jani PK, Keller B, Kessler N, Ketelaars S, Knop L, Knopf J, Koay HF, Kobow K, Kriegsmann K, Kristyanto H, Krueger A, Kuehne JF, Kunze-Schumacher H, Kvistborg P, Kwok I, Latorre D, Lenz D, Levings MK, Lino AC, Liotta F, Long HM, Lugli E, MacDonald KN, Maggi L, Maini MK, Mair F, Manta C, Manz RA, Mashreghi MF, Mazzoni A, McCluskey J, Mei HE, Melchers F, Melzer S, Mielenz D, Monin L, Moretta L, Multhoff G, Muñoz LE, Muñoz-Ruiz M, Muscate F, Natalini A, Neumann K, Ng LG, Niedobitek A, Niemz J, Almeida LN, Notarbartolo S, Ostendorf L, Pallett LJ, Patel AA, Percin GI, Peruzzi G, Pinti M, Pockley AG, Pracht K, Prinz I, Pujol-Autonell I, Pulvirenti N, Quatrini L, Quinn KM, Radbruch H, Rhys H, Rodrigo MB, Romagnani C, Saggau C, Sakaguchi S, Sallusto F, Sanderink L, Sandrock I, Schauer C, Scheffold A, Scherer HU, Schiemann M, Schildberg FA, Schober K, Schoen J, Schuh W, Schüler T, Schulz AR, Schulz S, Schulze J, Simonetti S, Singh J, Sitnik KM, Stark R, Starossom S, Stehle C, Szelinski F, Tan L, Tarnok A, Tornack J, Tree TIM, van Beek JJP, van de Veen W, van Gisbergen K, Vasco C, Verheyden NA, von Borstel A, Ward-Hartstonge KA, Warnatz K, Waskow C, Wiedemann A, Wilharm A, Wing J, Wirz O, Wittner J, Yang JHM, Yang J. Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition). Eur J Immunol 2021; 51:2708-3145. [PMID: 34910301 PMCID: PMC11115438 DOI: 10.1002/eji.202170126] [Citation(s) in RCA: 218] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer-reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state-of-the-art handbook for basic and clinical researchers.
Collapse
Affiliation(s)
- Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Hyun-Dong Chang
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Institute for Biotechnology, Technische Universität, Berlin, Germany
| | - Andreas Radbruch
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Sergio Abrignani
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Richard Addo
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Immanuel Andrä
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Francesco Andreata
- Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Eduardo Arranz
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
| | - Petra Bacher
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany
- Institute of Clinical Molecular Biology Christian-Albrechts Universität zu Kiel, Kiel, Germany
| | - Sudipto Bari
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Vincenzo Barnaba
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
- Center for Life Nano & Neuro Science@Sapienza, Istituto Italiano di Tecnologia (IIT), Rome, Italy
- Istituto Pasteur - Fondazione Cenci Bolognetti, Rome, Italy
| | | | - Dirk Baumjohann
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Cristian G. Beccaria
- Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - David Bernardo
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Dominic A. Boardman
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Jessica Borger
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia
| | - Chotima Böttcher
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leonie Brockmann
- Department of Microbiology & Immunology, Columbia University, New York City, USA
| | - Marie Burns
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Dirk H. Busch
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | - Garth Cameron
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Ilenia Cammarata
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Antonino Cassotta
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Yinshui Chang
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Fernando Gabriel Chirdo
- Instituto de Estudios Inmunológicos y Fisiopatológicos - IIFP (UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Eleni Christakou
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Luka Čičin-Šain
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Laura Cook
- BC Children’s Hospital Research Institute, Vancouver, Canada
- Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Alexandra J. Corbett
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Rebecca Cornelis
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Martin S. Davey
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Gabriele De Simone
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Michael Delacher
- Institute for Immunology, University Medical Center Mainz, Mainz, Germany
- Research Centre for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Francesca Di Rosa
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - James Di Santo
- Innate Immunity Unit, Department of Immunology, Institut Pasteur, Paris, France
- Inserm U1223, Paris, France
| | - Andreas Diefenbach
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Mucosal and Developmental Immunology, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Jun Dong
- Cell Biology, German Rheumatism Research Center Berlin (DRFZ), An Institute of the Leibniz Association, Berlin, Germany
| | - Thomas Dörner
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Department of Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Regine J. Dress
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Charles-Antoine Dutertre
- Institut National de la Sante Et de la Recherce Medicale (INSERM) U1015, Equipe Labellisee-Ligue Nationale contre le Cancer, Villejuif, France
| | - Sidonia B. G. Eckle
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Pascale Eede
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maximilien Evrard
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Christine S. Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Markus Feuerer
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Simon Fillatreau
- Institut Necker Enfants Malades, INSERM U1151-CNRS, UMR8253, Paris, France
- Université de Paris, Paris Descartes, Faculté de Médecine, Paris, France
- AP-HP, Hôpital Necker Enfants Malades, Paris, France
| | - Aida Fiz-Lopez
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
| | - Marie Follo
- Department of Medicine I, Lighthouse Core Facility, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gemma A. Foulds
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Julia Fröbel
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Nicola Gagliani
- Department of Medicine, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
| | - Giovanni Galletti
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Anastasia Gangaev
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Natalio Garbi
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Germany
| | - José Antonio Garrote
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
- Laboratory of Molecular Genetics, Servicio de Análisis Clínicos, Hospital Universitario Río Hortega, Gerencia Regional de Salud de Castilla y León (SACYL), Valladolid, Spain
| | - Jens Geginat
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Nicholas A. Gherardin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Paola Gruarin
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Claudia Haftmann
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Leo Hansmann
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin (CVK), Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, Germany
| | - Christopher M. Harpur
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | - Adrian C. Hayday
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Guido Heine
- Division of Allergy, Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Daniela Carolina Hernández
- Innate Immunity, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Martin Herrmann
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Oliver Hoelsken
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Mucosal and Developmental Immunology, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Qing Huang
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Samuel Huber
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johanna E. Huber
- Institute for Immunology, Biomedical Center, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Hundemer
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - William Y. K. Hwang
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Department of Hematology, Singapore General Hospital, Singapore, Singapore
- Executive Offices, National Cancer Centre Singapore, Singapore
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sabine M. Ivison
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Peter K. Jani
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nina Kessler
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Germany
| | - Steven Ketelaars
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Laura Knop
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Jasmin Knopf
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Hui-Fern Koay
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Katja Kobow
- Department of Neuropathology, Universitätsklinikum Erlangen, Germany
| | - Katharina Kriegsmann
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - H. Kristyanto
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andreas Krueger
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jenny F. Kuehne
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Heike Kunze-Schumacher
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Pia Kvistborg
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Immanuel Kwok
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | | | - Daniel Lenz
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Megan K. Levings
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, Canada
| | - Andreia C. Lino
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Francesco Liotta
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Heather M. Long
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Enrico Lugli
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Katherine N. MacDonald
- BC Children’s Hospital Research Institute, Vancouver, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, Canada
- Michael Smith Laboratories, The University of British Columbia, Vancouver, Canada
| | - Laura Maggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Mala K. Maini
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Florian Mair
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Calin Manta
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - Rudolf Armin Manz
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany
| | | | - Alessio Mazzoni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Henrik E. Mei
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Fritz Melchers
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Susanne Melzer
- Clinical Trial Center Leipzig, Leipzig University, Härtelstr.16, −18, Leipzig, 04107, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Leticia Monin
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Gabriele Multhoff
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research (TranslaTUM), Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
| | - Luis Enrique Muñoz
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Miguel Muñoz-Ruiz
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Franziska Muscate
- Department of Medicine, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ambra Natalini
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Katrin Neumann
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lai Guan Ng
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - Jana Niemz
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Samuele Notarbartolo
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Lennard Ostendorf
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Laura J. Pallett
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Amit A. Patel
- Institut National de la Sante Et de la Recherce Medicale (INSERM) U1015, Equipe Labellisee-Ligue Nationale contre le Cancer, Villejuif, France
| | - Gulce Itir Percin
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Giovanna Peruzzi
- Center for Life Nano & Neuro Science@Sapienza, Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - A. Graham Pockley
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Katharina Pracht
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Irma Pujol-Autonell
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
- Peter Gorer Department of Immunobiology, King’s College London, London, UK
| | - Nadia Pulvirenti
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Linda Quatrini
- Department of Immunology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Kylie M. Quinn
- School of Biomedical and Health Sciences, RMIT University, Bundorra, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Helena Radbruch
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hefin Rhys
- Flow Cytometry Science Technology Platform, The Francis Crick Institute, London, UK
| | - Maria B. Rodrigo
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Germany
| | - Chiara Romagnani
- Innate Immunity, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Carina Saggau
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany
| | | | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Lieke Sanderink
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Christine Schauer
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Alexander Scheffold
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany
| | - Hans U. Scherer
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Matthias Schiemann
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Frank A. Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Kilian Schober
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Janina Schoen
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Wolfgang Schuh
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Axel R. Schulz
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Sebastian Schulz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Julia Schulze
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Sonia Simonetti
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Jeeshan Singh
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Katarzyna M. Sitnik
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Regina Stark
- Charité Universitätsmedizin Berlin – BIH Center for Regenerative Therapies, Berlin, Germany
- Sanquin Research – Adaptive Immunity, Amsterdam, The Netherlands
| | - Sarah Starossom
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christina Stehle
- Innate Immunity, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Franziska Szelinski
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Department of Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Leonard Tan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Attila Tarnok
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany
- Department of Precision Instrument, Tsinghua University, Beijing, China
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Julia Tornack
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Timothy I. M. Tree
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Jasper J. P. van Beek
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | | | - Chiara Vasco
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Nikita A. Verheyden
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Anouk von Borstel
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Kirsten A. Ward-Hartstonge
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claudia Waskow
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Jena, Germany
- Department of Medicine III, Technical University Dresden, Dresden, Germany
| | - Annika Wiedemann
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Department of Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Anneke Wilharm
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - James Wing
- Immunology Frontier Research Center, Osaka University, Japan
| | - Oliver Wirz
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jens Wittner
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Jennie H. M. Yang
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Juhao Yang
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
13
|
Li P, Panse G, Singh S, Krivda SJ, McNiff JM. Cutaneous involvement by plasma cell myeloma with aberrant
CD4
expression. J Cutan Pathol 2021; 49:921-924. [DOI: 10.1111/cup.14141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Philippa Li
- Department of Pathology Yale School of Medicine New Haven Connecticut USA
| | - Gauri Panse
- Department of Pathology Yale School of Medicine New Haven Connecticut USA
- Department of Dermatopathology Yale School of Medicine New Haven Connecticut USA
| | - Saurabh Singh
- U.S. Dermatology Partners Silver Spring Maryland USA
| | | | - Jennifer M. McNiff
- Department of Pathology Yale School of Medicine New Haven Connecticut USA
- Department of Dermatopathology Yale School of Medicine New Haven Connecticut USA
| |
Collapse
|
14
|
Khan S, LeBlanc R, Gyger M, White D, Kaufman J, Jazubowiak A, Gul E, Paul H, Le LW, Lau A, Li Z, Trudel S. A phase-1 trial of linsitinib (OSI-906) in combination with bortezomib and dexamethasone for the treatment of relapsed/refractory multiple myeloma. Leuk Lymphoma 2021; 62:1721-1729. [PMID: 33509009 DOI: 10.1080/10428194.2021.1876864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
We report results of a phase-1 study evaluating the safety and anti-cancer activity of the small molecule insulin-like growth factor-1 receptor (IGF-1R) inhibitor, linsitinib combined with bortezomib, and dexamethasone in relapsed/refractory multiple myeloma. Nineteen patients were enrolled across four dose-escalation cohorts (75-150 mg bid). The maximum tolerated dose of linsitinib was 125 mg. The most frequent Grade 3/4 AEs occurring in ≥10% of patients were thrombocytopenia (53%), bone pain (26%), neutropenia (21%), diarrhea (14%), anemia (14%), rash (10%), and lung infection (10%). Study discontinuation due to treatment-related AEs was low (16%). Across all cohorts the ORR was 61% (95% CI: 28.9-75.6%). Three partial response or greater and one stable disease were observed in proteasome inhibitor (PI) refractory patients (n = 5). Median PFS was 7.1 months (95% CI: 3.6-NA). Linsitinib plus bortezomib and dexamethasone demonstrate a manageable safety profile while the clinical benefit particularly in PI refractory patients warrants further exploration.
Collapse
Affiliation(s)
- Sahar Khan
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada
| | | | | | - Darrell White
- Queen Elizabeth II Health Sciences Centre, Dalhousie University, Halifax, Canada
| | - Johnathan Kaufman
- Winship Cancer Institute Emory University School of Medicine, Atlanta, GA, USA
| | - Andrzej Jazubowiak
- Division of Hematology/Oncology, University of Chicago Medical Center, Chicago, IL, USA
| | - Engin Gul
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada
| | - Harminder Paul
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada
| | - Lisa W Le
- Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, Canada
| | - Anthea Lau
- Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, Canada
| | - Zhihua Li
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada
| | - Suzanne Trudel
- Princess Margaret Cancer Centre Ontario Cancer Institute, Toronto, Canada
| |
Collapse
|
15
|
Abdollahi P, Köhn M, Børset M. Protein tyrosine phosphatases in multiple myeloma. Cancer Lett 2020; 501:105-113. [PMID: 33290866 DOI: 10.1016/j.canlet.2020.11.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/28/2022]
Abstract
Many cell signaling pathways are activated or deactivated by protein tyrosine phosphorylation and dephosphorylation, catalyzed by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs), respectively. Even though PTPs are as important as PTKs in this process, their role has been neglected for a long time. Multiple myeloma (MM) is a cancer of plasma cells, which is characterized by production of monoclonal immunoglobulin, anemia and destruction of bone. MM is still incurable with high relapse frequency after treatment. In this review, we highlight the PTPs that were previously described in MM or have a role that can be relevant in a myeloma context. Our purpose is to show that despite the importance of PTPs in MM pathogenesis, many unanswered questions in this field need to be addressed. This might help to detect novel treatment strategies for MM patients.
Collapse
Affiliation(s)
- Pegah Abdollahi
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Clinic of Medicine, St. Olavs Hospital, Trondheim, Norway; Faculty of Biology, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany.
| | - Maja Köhn
- Faculty of Biology, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany.
| | - Magne Børset
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Immunology and Transfusion Medicine, St. Olavs Hospital, Trondheim, Norway.
| |
Collapse
|
16
|
Statuto T, D'Auria F, Del Vecchio L, Mansueto GR, Villani O, Lalinga AV, Possidente L, Nozza F, Vona G, Rago L, Storto G, Gasparini VR, Zambello R, D'Arena G, Valvano L. Atypical Mature T-Cell Neoplasms: The Relevance of the Role of Flow Cytometry. Onco Targets Ther 2020; 13:7605-7614. [PMID: 32848413 PMCID: PMC7425660 DOI: 10.2147/ott.s258512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/23/2020] [Indexed: 12/26/2022] Open
Abstract
Lymphoproliferative disorders are a heterogeneous group of malignant clonal proliferations of lymphocytes whose diagnosis remains challenging, despite diagnostic criteria are now well established, due to their heterogeneity in clinical presentation and immunophenotypic profile. Lymphoid T-cell disorders are more rarely seen than B-cell entities and more difficult to diagnose for the absence of a specific immunophenotypic signature. Flow cytometry is a useful tool in diagnosing T-cell lymphoproliferative disorders since it is not only able to better characterize T-cell neoplasms but also to resolve some very complicated cases, in particular those in which a small size population of neoplastic cells is available for the analysis. Here, we report three patients with mature T-cell neoplasms with atypical clinical and biological features in which analysis of peripheral blood and bone marrow specimens by means of multicolor flow cytometry was very useful to identify and characterize three rare T-cell lymphoproliferative disorders, such as angioimmunoblastic T-cell lymphoma, peripheral T-cell lymphoma not otherwise specified and T-cell prolymphocytic leukemia. The aim of this case series report is not only to describe three rare cases of lymphoproliferative neoplasms but also to raise awareness that a fast, highly sensitive, and reproducible procedure, such as flow cytometry immunophenotyping, can have a determinant diagnostic role in these patients.
Collapse
Affiliation(s)
- Teodora Statuto
- Laboratory of Clinical Research and Advanced Diagnostics, Centro Di Riferimento Oncologico Della Basilicata (IRCCS-CROB), Rionero in Vulture, Pz, Italy
| | - Fiorella D'Auria
- Unit of Clinical Pathology, Centro Di Riferimento Oncologico Della Basilicata (IRCCS-CROB), Rionero in Vulture, Pz, Italy
| | - Luigi Del Vecchio
- CEINGE Biotecnologie Avanzate S.c.a.r.l, Federico II University, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology (DMMBM), Federico II University, Naples, Italy
| | - Giovanna Rosaria Mansueto
- Hematology Department of Basilicata, Centro Di Riferimento Oncologico Della Basilicata (IRCCS-CROB), Rionero in Vulture, Pz, Italy
| | - Oreste Villani
- Hematology Department of Basilicata, Centro Di Riferimento Oncologico Della Basilicata (IRCCS-CROB), Rionero in Vulture, Pz, Italy
| | - Anna Vittoria Lalinga
- Pathology Unit, Centro Di Riferimento Oncologico Della Basilicata (IRCCS-CROB), Rionero in Vulture, Pz, Italy
| | - Luciana Possidente
- Pathology Unit, Centro Di Riferimento Oncologico Della Basilicata (IRCCS-CROB), Rionero in Vulture, Pz, Italy
| | - Filomena Nozza
- Laboratory of Clinical Research and Advanced Diagnostics, Centro Di Riferimento Oncologico Della Basilicata (IRCCS-CROB), Rionero in Vulture, Pz, Italy
| | - Gabriella Vona
- Laboratory of Clinical Research and Advanced Diagnostics, Centro Di Riferimento Oncologico Della Basilicata (IRCCS-CROB), Rionero in Vulture, Pz, Italy
| | - Luciana Rago
- Radiotherapy Unit, Centro Di Riferimento Oncologico Della Basilicata (IRCCS-CROB), Rionero in Vulture, Pz, Italy
| | - Giovanni Storto
- Department of Nuclear Medicine, Centro Di Riferimento Oncologico Della Basilicata (IRCCS-CROB), Rionero in Vulture, Pz, Italy
| | - Vanessa Rebecca Gasparini
- Department of Medicine, University of Padova - Veneto Institute of Molecular Medicine, VIMM, Padova, PD, Italy
| | - Renato Zambello
- Hematology and Clinical Immunology, Department of Medicine, Padua School of Medicine, Padova, PD, Italy
| | - Giovanni D'Arena
- Hematology Department of Basilicata, Centro Di Riferimento Oncologico Della Basilicata (IRCCS-CROB), Rionero in Vulture, Pz, Italy
| | - Luciana Valvano
- Laboratory of Clinical Research and Advanced Diagnostics, Centro Di Riferimento Oncologico Della Basilicata (IRCCS-CROB), Rionero in Vulture, Pz, Italy
| |
Collapse
|
17
|
CD19-positive antibody-secreting cells provide immune memory. Blood Adv 2019; 2:3163-3176. [PMID: 30478153 DOI: 10.1182/bloodadvances.2017015172] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 09/06/2018] [Indexed: 12/15/2022] Open
Abstract
Long-lived antibody-secreting cells (ASCs) are critical for the maintenance of humoral immunity through the continued production of antibodies specific for previously encountered pathogen or vaccine antigens. Recent reports describing humoral immune memory have suggested the importance of long-lived CD19- bone marrow (BM) ASCs, which secrete antibodies recognizing previously encountered vaccine antigens. However, these reports do not agree upon the unique contribution of the CD19+ BM ASC subset toward humoral immunity. Here, we found both CD19+ and negative ASCs from human BM were similar in functional capacity to react to a number of vaccine antigens via ELISpot assays. The CD19+ cells were the predominant ASC population found in lymphoid tissues, and unlike the CD19- ASCs, which were found only in spleen and BM, the CD19+ ASCs were found in tonsil and blood. CD19+ ASCs from the BM, spleen, and tonsil were capable of recognizing polio vaccine antigens, indicating the CD19+ ASC cells play a novel role in long-lasting immune defense. Comparative gene expression analysis indicated CD19+ and negative BM ASCs differed significantly by only 14 distinct messenger RNAs and exhibited similar gene expression for cell cycle, autophagy, and apoptosis control necessary for long life. In addition, we show identical CDR-H3 sequences found on both BM ASC subsets, indicating a shared developmental path. Together, these results provide novel insight for the distribution, function, genetic regulation, and development of long-lived ASCs and may not only impact improved cell therapies but also enhance strategies for vaccine development.
Collapse
|
18
|
Shi J, Zhu ZM, Sun K, Lei PC, Liu ZW, Guo JM, Yang J, Zang YZ, Zhang Y. [Expression of CD45 in newly diagnosed multiple myeloma and the relationship with prognosis]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2019; 40:744-749. [PMID: 31648475 PMCID: PMC7342442 DOI: 10.3760/cma.j.issn.0253-2727.2019.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Indexed: 01/21/2023]
Abstract
Objective: To explore the expression of CD45 in newly diagnosed multiple myeloma (MM) and its relationship with clinical efficacy and prognosis. Methods: This study retrospectively analyzed expression and distribution of CD45 in 130 cases of newly diagnosed MM, comparing clinical efficacy and prognosis in CD45(+)/CD45(-) groups. Results: ①The CD45(+) group was 33 cases (25.38%) , and CD45(-) group was 97 cases (74.62%) . ②The objective remission rate (ORR) of CD45(+) and CD45(-)group was 33.33% and 64.95%, respectively. The difference was statistically significant (P=0.002) . For patients in Bortezomib regimen, the ORR of CD45(+) and CD45(-) group was 35.71% and 66.25%, respectively. The difference was statistically significant (P=0.005) . ③The median progress free survival (PFS) of CD45(+) group and CD45(-) group was 29.8 (95%CI 10.0-59.0) months vs 34.5 (95%CI 6.0-69.0) months (χ(2)=14.59, P<0.001) and the median overall survival (OS) was 32.5 (95%CI 10.0-68.0) months vs 37.6 (95%CI 6.0-78.0) months (χ(2)=11.42, P=0.001) , respectively. Among the patients in bortezomib regimen, The median PFS and median OS of CD45 (+) group and CD45(-) group were 30.3 (95%CI 10.0-59.0) months vs 36.3 (95%CI 6.0-69.0) months (χ(2)=14.75, P=0.001) and 34.0 (95%CI 10.0-68.0) months vs 39.5 (95%CI 6.0-78.0) months (χ(2)=10.62, P=0.001) . ④Cox risk regression model analysis showed that serum creatinine≥176.8 μmol/L (HR=5.078, 95%CI 1.744-14.723, P=0.001) , CD45 positive (HR=14.504, 95%CI 0.168-0.42, P=0.001) , LDH≥220 IU/L (HR=1.308, 95%CI 1.16-2.417, P=0.015) were independent risk prognostic factors. Conclusion: CD45 expression is a risk prognostic factor of MM patients. Bortezomib did not improve the poor prognosis of CD45(+) MM patients.
Collapse
Affiliation(s)
- J Shi
- Henan Provincial People's Hospital, Zhengzhou 450003, China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Capp JP, Bataille R. Multiple Myeloma Exemplifies a Model of Cancer Based on Tissue Disruption as the Initiator Event. Front Oncol 2018; 8:355. [PMID: 30250824 PMCID: PMC6140628 DOI: 10.3389/fonc.2018.00355] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/13/2018] [Indexed: 12/17/2022] Open
Abstract
The standard model of multiple myeloma (MM) oncogenesis is based on the genetic instability of MM cells and presents its evolution as the emergence of clones with more and more aggressive genotypes, giving them surviving and proliferating advantage. The micro-environment has a passive role. In contrast, many works have shown that the progression of MM is also characterized by the selection of clones with extended phenotypes able to destroy bone trabeculae, suggesting a major role for early micro-environmental disruption. We present a model of MM oncogenesis in which genetic instability is the consequence of the disruption of normal interactions between plasma cells and their environment, the bone remodeling compartment. These interactions, which normally ensure the stability of the genotypes and phenotypes of normal plasma cells could be disrupted by many factors as soon as the early steps of the disease (MGUS, pre-MGUS states). Therapeutical implications of the model are presented.
Collapse
Affiliation(s)
- Jean-Pascal Capp
- LISBP, UMR CNRS 5504, UMR INRA 792, INSA Toulouse, University of Toulouse, Toulouse, France
| | - Régis Bataille
- Faculty of Medecine, University of Angers, Angers, France
| |
Collapse
|
20
|
Zeng Y, Gao L, Luo X, Chen Y, Kabeer MH, Chen X, Stucky A, Loudon WG, Li SC, Zhang X, Zhong JF. Microfluidic enrichment of plasma cells improves treatment of multiple myeloma. Mol Oncol 2018; 12:1004-1011. [PMID: 29638042 PMCID: PMC6026869 DOI: 10.1002/1878-0261.12201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 12/17/2022] Open
Abstract
Cytogenetic alterations form the basis for risk stratification for multiple myeloma (MM) and guide the selection of therapy; however, current pathology assays performed on bone marrow samples can produce false‐negatives due to the unpredictable distribution and rarity of MM cells. Here, we report on a microfluidic device used to facilitate CD45 depletion to enhance the detection of cytogenetic alterations in plasma cells (PCs). Bone marrow samples from 48 patients with MM were each divided into two aliquots. One aliquot was subjected to classic flow cytometry and fluorescent in situ hybridization (FISH). The other first went through CD45+ cell depletion, further enriched by microfluidic size selection. The enriched samples were then analyzed using flow cytometry and FISH and compared to those analyzed using the classic method only. Unlike the traditional method, the microfluidic device removed the CD45+ leukocytes and specifically selected PCs from the remaining white blood cells. Therefore, the microfluidic method (MF‐CD45‐TACs) significantly increased the percentage of CD38+/CD138+ cells to 37.7 ± 20.4% (P < 0.001) from 10.3 ± 8.5% in bone marrow. After the MF‐CD45‐TAC enrichment, the detection rate of IgH rearrangement, del(13q14), del(17p), and 1q21 gains, rose to 56.3% (P < 0.001), 37.5% (P < 0.001), 22.9% (P < 0.001), and 41.7% (P = 0.001), respectively; all rates of detection were significantly increased compared to the classically analyzed samples. In this clinical trial, this microfluidic‐assisted assay provided a precise detection of cytogenetic alterations in PCs and improved clinical outcomes.
Collapse
Affiliation(s)
- Yunjing Zeng
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA.,Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Li Gao
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA.,Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xiaoqing Luo
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yan Chen
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Beijing, China
| | - Mustafa H Kabeer
- Children's Hospital of Orange County, University of California-Irvine School of Medicine, Orange, CA, USA
| | - Xuelian Chen
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Andres Stucky
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - William G Loudon
- Children's Hospital of Orange County, University of California-Irvine School of Medicine, Orange, CA, USA
| | - Shengwen C Li
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA.,Children's Hospital of Orange County, University of California-Irvine School of Medicine, Orange, CA, USA
| | - Xi Zhang
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA.,Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jiang F Zhong
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
21
|
Pre-treatment red blood cell distribution width provides prognostic information in multiple myeloma. Clin Chim Acta 2018; 481:34-41. [PMID: 29452082 DOI: 10.1016/j.cca.2018.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/16/2018] [Accepted: 02/10/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND The red blood cell distribution width (RDW), a credible marker for abnormal erythropoiesis, has recently been studied as a prognostic factor in oncology, but its role in multiple myeloma (MM) hasn't been thoroughly investigated. METHODS We performed a retrospective study in 162 patients with multiple myeloma. Categorical parameters were analyzed using Pearson chi-squared test. The Mann-Whitney and Wilcoxon tests were used for group comparisons. Comparisons of repeated samples data were analyzed with the general linear model repeated-measures procedure. The Kaplan-Meier product-limit method was used to determine OS and PFS, and the differences were assessed by the log-rank test. RESULTS High RDW baseline was significantly associated with indexes including haemoglobin, bone marrow plasma cell infiltration, and cytogenetics risk stratification. After chemotherapy, the overall response rate (ORR) decreased as RDW baseline increased. In 24 patients with high RDW baseline, it was revealed RDW value decreased when patients achieved complete remission (CR), but increased when the disease progressed. The normal-RDW baseline group showed both longer overall survival (OS) and progression-free survival (PFS) than the high-RDW baseline group. CONCLUSION Our study suggests pre-treatment RDW level is a prognostic factor in MM and should be regarded as an important parameter for assessment of therapeutic efficiency.
Collapse
|
22
|
CD45 in human physiology and clinical medicine. Immunol Lett 2018; 196:22-32. [PMID: 29366662 DOI: 10.1016/j.imlet.2018.01.009] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 01/20/2023]
Abstract
CD45 is an evolutionary highly conserved receptor protein tyrosine phosphatase exclusively expressed on all nucleated cells of the hematopoietic system. It is characterized by the expression of several isoforms, specific to a certain cell type and the developmental or activation status of the cell. CD45 is one of the key players in the initiation of T cell receptor signaling by controlling the activation of the Src family protein-tyrosine kinases Lck and Fyn. CD45 deficiency results in T- and B-lymphocyte dysfunction in the form of severe combined immune deficiency. It also plays a significant role in autoimmune diseases and cancer as well as in infectious diseases including fungal infections. The knowledge collected on CD45 biology is rather vast, but it remains unclear whether all findings in rodent immune cells also apply to human CD45. This review focuses on human CD45 expression and function and provides an overview on its ligands and role in human pathology.
Collapse
|
23
|
Tembhare PR, Ghogale S, Tauro W, Badrinath Y, Deshpande N, Kedia S, Cherian K, Patkar NV, Chatterjee G, Gujral S, Subramanian PG. Evaluation of CD229 as a new alternative plasma cell gating marker in the flow cytometric immunophenotyping of monoclonal gammopathies. CYTOMETRY PART B-CLINICAL CYTOMETRY 2018; 94:509-519. [DOI: 10.1002/cyto.b.21619] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 12/07/2017] [Accepted: 12/21/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Prashant R. Tembhare
- Hematopathology Laboratory; ACTREC, Tata Memorial Centre; Kharghar, Navi, Mumbai 410210 India
| | - Sitaram Ghogale
- Hematopathology Laboratory; ACTREC, Tata Memorial Centre; Kharghar, Navi, Mumbai 410210 India
| | - Wilma Tauro
- Hematopathology Laboratory; ACTREC, Tata Memorial Centre; Kharghar, Navi, Mumbai 410210 India
| | - Yajamanam Badrinath
- Hematopathology Laboratory; ACTREC, Tata Memorial Centre; Kharghar, Navi, Mumbai 410210 India
| | - Nilesh Deshpande
- Hematopathology Laboratory; ACTREC, Tata Memorial Centre; Kharghar, Navi, Mumbai 410210 India
| | - Shweta Kedia
- Hematopathology Laboratory; ACTREC, Tata Memorial Centre; Kharghar, Navi, Mumbai 410210 India
| | - Keziah Cherian
- Hematopathology Laboratory; ACTREC, Tata Memorial Centre; Kharghar, Navi, Mumbai 410210 India
| | - Nikhil V. Patkar
- Hematopathology Laboratory; ACTREC, Tata Memorial Centre; Kharghar, Navi, Mumbai 410210 India
| | - Gaurav Chatterjee
- Hematopathology Laboratory; ACTREC, Tata Memorial Centre; Kharghar, Navi, Mumbai 410210 India
| | - Sumeet Gujral
- Department of Pathology; Tata Memorial Hospital; Parel, Mumbai 400012 India
| | - Papagudi G. Subramanian
- Hematopathology Laboratory; ACTREC, Tata Memorial Centre; Kharghar, Navi, Mumbai 410210 India
| |
Collapse
|
24
|
Russignan A, Spina C, Tamassia N, Cassaro A, Rigo A, Bagnato A, Rosanò L, Bonalumi A, Gottardi M, Zanatta L, Giacomazzi A, Scupoli MT, Tinelli M, Salvadori U, Mosna F, Zamò A, Cassatella MA, Vinante F, Tecchio C. Endothelin-1 receptor blockade as new possible therapeutic approach in multiple myeloma. Br J Haematol 2017; 178:781-793. [DOI: 10.1111/bjh.14771] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/14/2017] [Indexed: 01/31/2023]
Affiliation(s)
- Anna Russignan
- Haematology and Bone-Marrow Transplant Unit; Department of Medicine; Verona University; Verona Italy
| | - Cecilia Spina
- Haematology and Bone-Marrow Transplant Unit; Department of Medicine; Verona University; Verona Italy
| | - Nicola Tamassia
- Section of General Pathology; Department of Medicine; Verona University; Verona Italy
| | - Adriana Cassaro
- Haematology and Bone-Marrow Transplant Unit; Department of Medicine; Verona University; Verona Italy
| | - Antonella Rigo
- Haematology and Bone-Marrow Transplant Unit; Department of Medicine; Verona University; Verona Italy
| | - Anna Bagnato
- Preclinical Models and New Therapeutic Agents Unit; Regina Elena National Cancer Institute; Rome Italy
| | - Laura Rosanò
- Preclinical Models and New Therapeutic Agents Unit; Regina Elena National Cancer Institute; Rome Italy
| | - Angela Bonalumi
- Haematology and Bone-Marrow Transplant Unit; Department of Medicine; Verona University; Verona Italy
| | | | - Lucia Zanatta
- Pathology Unit; Ospedale Regionale Cà Foncello; Treviso Italy
| | - Alice Giacomazzi
- Haematology and Bone-Marrow Transplant Unit; Department of Medicine; Verona University; Verona Italy
| | - Maria Teresa Scupoli
- Interdepartmental Laboratory for Medical Research (LURM); Verona University; Verona Italy
| | - Martina Tinelli
- Haematology and Bone-Marrow Transplant Unit; Department of Medicine; Verona University; Verona Italy
| | - Ugo Salvadori
- Haematology and Bone-Marrow Transplant Unit; Department of Medicine; Verona University; Verona Italy
| | - Federico Mosna
- Haematology Unit; Ospedale Regionale Cà Foncello; Treviso Italy
| | - Alberto Zamò
- Section of Pathology; Department of Pathology and Diagnostic; Verona University; Verona Italy
| | - Marco A. Cassatella
- Section of General Pathology; Department of Medicine; Verona University; Verona Italy
| | - Fabrizio Vinante
- Haematology and Bone-Marrow Transplant Unit; Department of Medicine; Verona University; Verona Italy
| | - Cristina Tecchio
- Haematology and Bone-Marrow Transplant Unit; Department of Medicine; Verona University; Verona Italy
| |
Collapse
|
25
|
Nishana M, Nilavar NM, Kumari R, Pandey M, Raghavan SC. HIV integrase inhibitor, Elvitegravir, impairs RAG functions and inhibits V(D)J recombination. Cell Death Dis 2017; 8:e2852. [PMID: 28569776 PMCID: PMC5520896 DOI: 10.1038/cddis.2017.237] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/24/2017] [Accepted: 04/05/2017] [Indexed: 12/13/2022]
Abstract
Integrase inhibitors are a class of antiretroviral drugs used for the treatment of AIDS that target HIV integrase, an enzyme responsible for integration of viral cDNA into host genome. RAG1, a critical enzyme involved in V(D)J recombination exhibits structural similarity to HIV integrase. We find that two integrase inhibitors, Raltegravir and Elvitegravir, interfered with the physiological functions of RAGs such as binding, cleavage and hairpin formation at the recombination signal sequence (RSS), though the effect of Raltegravir was limited. Circular dichroism studies demonstrated a distinct change in the secondary structure of RAG1 central domain (RAG1 shares DDE motif amino acids with integrases), and when incubated with Elvitegravir, an equilibrium dissociation constant (Kd) of 32.53±2.9 μM was determined by Biolayer interferometry, leading to inhibition of its binding to DNA. Besides, using extrachromosomal assays, we show that Elvitegravir inhibited both coding and signal joint formation in pre-B cells. Importantly, treatment with Elvitegravir resulted in significant reduction of mature B lymphocytes in 70% of mice studied. Thus, our study suggests a potential risk associated with the use of Elvitegravir as an antiretroviral drug, considering the evolutionary and structural similarities between HIV integrase and RAGs.
Collapse
Affiliation(s)
| | - Namrata M Nilavar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Rupa Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Monica Pandey
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
26
|
Loss of CD45 cell surface expression in canine T-zone lymphoma results from reduced gene expression. Vet Immunol Immunopathol 2017; 187:14-19. [DOI: 10.1016/j.vetimm.2017.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 02/28/2017] [Accepted: 03/23/2017] [Indexed: 12/19/2022]
|
27
|
Iriyama N, Miura K, Hatta Y, Kobayashi S, Uchino Y, Kurita D, Sakagami H, Takahashi H, Sakagami M, Kobayashi Y, Nakagawa M, Ohtake S, Iizuka Y, Takei M. Clinical effect of immunophenotyping on the prognosis of multiple myeloma patients treated with bortezomib. Oncol Lett 2017; 13:3803-3808. [PMID: 28521480 DOI: 10.3892/ol.2017.5920] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 01/19/2017] [Indexed: 11/06/2022] Open
Abstract
In the present study, the effect of immunophenotyping on the prognoses of patients with multiple myeloma (MM) treated with bortezomib plus dexamethasone was investigated. The study involved 46 patients with MM, and analyzed the prognostic significance of the expression of cluster of differentiation (CD)45, CD56 and mature plasma cell (MPC)-1, and other factors including the International Staging System (ISS) stage, age, gender, the immunoglobulin subtype and the treatment line number prior to bortezomib treatment. Although CD56 and MPC-1 expression did not appear to affect the time to next treatment (TNT) or overall survival rate (OS), the univariate analysis determined that CD45 positivity was an adverse prognostic factor for TNT and OS, and that being male was significantly associated with inferior TNT and OS. Multivariate analyses determined that CD45 expression was prognostically significant for TNT and OS. In conclusion, CD45 positivity is an adverse prognostic factor in MM patients treated with bortezomib. The data from the present study demonstrate the clinical importance of classifying MM cells immunophenotypically to determine the prognoses of patients.
Collapse
Affiliation(s)
- Noriyoshi Iriyama
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Katsuhiro Miura
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Yoshihiro Hatta
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Sumiko Kobayashi
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Yoshihito Uchino
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Daisuke Kurita
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Hitomi Sakagami
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Hiromichi Takahashi
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan.,Department of Clinical Laboratory, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Masashi Sakagami
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Yujin Kobayashi
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Masaru Nakagawa
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Shimon Ohtake
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Yoshikazu Iizuka
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Masami Takei
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| |
Collapse
|
28
|
Harrison MK, Vanderjagt TJ, Zhang QY. A Case Of Neuroendocrine Carcinoma Expressing Myeloid Markers By Flow Cytometry And Review Of the Literature. CYTOMETRY PART B-CLINICAL CYTOMETRY 2016; 94:354-356. [DOI: 10.1002/cyto.b.21386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/24/2016] [Accepted: 06/06/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Melody K. Harrison
- Department of Pathology; University of New Mexico; Albuquerque New Mexico
| | | | - Qian-Yun Zhang
- Department of Pathology; University of New Mexico; Albuquerque New Mexico
| |
Collapse
|
29
|
Ali AM, Dehdashti F, DiPersio JF, Cashen AF. Radioimmunotherapy-based conditioning for hematopoietic stem cell transplantation: Another step forward. Blood Rev 2016; 30:389-99. [PMID: 27174151 DOI: 10.1016/j.blre.2016.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 04/16/2016] [Accepted: 04/26/2016] [Indexed: 10/21/2022]
Affiliation(s)
- Alaa M Ali
- Department of Internal Medicine, Washington University School of Medicine, 660 S Euclid Avenue, Campus 8058, St. Louis, MO 63110, USA.
| | - Farrokh Dehdashti
- Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, 660 S Euclid Avenue, St. Louis, MO 63110, USA.
| | - John F DiPersio
- Department of Internal Medicine, Washington University School of Medicine, 660 S Euclid Avenue, Campus 8058, St. Louis, MO 63110, USA.
| | - Amanda F Cashen
- Department of Internal Medicine, Washington University School of Medicine, 660 S Euclid Avenue, Campus 8058, St. Louis, MO 63110, USA.
| |
Collapse
|
30
|
Gonsalves WI, Timm MM, Rajkumar SV, Morice WG, Dispenzieri A, Buadi FK, Lacy MQ, Dingli D, Leung N, Kapoor P, Kyle RA, Gertz MA, Kumar SK. The prognostic significance of CD45 expression by clonal bone marrow plasma cells in patients with newly diagnosed multiple myeloma. Leuk Res 2016; 44:32-9. [PMID: 26994849 DOI: 10.1016/j.leukres.2016.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 03/02/2016] [Accepted: 03/08/2016] [Indexed: 11/25/2022]
Abstract
Evaluation of clonal plasma cells (PCs) in the bone marrow (BM) of multiple myeloma (MM) patients reveals two distinct clonal PC populations based on the presence or absence of CD45 expression. We explored the prognostic significance of CD45 expression by clonal PCs in the BM of MM patients in the era of novel agent therapy. All 156 MM patients seen at the Mayo Clinic, Rochester from 2009 to 2011 who had their BM evaluated by multiparametric flow cytometry were included. Patients whose BM had ≥20% of the clonal PCs expressing CD45 were classified as CD45 positive (+) and the rest as CD45 negative (-). Of these patients, the median overall survival (OS) for patients in the CD45 (+) group (n=43, 28%) was 38 months versus not reached for the CD45 (-) group (n=113, 72%) (P=0.009). In a multivariable analysis, CD45 (+) status was an independent predictor of inferior OS among newly diagnosed patients with MM. CD45 expression may be a surrogate for a more aggressive phenotype of MM and warrants further investigation.
Collapse
Affiliation(s)
- Wilson I Gonsalves
- Division of Hematology, and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Michael M Timm
- Division of Hematology, and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - S Vincent Rajkumar
- Division of Hematology, and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - William G Morice
- Division of Hematology, and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Angela Dispenzieri
- Division of Hematology, and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Francis K Buadi
- Division of Hematology, and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Martha Q Lacy
- Division of Hematology, and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - David Dingli
- Division of Hematology, and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Nelson Leung
- Division of Hematology, and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Prashant Kapoor
- Division of Hematology, and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Robert A Kyle
- Division of Hematology, and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Morie A Gertz
- Division of Hematology, and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Shaji K Kumar
- Division of Hematology, and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
31
|
Guo J, Su J, He Q, Li X, Zhao Y, Gu S, Fei C, Chang C. The prognostic impact of multiparameter flow cytometry immunophenotyping and cytogenetic aberrancies in patients with multiple myeloma. ACTA ACUST UNITED AC 2016; 21:152-61. [PMID: 25860485 DOI: 10.1179/1607845415y.0000000010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES The aim of this study was to evaluate the prognostic impact of immunophenotyping in patients with multiple myeloma (MM), as well as other markers of disease, such as serum hyaluronan and cytogenetic aberrancies. METHODS We have prospectively analyzed the prognostic impact of antigenic markers, assessed by multiparametric flow cytometry (MFC), in a series of newly diagnosed MM patients (n = 79). RESULTS AND DISCUSSION Our results show that the expression of CD44, CD45, and CD28 and the absence of CD117 were associated with a significantly shorter progression free-survival (PFS). Clinical characteristics were collected; Cytogenetic aberrancies were assessed in 40 patients. Multivariate survival analyses identified that the CD117(-), CD28(+), CD45(+), and the percentage of bone marrow plasma cells by MFC are survival predictor, along with the International Staging System stage. Interestingly, the CD117(-) patients were associated with chromosomal aberrancies, including del (17p), +1q21, and IgH translocations. CONCLUSION The incorporation of multiparameter flow cytometry immunophenotyping into the routine diagnostic evaluation of MM patients can help to identify patients at a high risk of progression.
Collapse
Affiliation(s)
- Juan Guo
- a Department of Hematology , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , China
| | - Jiying Su
- a Department of Hematology , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , China
| | - Qi He
- a Department of Hematology , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , China
| | - Xiao Li
- a Department of Hematology , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , China
| | - Youshan Zhao
- a Department of Hematology , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , China
| | - Shucheng Gu
- a Department of Hematology , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , China
| | - Chengming Fei
- a Department of Hematology , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , China
| | - Chunkang Chang
- a Department of Hematology , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , China
| |
Collapse
|
32
|
Asvadi P, Cuddihy A, Dunn RD, Jiang V, Wong MX, Jones DR, Khong T, Spencer A. MDX-1097 induces antibody-dependent cellular cytotoxicity against kappa multiple myeloma cells and its activity is augmented by lenalidomide. Br J Haematol 2015; 169:333-43. [PMID: 25653020 DOI: 10.1111/bjh.13298] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/03/2014] [Indexed: 12/20/2022]
Abstract
MDX-1097 is an antibody specific for a unique B cell antigen called kappa myeloma antigen (KMA) that consists of cell membrane-associated free kappa light chain (κFLC). KMA was detected on kappa human multiple myeloma cell lines (κHMCLs), on plasma cells (PCs) from kappa multiple myeloma (κMM) patients and on κPC dyscrasia tissue cryosections. In primary κMM samples, KMA was present on CD38+ cells that were CD138 and CD45 positive and/or negative. MDX-1097 exhibited a higher affinity for KMA compared to κFLC and the latter did not abrogate binding to KMA. MDX-1097-mediated antibody-dependent cellular cytotoxicity (ADCC) and in vitro exposure of target cells to the immunomodulatory drug lenalidomide resulted in increased KMA expression and ADCC. Also, in vitro exposure of peripheral blood mononuclear cells (PBMCs) to lenalidomide enhanced MDX-1097-mediated ADCC. PBMCs obtained from myeloma patients after lenalidomide therapy elicited significantly higher levels of MDX-1097-mediated ADCC than cells obtained prior to lenalidomide treatment. These data establish KMA as a relevant cell surface antigen on MM cells that can be targeted by MDX-1097. The ADCC-inducing capacity of MDX-1097 and its potentiation by lenalidomide provide a powerful rationale for clinical evaluation of MDX-1097 alone and in combination with lenalidomide.
Collapse
|
33
|
Pojero F, Casuccio A, Parrino MF, Cardinale G, Colonna Romano G, Caruso C, Gervasi F. Old and new immunophenotypic markers in multiple myeloma for discrimination of responding and relapsing patients: The importance of “normal” residual plasma cell analysis. CYTOMETRY PART B-CLINICAL CYTOMETRY 2015; 88:165-82. [DOI: 10.1002/cyto.b.21218] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 12/03/2014] [Accepted: 12/14/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Fanny Pojero
- D.S.O.U. Specialistic Laboratory Oncology; Hematology and Cell Cultures for Clinical Use, ARNAS Civico; Piazza Nicola Leotta 4 Palermo 90127 Italy
- Department of Pathobiology and Medical and Forensic Biotechnologies; University of Palermo; Corso Tukory 211 Palermo 90134 Italy
| | - Alessandra Casuccio
- Department of Sciences for Health Promotion and Mother-Child Care; University of Palermo; Via del Vespro 133 Palermo 90133 Italy
| | - Maria Francesca Parrino
- D.S.O.U. Specialistic Laboratory Oncology; Hematology and Cell Cultures for Clinical Use, ARNAS Civico; Piazza Nicola Leotta 4 Palermo 90127 Italy
| | - Giovanni Cardinale
- C.O.U. of Onco-Hematology; ARNAS Civico; Piazza Nicola Leotta 4 Palermo 90127 Italy
| | - Giuseppina Colonna Romano
- Department of Pathobiology and Medical and Forensic Biotechnologies; University of Palermo; Corso Tukory 211 Palermo 90134 Italy
| | - Calogero Caruso
- Department of Pathobiology and Medical and Forensic Biotechnologies; University of Palermo; Corso Tukory 211 Palermo 90134 Italy
| | - Francesco Gervasi
- D.S.O.U. Specialistic Laboratory Oncology; Hematology and Cell Cultures for Clinical Use, ARNAS Civico; Piazza Nicola Leotta 4 Palermo 90127 Italy
| |
Collapse
|
34
|
Kalff A, Khong T, Wall M, Gorniak M, Mithraprabhu S, Campbell LJ, Spencer A. A rare case of IGH/MYC and IGH/BCL2 double hit primary plasma cell leukemia. Haematologica 2014; 100:e60-2. [PMID: 25381133 DOI: 10.3324/haematol.2014.111385] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Anna Kalff
- Alfred Hospital, Myeloma Research Group, Australian Centre for Blood Diseases, Monash University, Melbourne
| | - Tiffany Khong
- Alfred Hospital, Myeloma Research Group, Australian Centre for Blood Diseases, Monash University, Melbourne
| | - Meaghan Wall
- Victorian Cancer Cytogenetics Service, St Vincent's Hospital, Melbourne Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Malgorzata Gorniak
- Department of Laboratory Haematology, Alfred Hospital, Melbourne, Australia
| | - Sridurga Mithraprabhu
- Alfred Hospital, Myeloma Research Group, Australian Centre for Blood Diseases, Monash University, Melbourne
| | - Lynda J Campbell
- Victorian Cancer Cytogenetics Service, St Vincent's Hospital, Melbourne Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Andrew Spencer
- Alfred Hospital, Myeloma Research Group, Australian Centre for Blood Diseases, Monash University, Melbourne
| |
Collapse
|
35
|
Immune cell inhibition by SLAMF7 is mediated by a mechanism requiring src kinases, CD45, and SHIP-1 that is defective in multiple myeloma cells. Mol Cell Biol 2014; 35:41-51. [PMID: 25312647 DOI: 10.1128/mcb.01107-14] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Signaling lymphocytic activation molecule F7 (SLAMF7) is a receptor present on immune cells, including natural killer (NK) cells. It is also expressed on multiple myeloma (MM) cells. This led to development of an anti-SLAMF7 antibody, elotuzumab, showing efficacy against MM. SLAMF7 mediates activating or inhibitory effects in NK cells, depending on whether cells express or do not express the adaptor EAT-2. Since MM cells lack EAT-2, we elucidated the inhibitory effectors of SLAMF7 in EAT-2-negative NK cells and tested whether these effectors were triggered in MM cells. SLAMF7-mediated inhibition in NK cells lacking EAT-2 was mediated by SH2 domain-containing inositol phosphatase 1 (SHIP-1), which was recruited via tyrosine 261 of SLAMF7. Coupling of SLAMF7 to SHIP-1 required Src kinases, which phosphorylated SLAMF7. Although MM cells lack EAT-2, elotuzumab did not induce inhibitory signals in these cells. This was at least partly due to a lack of CD45, a phosphatase required for Src kinase activation. A defect in SLAMF7 function was also observed in CD45-deficient NK cells. Hence, SLAMF7-triggered inhibition is mediated by a mechanism involving Src kinases, CD45, and SHIP-1 that is defective in MM cells. This defect might explain why elotuzumab eliminates MM cells by an indirect mechanism involving the activation of NK cells.
Collapse
|
36
|
Shin SY, Lee ST, Kim HJ, Kim SJ, Kim K, Kang ES, Kim SH. Antigen Expression Patterns of Plasma Cell Myeloma: An Association of Cytogenetic Abnormality and International Staging System (ISS) for Myeloma. J Clin Lab Anal 2014; 29:505-10. [PMID: 25277787 DOI: 10.1002/jcla.21801] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 08/07/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Immunophenotyping of plasma cell has become an important diagnostic tool for plasma cell myeloma. There have been a few studies for association of antigen expression and cytogenetic abnormality of plasma cell myeloma. METHODS A total of 68 symptomatic/smoldering plasma cell myeloma case were analyzed by multicolor flow cytometry using CD38 and CD138 for primary gating of plasma cells. A conventional cytogenetics and fluorescence in situ hybridization (FISH) studies for detection of del(13q) or aneuploidy, del(17p), and IGH/FGFR translocation were done. We statistically analyzed the association of antigen expression and cytogenetic abnormality/myeloma stage (international staging system for multiple myeloma). RESULTS Positive expression of CD19, CD28, CD45, CD56, CD117, and CD274 was detected in 8.8%, 50.0%, 50.0%, 75.0%, 39.7%, and 2.9% of cases, respectively. CD117-negative cases were associated with hypodiploidy (P = 0.017). CD45-negative cases were associated with deletion 13 or aneuploidy (P < 0.001) and del(17p)(P = 0.011) by FISH. CD45-negativity or CD117-negativity was associated with advanced stage (P = 0.012 and P = 0.016, respectively). CONCLUSION The antigen expression patterns of myeloma plasma cell were associated with cytogenetic abnormality and stage.
Collapse
Affiliation(s)
- Sang-Yong Shin
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seung-Tae Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee-Jin Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Suk Jin Kim
- Department of Laboratory Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kihyun Kim
- Department of Laboratory Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eun Suk Kang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sun-Hee Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
37
|
Brown R, Yang S, Weatherburn C, Gibson J, Ho PJ, Suen H, Hart D, Joshua D. Phospho-flow detection of constitutive and cytokine-induced pSTAT3/5, pAKT and pERK expression highlights novel prognostic biomarkers for patients with multiple myeloma. Leukemia 2014; 29:483-90. [DOI: 10.1038/leu.2014.204] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/11/2014] [Accepted: 06/30/2014] [Indexed: 12/28/2022]
|
38
|
Hebeda K, Preijers F. Flow cytometric pattern recognition of lymph node biopsies with lymphomas that lack lineage characteristics. Int J Lab Hematol 2014; 36:254-60. [PMID: 24750671 DOI: 10.1111/ijlh.12229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/10/2014] [Indexed: 11/30/2022]
Abstract
Although immunophenotyping (IPT) using flow cytometry is a routine technique that is applied in many laboratories as a diagnostic tool for lymphadenopathy, some diagnostic challenges persist. In this review, we will discuss pitfalls in the daily practice of lymph node diagnostics with the focus on general characteristics as lymphoid scatter patterns and lineage specific antigens that are used to define lymphoid populations. The absence of these characteristics on proliferating lymphoid cells can potentially lead to a wrong diagnosis. At the same time, this provides evidence for malignant transformation. Sporadic examples of reactive lymphoid proliferations with similar phenotypes are also discussed, illustrating the need for correlating IPT with morphology and clinical features.
Collapse
Affiliation(s)
- K Hebeda
- Department of Pathology, Radboudumc, Nijmegen, The Netherlands
| | | |
Collapse
|
39
|
An G, Wang H, Qin X, Shi L, Xu Y, Deng S, Sui W, Zhu G, Yao H, Yi S, Qin Y, Li F, Hao M, Ru K, Qi J, Cheng T, Wang J, Chang H, Qiu L. Polyclonal serum IgM level identifies a subgroup of multiple myeloma patients with low-risk clinicobiological features and superior survival. Leuk Res 2014; 38:666-72. [PMID: 24746293 DOI: 10.1016/j.leukres.2014.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/17/2014] [Accepted: 02/20/2014] [Indexed: 10/25/2022]
Abstract
Normal plasma cells (PCs) are either undetectable or outnumbered by the myelomatous PC compartment in bone marrow of multiple myeloma (MM). However, residual normal PCs have been detected in a minority of symptomatic MM patients with superior survival. The number of normal PCs is also an important factor to identify monoclonal gammopathy of undetermined significance (MGUS)-like MM. We speculate that the polyclonal serum IgM level in non-IgM myelomas may reflect the number of residual normal PCs. Here we investigated the prognostic relevance of polyclonal serum IgM level in a series of 485 newly diagnosed symptomatic MM (NDMM) patients. Our results showed that symptomatic MM patients with polyclonal IgM more than 0.5g/L displayed a favorable baseline clinical feature, together with a significantly lower frequency of high-risk cytogenetic abnormalities. This group of patients had a significantly prolonged progression-free survival (PFS) and overall survival (OS) regardless of thalidomide or bortezomib therapy. Furthermore, the superior outcome was independent of the depth of response. Our findings suggest that polyclonal IgM level is capable of identifying a group of symptomatic MM patients with distinct clinicobiological characteristics and favorable survival, similar with MGUS-like MM.
Collapse
Affiliation(s)
- Gang An
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, People's Republic of China
| | - Huijun Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, People's Republic of China
| | - Xiaoqi Qin
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, People's Republic of China
| | - Lihui Shi
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, People's Republic of China
| | - Yan Xu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, People's Republic of China
| | - Shuhui Deng
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, People's Republic of China
| | - Weiwei Sui
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, People's Republic of China
| | - Guoqing Zhu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, People's Republic of China
| | - Hongjing Yao
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, People's Republic of China
| | - Shuhua Yi
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, People's Republic of China
| | - Yu Qin
- Department of Diagnostics, College of Basic Medical Science, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Fei Li
- The First Affiliated Hospital of Nanchang University, 30006 Nanchang, Jiangxi, People's Republic of China
| | - Mu Hao
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, People's Republic of China
| | - Kun Ru
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, People's Republic of China
| | - Junyuan Qi
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, People's Republic of China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, People's Republic of China
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, People's Republic of China
| | - Hong Chang
- Department of Laboratory Hematology, University Health Network, University of Toronto, Canada
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, People's Republic of China.
| |
Collapse
|
40
|
Bortezomib influences the expression of malignant plasma cells membrane antigens. Eur J Pharmacol 2013; 706:11-6. [PMID: 23458070 DOI: 10.1016/j.ejphar.2013.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 01/28/2013] [Accepted: 02/05/2013] [Indexed: 12/15/2022]
Abstract
Multiple myeloma cells can be characterized immunophenotypically as the expression levels of several membrane antigens differ from those of normal plasma cells. These antigens are important for making a diagnostic of multiple myeloma; they have a significant role in survival and proliferation of multiple myeloma cells. Analyzing the effect of bortezomib on the expression of surface antigens CD138, CD56, CD27, CD28, CD45 and CD221 and xenograft models, we have found that bortezomib increases the level of CD45 and decreases all other antigens. Bortezomib induces the reduction of IGF-1R (CD221) and syndecan 1 (CD138). This effect was associated with the reduced activation of Ras/MAPK, mTOR/p70S6K and JAK/STAT pathways in response to IGF-1 and IL-6. These results suggest that bortezomib may influence the sensitivity of myeloma cells to soluble growth factors by down-regulation of membrane receptors.
Collapse
|
41
|
Jeong TD, Park CJ, Shim H, Jang S, Chi HS, Yoon DH, Kim DY, Lee JH, Lee JH, Suh C, Lee KH. Simplified flow cytometric immunophenotyping panel for multiple myeloma, CD56/CD19/CD138(CD38)/CD45, to differentiate neoplastic myeloma cells from reactive plasma cells. THE KOREAN JOURNAL OF HEMATOLOGY 2012; 47:260-6. [PMID: 23320004 PMCID: PMC3538797 DOI: 10.5045/kjh.2012.47.4.260] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/27/2012] [Accepted: 11/06/2012] [Indexed: 11/23/2022]
Abstract
Background Flow cytometric immunophenotyping has been used to identify neoplastic plasma cell populations in patients with multiple myeloma (MM). Previous reports have described the use of several antigens, including CD38, CD138, CD56, CD117, CD52, CD19 and CD45, to distinguish distinct populations of plasma cells. The aim of this study was to evaluate a simplified immunophenotyping panel for MM analysis. Methods A total of 70 patients were enrolled in the study, 62 of which were newly diagnosed with MM (untreated), whereas the remaining 8 were undergoing bone marrow assessment as part of follow-up after treatment (treated). Treated cases included 3 patients with relapse and 5 patients with persistence of MM. Multiparametric flow cytometric immunophenotyping was performed using monoclonal antibodies against CD56, CD19, CD138 (CD38), and CD45. Results In differential counts, plasma cells in bone marrow (BM) accounted for 3.6-93.2% of the total nucleated cell count. The positive expression rates of CD56, CD19, CD138, and CD45 in neoplastic myeloma cells were 83.9%, 0%, 98.4%, and 37.1%, respectively, among the 62 untreated cases, and 75.0%, 0%, 87.5%, and 37.5%, respectively, among the 8 treated cases. CD19 expression of neoplastic plasma cells was negative in both untreated and treated cases. Conclusion The simplified immunophenotyping panel, CD56/CD19/CD138(CD38)/CD45, is useful for distinguishing neoplastic myeloma cells from reactive plasma cells in clinical practice. In addition, CD19 represents the most valuable antigen for identifying neoplastic myeloma cells in patients with MM.
Collapse
Affiliation(s)
- Tae-Dong Jeong
- Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lin H, Kolosenko I, Björklund AC, Protsyuk D, Österborg A, Grandér D, Tamm KP. An activated JAK/STAT3 pathway and CD45 expression are associated with sensitivity to Hsp90 inhibitors in multiple myeloma. Exp Cell Res 2012; 319:600-11. [PMID: 23246572 DOI: 10.1016/j.yexcr.2012.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 11/21/2012] [Accepted: 12/07/2012] [Indexed: 01/02/2023]
Abstract
The molecular chaperone Hsp90 is required to maintain the activity of many signaling proteins, including members of the JAK/STAT and the PI3K pathways. Inhibitors of Hsp90 (Hsp90-Is) demonstrated varying activity against multiple myeloma (MM) in clinical trials. We aimed to determine which signaling pathways that account for the differential sensitivity to the Hsp90-I 17DMAG on a panel of MM cell lines and freshly obtained MM cells. Three CD45(+) cell lines with an activated JAK/STAT3 pathway were sensitive to 17DMAG and underwent prominent apoptosis upon treatment, while the majority of CD45(-) cell lines, that were dependent on the activated PI3K pathway, were more resistant to the drug. Culturing the most resistant cell line, LP1, in the presence of IL-6 resulted in up-regulation of CD45 and pSTAT3, and sensitized to 17DMAG-induced apoptosis, primarily in the induced CD45(+) sub-population of cells. The high CD45 expressers among primary myeloma cells also expressed significantly higher levels of pSTAT3, as compared to the low CD45 expressers. Ex vivo treatment of primary myeloma cells with 17DMAG resulted in a stronger caspase3 activation in tumor samples with the prevalence of high CD45 expressers. STAT3 activity was efficiently inhibited by Hsp90-Is in both cell lines and primary cells suggesting an importance of STAT3 inactivation for the pro-apoptotic effects of HSP90-Is. Indeed, over-expression of STAT3C, a variant with an increased DNA binding activity, in U266 cells protected them from 17DMAG-induced cell death. The down-regulation of the STAT3 target gene Mcl-1 at both the mRNA and protein levels following 17DMAG treatment was significantly attenuated in STAT3C-expressing cells, and transient over-expression of Mcl-1 protected U266 cells from 17DMAG-induced cell death. The finding that CD45(+) MM cells with an IL-6-activated JAK/STAT3 pathway are particularly sensitive to Hsp90-Is as compared to the low CD45 expressers may provide a rational basis for selection of MM patients amenable to Hsp90-I treatment.
Collapse
Affiliation(s)
- Huiqiong Lin
- Department of Oncology-Pathology, Cancer Centre Karolinska, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
43
|
Ribatti D, Vacca A. The role of microenvironment in tumor angiogenesis. GENES AND NUTRITION 2012; 3:29-34. [PMID: 18850197 DOI: 10.1007/s12263-008-0076-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tumor microenvironment is essential for tumor cell proliferation, angiogenesis, invasion and metastasis through its provision of survival signals, secretion of growth and pro-angiogenic factors, and direct adhesion molecule interactions. This review examines its importance in the induction of an angiogenic response in tumors and in multiple myeloma. The encouraging results of pre-clinical and clinical trials in which tumors have been treated by targeting the tumor microenvironment are also discussed.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Human Anatomy and Histology, University of Bari Medical School, Piazza Giulio Cesare, 11, Policlinico, 70124, Bari, Italy,
| | | |
Collapse
|
44
|
Bianchi G, Ghobrial IM. Molecular mechanisms of effectiveness of novel therapies in multiple myeloma. Leuk Lymphoma 2012; 54:229-41. [DOI: 10.3109/10428194.2012.706287] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
45
|
Arendt BK, Walters DK, Wu X, Tschumper RC, Huddleston PM, Henderson KJ, Dispenzieri A, Jelinek DF. Increased expression of extracellular matrix metalloproteinase inducer (CD147) in multiple myeloma: role in regulation of myeloma cell proliferation. Leukemia 2012; 26:2286-96. [PMID: 22460757 DOI: 10.1038/leu.2012.91] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Multiple myeloma (MM) is preceded by the asymptomatic pre-malignant state, monoclonal gammopathy of undetermined significance (MGUS). Although MGUS patients may remain stable for years, they are at increased risk of progressing to MM. A better understanding of the relevant molecular changes underlying the transition from an asymptomatic to symptomatic disease state is urgently needed. Our studies show for the first time that the CD147 molecule (extracellular matrix metalloproteinase inducer) may be having an important biological role in MM. We first demonstrate that CD147 is overexpressed in MM plasma cells (PCs) vs normal and pre-malignant PCs. Next, functional studies revealed that the natural CD147 ligand, cyclophilin B, stimulates MM cell growth. Moreover, when MM patient PCs displaying bimodal CD147 expression were separated into CD147(bright) and CD147(dim) populations and analyzed for proliferation potential, we discovered that CD147(bright) PCs displayed significantly higher levels of cell proliferation than did CD147(dim) PCs. Lastly, CD147-silencing significantly attenuated MM cell proliferation. Taken together, these data suggest that the CD147 molecule has a key role in MM cell proliferation and may serve as an attractive target for reducing the proliferative compartment of this disease.
Collapse
Affiliation(s)
- B K Arendt
- Department of Immunology, Mayo Clinic, College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Zuo Z, Tang Y, Bi CF, Zhang WY, Zhao S, Wang XQ, Yang QP, Zou LQ, Liu WP. Extraosseous (extramedullary) plasmacytomas: a clinicopathologic and immunophenotypic study of 32 Chinese cases. Diagn Pathol 2011; 6:123. [PMID: 22182738 PMCID: PMC3278682 DOI: 10.1186/1746-1596-6-123] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 12/19/2011] [Indexed: 02/05/2023] Open
Abstract
Background Extraosseous plasmacytoma, so called extramedullary plasmacytoma (EMP) is relatively rare in China. The aim was investigate the clinicopathologic features of EMP and the role of Immunophenotype and genotype detection in diagnosis of EMP. Methods Thirty-two cases of EMP were investigated retrospectively by histopathology, immunophenotype, genotype and survival analysis. Results Clinically, the mean age of the patients was 53.4. Most of the patients received no treatment after the diagnosis was established, and the prognosis was relatively poor. Histologically, in 40% of the cases, the neoplastic cells were grade II or III. The neoplastic cells expressed one or more PC associated antigens. The immunophenotype of EMP and inflammation of sinonasal regions with numerous PC infiltrations were compared and showed some difference in expression of CD45, CD27, CD44v6 and Bcl-2 as well. Ig light chain restriction was detected in 87.5% of the cases. Conclusions we described 32 Chinese cases of EMP, compare with that reported in the literature, some differences are presented, including higher percentage of grade II and III cases, clinically inconsistent treatment and management as well as poor outcome of the disease.
Collapse
Affiliation(s)
- Zhuo Zuo
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Monaghan KA, Khong T, Burns CJ, Spencer A. The novel JAK inhibitor CYT387 suppresses multiple signalling pathways, prevents proliferation and induces apoptosis in phenotypically diverse myeloma cells. Leukemia 2011; 25:1891-9. [PMID: 21788946 DOI: 10.1038/leu.2011.175] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Janus kinases (JAKs) are involved in various signalling pathways exploited by malignant cells. In multiple myeloma (MM), the interleukin-6/JAK/signal transducers and activators of transcription (IL-6/JAK/STAT) pathway has been the focus of research for a number of years and IL-6 has an established role in MM drug resistance. JAKs therefore make a rational drug target for anti-MM therapy. CYT387 is a novel, orally bioavailable JAK1/2 inhibitor, which has recently been described. This preclinical evaluation of CYT387 for treatment of MM demonstrated that CYT387 was able to prevent IL-6-induced phosphorylation of STAT3 and greatly decrease IL-6- and insulin-like growth factor-1-induced phosphorylation of AKT and extracellular signal-regulated kinase in human myeloma cell lines (HMCL). CYT387 inhibited MM proliferation in a time- and dose-dependent manner in 6/8 HMCL, and this was not abrogated by the addition of exogenous IL-6 (3/3 HMCL). Cell cycling was inhibited with a G(2)/M accumulation of cells, and apoptosis was induced by CYT387 in all HMCL tested (3/3). CYT387 synergised in killing HMCL when used in combination with the conventional anti-MM therapies melphalan and bortezomib. Importantly, apoptosis was also induced in primary patient MM cells (n=6) with CYT387 as a single agent, and again synergy was seen when combined with conventional therapies.
Collapse
Affiliation(s)
- K A Monaghan
- Malignant Haematology and Stem Cell Transplantation, Alfred Hospital, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
48
|
SPEARS MD, OLTEANU H, KROFT SH, HARRINGTON AM. The immunophenotypic stability of plasma cell myeloma by flow cytometry. Int J Lab Hematol 2011; 33:483-91. [DOI: 10.1111/j.1751-553x.2011.01317.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Paiva B, Almeida J, Pérez-Andrés M, Mateo G, López A, Rasillo A, Vídriales MB, López-Berges MC, Miguel JFS, Orfao A. Utility of flow cytometry immunophenotyping in multiple myeloma and other clonal plasma cell-related disorders. CYTOMETRY PART B-CLINICAL CYTOMETRY 2010; 78:239-52. [PMID: 20155853 DOI: 10.1002/cyto.b.20512] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In recent years, multiparameter flow cytometry (MFC) immunophenotyping has become mandatory in the clinical management of hematological malignancies, both for diagnostic and monitoring purposes. Multiple myeloma (MM) and other clonal plasma cell-related (PC) disorders should be no exception to this paradigm, but incorporation of immunophenotypic studies in the management of patients with PC disorders is still far from being routinely established in many diagnostic flow cytometry laboratories. For clonal PC disorders, MFC is of clear and established clinical relevance in: (1) the differential diagnosis between MM and other PC-related disorders; (2) the identification of high-risk MGUS and smoldering MM; (3) minimal residual disease investigation after therapy; additionally it may also be useful for (4) the definition of prognosis-associated antigenic profiles; and (5) the identification of new therapeutic targets. In this article, we review the clinical value of MFC in the study of PC disorders, with specific emphasis in those areas where consensus exists on the need to incorporate MFC into routine evaluation of MM and other clonal PC-related disorders.
Collapse
Affiliation(s)
- Bruno Paiva
- Department of Medicine, Services of Cytometry and Hematology and Cancer Research Center (CIC, IBMCC USAL-CSIC), University of Salamanca and University Hospital of Salamanca, Salamanca, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ramakrishnan V, Kimlinger T, Haug J, Timm M, Wellik L, Halling T, Pardanani A, Tefferi A, Rajkumar SV, Kumar S. TG101209, a novel JAK2 inhibitor, has significant in vitro activity in multiple myeloma and displays preferential cytotoxicity for CD45+ myeloma cells. Am J Hematol 2010; 85:675-86. [PMID: 20652971 DOI: 10.1002/ajh.21785] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Interaction of myeloma cells with the bone marrow microenvironment is mediated in large part through different cytokines, especially VEGF and IL6. These cytokines, especially IL6, leads to upregulation of the JAK/STAT pathway in myeloma cell, contributing to increased proliferation, decreased apoptosis, and acquired drug resistance. Here, we examined the preclinical activity of a novel JAK2 inhibitor TG101209. TG101209 induced dose- and time-dependent cytotoxicity in a variety of multiple myeloma (MM) cell lines. The induction of cytotoxicity was associated with inhibition of cell cycle progression and induction of apoptosis in myeloma cell lines and patient-derived plasma cells. Evaluation of U266 cell lines and patient cells, which have a mix of CD45 positive and negative cells, demonstrated more profound cytotoxicity and antiproliferative activity of the drug on the CD45+ population relative to the CD45- cells. Exploring the mechanism of action of TG101209 indicated downregulation of pJak2, pStat3, and Bcl-xl levels with upregulation of pErk and pAkt levels indicating cross talk between signaling pathways. TG101209, when used in combination with the PI3K inhibitor LY294002, demonstrated synergistic cytotoxicity against myeloma cells. Our results provide the rationale for clinical evaluation of TG101209 alone or in combination with PI3K/Akt inhibitors in MM.
Collapse
Affiliation(s)
- Vijay Ramakrishnan
- Division of Hematology and Internal Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|