1
|
Silva CP, Kamens HM. Cigarette smoke-induced alterations in blood: A review of research on DNA methylation and gene expression. Exp Clin Psychopharmacol 2021; 29:116-135. [PMID: 32658533 PMCID: PMC7854868 DOI: 10.1037/pha0000382] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Worldwide, smoking remains a threat to public health, causing preventable diseases and premature mortality. Cigarette smoke is a powerful inducer of DNA methylation and gene expression alterations, which have been associated with negative health consequences. Here, we review the current knowledge on smoking-related changes in DNA methylation and gene expression in human blood samples. We identified 30 studies focused on the association between active smoking, DNA methylation modifications, and gene expression alterations. Overall, we identified 1,758 genes with differentially methylated sites (DMS) and differentially expressed genes (DEG) between smokers and nonsmokers, of which 261 were detected in multiple studies (≥4). The most frequently (≥10 studies) reported genes were AHRR, GPR15, GFI1, and RARA. Functional enrichment analysis of the 261 genes identified the aryl hydrocarbon receptor repressor and T cell pathways (T helpers 1 and 2) as influenced by smoking status. These results highlight specific genes for future mechanistic and translational research that may be associated with cigarette smoke exposure and smoking-related diseases. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
Affiliation(s)
- Constanza P. Silva
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States of America
| | - Helen M. Kamens
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States of America.,Correspondence concerning this article should be addressed to Helen M. Kamens, 228 Biobehavioral Health Building, The Pennsylvania State University, University Park, PA 16802; ; Phone number: 814-865-1269; Fax number: 814-863-7525
| |
Collapse
|
2
|
Efficacy of All-Trans-Retinoic Acid in High-Risk Acute Myeloid Leukemia with Overexpression of EVI1. Oncol Ther 2020; 7:121-130. [PMID: 32699982 PMCID: PMC7359977 DOI: 10.1007/s40487-019-0095-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Indexed: 12/04/2022] Open
Abstract
Introduction EVI1 (MECOM)-positive acute myeloid leukemia (AML) cells have shown in vitro sensitivity to all-trans-retinoic acid (ATRA) by inducing differentiation, cell death, and decreased leukemic engraftment. Methods In this pilot study, we investigated the response to ATRA in 13 high-risk AML patients with overexpression of EVI1. Results Seven of the 13 patients (53.8%) achieved complete remission (CR), and response can be combined with a decreased of the leukemia stem cell pool. Conclusion These primary results tend to confirm in vitro results and suggest that addition of ATRA might be of benefit in the treatment of patients with EVI1-positive AML.
Collapse
|
3
|
Turcas C, Moisoiu V, Stefancu A, Jurj A, Iancu SD, Teodorescu P, Pasca S, Bojan A, Trifa A, Iluta S, Zimta AA, Petrushev B, Zdrenghea M, Bumbea H, Coriu D, Dima D, Leopold N, Tomuleasa C. SERS-Based Assessment of MRD in Acute Promyelocytic Leukemia? Front Oncol 2020; 10:1024. [PMID: 32695677 PMCID: PMC7336895 DOI: 10.3389/fonc.2020.01024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/22/2020] [Indexed: 12/24/2022] Open
Abstract
Acute promyelocytic leukemia (APL) is characterized by a unique chromosome translocation t(15;17)(q24;q21), which leads to the PML/RARA gene fusion formation. However, it is acknowledged that this rearrangement alone is not able to induce the whole leukemic phenotype. In addition, epigenetic processes, such as DNA methylation, may play a crucial role in leukemia pathogenesis. DNA methylation, catalyzed by DNA methyltransferases (DNMTs), involves the covalent transfer of a methyl group (-CH3) to the fifth carbon of the cytosine ring in the CpG dinucleotide and results in the formation of 5-methylcytosine (5-mC). The aberrant gene promoter methylation can be an alternative mechanism of tumor suppressor gene inactivation. Understanding cancer epigenetics and its pivotal role in oncogenesis, can offer us not only attractive targets for epigenetic treatment but can also provide powerful tools in monitoring the disease and estimating the prognosis. Several genes of interest, such as RARA, RARB, p15, p16, have been studied in APL and their methylation status was correlated with potential diagnostic and prognostic significance. In the present manuscript we comprehensively examine the current knowledge regarding DNA methylation in APL pathogenesis. We also discuss the perspectives of using the DNA methylation patterns as reliable biomarkers for measurable residual disease (MRD) monitoring and as a predictor of relapse. This work also highlights the possibility of detecting aberrant methylation profiles of circulating tumor DNA (ctDNA) through liquid biopsies, using the conventional methods, such as methylation-specific polymerase chain reaction (MS-PCR), sequencing methods, but also revolutionary methods, such as surface-enhanced Raman spectroscopy (SERS).
Collapse
Affiliation(s)
- Cristina Turcas
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Hematology, "Ion Chiricuta" Institute of Oncology, Cluj-Napoca, Romania
| | - Vlad Moisoiu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Faculty of Physics, Babeş Bolyai University, Cluj-Napoca, Romania
| | - Andrei Stefancu
- Faculty of Physics, Babeş Bolyai University, Cluj-Napoca, Romania
| | - Ancuta Jurj
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Stefania D Iancu
- Faculty of Physics, Babeş Bolyai University, Cluj-Napoca, Romania
| | - Patric Teodorescu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Hematology, "Ion Chiricuta" Institute of Oncology, Cluj-Napoca, Romania
| | - Sergiu Pasca
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Anca Bojan
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Hematology, "Ion Chiricuta" Institute of Oncology, Cluj-Napoca, Romania
| | - Adrian Trifa
- Department of Hematology, "Ion Chiricuta" Institute of Oncology, Cluj-Napoca, Romania
| | - Sabina Iluta
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Hematology, "Ion Chiricuta" Institute of Oncology, Cluj-Napoca, Romania
| | - Alina-Andreea Zimta
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Bobe Petrushev
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihnea Zdrenghea
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Hematology, "Ion Chiricuta" Institute of Oncology, Cluj-Napoca, Romania
| | - Horia Bumbea
- Department of Hematology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Daniel Coriu
- Department of Hematology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Delia Dima
- Department of Hematology, "Ion Chiricuta" Institute of Oncology, Cluj-Napoca, Romania
| | - Nicolae Leopold
- Faculty of Physics, Babeş Bolyai University, Cluj-Napoca, Romania
| | - Ciprian Tomuleasa
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Hematology, "Ion Chiricuta" Institute of Oncology, Cluj-Napoca, Romania.,Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
4
|
Orsini P, Impera L, Parciante E, Cumbo C, Minervini CF, Minervini A, Zagaria A, Anelli L, Coccaro N, Casieri P, Tota G, Brunetti C, Ricco A, Carluccio P, Specchia G, Albano F. Droplet digital PCR for the quantification of Alu methylation status in hematological malignancies. Diagn Pathol 2018; 13:98. [PMID: 30579366 PMCID: PMC6303857 DOI: 10.1186/s13000-018-0777-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/10/2018] [Indexed: 12/14/2022] Open
Abstract
Background Alu repeats, belonging to the Short Interspersed Repetitive Elements (SINEs) class, contain about 25% of CpG sites in the human genome. Alu sequences lie in gene-rich regions, so their methylation is an important transcriptional regulation mechanism. Aberrant Alu methylation has been associated with tumor aggressiveness, and also previously discussed in hematological malignancies, by applying different approaches. Moreover, today different techniques designed to measure global DNA methylation are focused on the methylation level of specific repeat elements. In this work we propose a new method of investigating Alu differential methylation, based on droplet digital PCR (ddPCR) technology. Methods Forty-six patients with hematological neoplasms were included in the study: 30 patients affected by chronic lymphocytic leukemia, 7 patients with myelodysplastic syndromes at intermediate/high risk, according with the International Prognostic Scoring System, and 9 patients with myelomonocytic leukemia. Ten healthy donors were included as controls. Acute promyelocytic leukemia-derived NB4 cell line, either untreated or treated with decitabine (DEC) hypomethylating agent, was also analyzed. DNA samples were investigated for Alu methylation level by digestion of genomic DNA with isoschizomers with differential sensitivity to DNA methylation, followed by ddPCR. Results Using ddPCR, a significant decrease of the global Alu methylation level in DNA extracted from NB4 cells treated with DEC, as compared to untreated cells, was observed. Moreover, comparing the global Alu methylation levels at diagnosis and after azacytidine (AZA) treatment in MDS patients, a statistically significant decrease of Alu sequences methylation after therapy as compared to diagnosis was evident. We also observed a significant decrease of the Alu methylation level in CLL patients compared to HD, and, finally, for CMML patients, a decrease of Alu sequences methylation was observed in patients harboring the SRSF2 hotspot gene mutation c.284C>D. Conclusions In our work, we propose a method to investigate Alu differential methylation based on ddPCR technology. This assay introduces ddPCR as a more sensitive and immediate technique for Alu methylation analysis. To date, this is the first application of ddPCR to study DNA repetitive elements. This approach may be useful to profile patients affected by hematologic malignancies for diagnostic/prognostic purpose. Electronic supplementary material The online version of this article (10.1186/s13000-018-0777-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paola Orsini
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11 70124, Bari, Italy
| | - Luciana Impera
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11 70124, Bari, Italy
| | - Elisa Parciante
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11 70124, Bari, Italy
| | - Cosimo Cumbo
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11 70124, Bari, Italy
| | - Crescenzio F Minervini
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11 70124, Bari, Italy
| | - Angela Minervini
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11 70124, Bari, Italy
| | - Antonella Zagaria
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11 70124, Bari, Italy
| | - Luisa Anelli
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11 70124, Bari, Italy
| | - Nicoletta Coccaro
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11 70124, Bari, Italy
| | - Paola Casieri
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11 70124, Bari, Italy
| | - Giuseppina Tota
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11 70124, Bari, Italy
| | - Claudia Brunetti
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11 70124, Bari, Italy
| | - Alessandra Ricco
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11 70124, Bari, Italy
| | - Paola Carluccio
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11 70124, Bari, Italy
| | - Giorgina Specchia
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11 70124, Bari, Italy
| | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11 70124, Bari, Italy.
| |
Collapse
|
5
|
Jiang D, Li Y, Hong Q, Shen Y, Xu C, Xu Y, Zhu H, Dai D, Ouyang G, Duan S. DNA methylation and leukemia susceptibility in China: Evidence from an updated meta-analysis. Mol Clin Oncol 2016; 5:193-207. [PMID: 27588182 PMCID: PMC4997969 DOI: 10.3892/mco.2016.959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 05/20/2016] [Indexed: 12/16/2022] Open
Abstract
Mounting evidence supports a role for DNA methylation in the pathogenesis of leukemia; however, there no overview of these results in the Chinese population. The present study performed a comprehensive meta-analysis to establish candidate genes with an altered methylation status in Chinese leukemia patients. Eligible studies were identified through searching the National Center of Biotechnology Information PubMed and Wanfang databases. Studies were pooled and overall odds ratios with corresponding confidence intervals were calculated. A total of 4,325 leukemia patients and 2,010 controls from 94 studies on 53 genes were included in this meta-analysis, and 47 genes were found to be aberrantly methylated in leukemia patients. A further subgroup meta-analysis by leukemia subtype demonstrated that hypermethylation of 5 genes, namely cyclin-dependent kinase (CDKN)2A, DNA-binding protein inhibitor-4, CDKN2B, glioma pathogenesis-related protein 1 and p73, contributed to the risk of various subtypes of leukemia. In addition, a strong association between CDKN2A and leukemia was identified in Chinese (P<0.00001) but not in European patients. The aberrantly methylated genes identified in the present meta-analysis may help elucidate the mechanisms underlying the development of leukemia in Chinese patients.
Collapse
Affiliation(s)
- Danjie Jiang
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Yirun Li
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Qingxiao Hong
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Yusheng Shen
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Chunjing Xu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Yan Xu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Huangkai Zhu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Dongjun Dai
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Guifang Ouyang
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Shiwei Duan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
6
|
Choschzick I, Hirseland E, Cramer H, Schultz S, Leppert J, Tronnier V, Zechel C. Responsiveness of stem-like human glioma cells to all-trans retinoic acid and requirement of retinoic acid receptor isotypes α, β and γ. Neuroscience 2014; 279:44-64. [PMID: 25171789 DOI: 10.1016/j.neuroscience.2014.07.078] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/01/2014] [Accepted: 07/30/2014] [Indexed: 01/12/2023]
Abstract
Retinoic acid (RA) is required for development and homeostasis of the normal mammalian brain and may play a role in the initiation and progression of malignant brain tumors, such as the glioblastoma multiforme (GBM) and the gliosarcoma (Gsarc). The subpopulation of stem-like glioma cells (SLGCs) was shown to resist standard glioma radio-/chemotherapy and to propagate tumor regrowth. We used phenotypically distinct, self-renewing SLGC lines from six human GBMs, two Gsarcs, and two subcloned SLGC derivatives in order to investigate their responsiveness to all-trans retinoic acid (atRA) and to identify the RA-receptor (RAR) isotypes involved. In general, atRA exerted a pro-proliferative and pro-survival effect on SLGCs, though the efficacy was distinct. By means of RAR isotype-selective retinoids we disclosed that these effects were mediated by RARα and RARγ, except for one SLGC line, in which the pro-proliferative signal was induced by the RARβ-selective retinoid. Only one GBM-derived cell line (T1338) and a subpopulation of another (T1389) displayed neural differentiation in response to atRA. Differentiation of T1338 was induced by RARα and RARγ isotype-selective retinoids, associated with down-regulation of Sox2, and the failure to induce orthotopic tumors in the brains of SCID mice. The differential responsiveness of the SLGC lines appeared unrelated to the expression of RARβ, as (i) atRA augmented RAR isotype mRNA expression and particularly rarβ mRNA in all SLGC lines, (ii) rarβ promoter hypomethylation in the SLGC lines was not related to differentiation and (iii) the induction of T1338 differentiation was by RARα- and RARγ-selective ligands.
Collapse
Affiliation(s)
- I Choschzick
- Department of Neurosurgery, University of Lübeck, D-23538 Lübeck, Germany
| | - E Hirseland
- Department of Neurosurgery, University of Lübeck, D-23538 Lübeck, Germany; Department of Radiation Oncology, University of Lübeck, D-23538 Lübeck, Germany
| | - H Cramer
- Department of Neurosurgery, University of Lübeck, D-23538 Lübeck, Germany
| | - S Schultz
- Department of Neurosurgery, University of Lübeck, D-23538 Lübeck, Germany; Department of Radiation Oncology, University of Lübeck, D-23538 Lübeck, Germany
| | - J Leppert
- Department of Neurosurgery, University of Lübeck, D-23538 Lübeck, Germany
| | - V Tronnier
- Department of Neurosurgery, University of Lübeck, D-23538 Lübeck, Germany
| | - C Zechel
- Department of Neurosurgery, University of Lübeck, D-23538 Lübeck, Germany.
| |
Collapse
|
7
|
The diagnostic value of DNA methylation in leukemia: a systematic review and meta-analysis. PLoS One 2014; 9:e96822. [PMID: 24810788 PMCID: PMC4014555 DOI: 10.1371/journal.pone.0096822] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 04/11/2014] [Indexed: 12/16/2022] Open
Abstract
Background Accumulating evidence supports a role of DNA methylation in the pathogenesis of leukemia. The aim of our study was to evaluate the potential genes with aberrant DNA methylation in the prediction of leukemia risk by a comprehensive meta-analysis of the published data. Methods A series of meta-analyses were done among the eligible studies that were harvested after a careful filtration of the searching results from PubMed literature database. Mantel-Haenszel odds ratios and 95% confidence intervals were computed for each methylation event assuming the appropriate model. Results A total of 535 publications were initially retrieved from PubMed literature database. After a three-step filtration, we harvested 41 case-control articles that studied the role of gene methylation in the prediction of leukemia risk. Among the involving 30 genes, 20 genes were shown to be aberrantly methylated in the leukemia patients. A further subgroup meta-analysis by subtype of leukemia showed that CDKN2A, CDKN2B, ID4 genes were significantly hypermethylated in acute myeloid leukemia. Conclusions Our meta-analyses identified strong associations between a number of genes with aberrant DNA methylation and leukemia. Further studies should be required to confirm the results in the future.
Collapse
|
8
|
Sensitivity of MLL-rearranged AML cells to all-trans retinoic acid is associated with the level of H3K4me2 in the RARα promoter region. Blood Cancer J 2014; 4:e205. [PMID: 24769646 PMCID: PMC4003419 DOI: 10.1038/bcj.2014.25] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 03/21/2014] [Indexed: 01/26/2023] Open
Abstract
All-trans retinoic acid (ATRA) is well established as differentiation therapy for acute promyelocytic leukemia (APL) in which the PML-RARα (promyelocytic leukemia-retinoic acid receptor α) fusion protein causes blockade of the retinoic acid (RA) pathway; however, in types of acute myeloid leukemia (AML) other than APL, the mechanism of RA pathway inactivation is not fully understood. This study revealed the potential mechanism of high ATRA sensitivity of mixed-lineage leukemia (MLL)-AF9-positive AML compared with MLL-AF4/5q31-positive AML. Treatment with ATRA induced significant myeloid differentiation accompanied by upregulation of RARα, C/EBPα, C/EBPɛ and PU.1 in MLL-AF9-positive but not in MLL-AF4/5q31-positive cells. Combining ATRA with cytarabine had a synergistic antileukemic effect in MLL-AF9-positive cells in vitro. The level of dimethyl histone H3 lysine 4 (H3K4me2) in the RARα gene-promoter region, PU.1 upstream regulatory region (URE) and RUNX1+24/+25 intronic enhancer was higher in MLL-AF9-positive cells than in MLL-AF4-positive cells, and inhibiting lysine-specific demethylase 1, which acts as a histone demethylase inhibitor, reactivated ATRA sensitivity in MLL-AF4-positive cells. These findings suggest that the level of H3K4me2 in the RARα gene-promoter region, PU.1 URE and RUNX1 intronic enhancer is determined by the MLL-fusion partner. Our findings provide insight into the mechanisms of ATRA sensitivity in AML and novel treatment strategies for ATRA-resistant AML.
Collapse
|
9
|
Wang LQ, Liang R, Chim CS. Methylation of tumor suppressor microRNAs: lessons from lymphoid malignancies. Expert Rev Mol Diagn 2013; 12:755-65. [PMID: 23153241 DOI: 10.1586/erm.12.64] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
miRNAs are a group of small noncoding RNAs measuring 19-25 nucleotides. Sequence-specific binding of miRNAs to the 3´ untranslated regions of target genes leads to translational repressions. Dysregulation of miRNA expression involved in cancer can be triggered by multiple mechanisms including aberrant DNA methylation of the miRNA gene promoter. Of note, DNA methylation of tumor suppressor miRNAs has been implicated in various human cancers. Moreover, miRNA silencing mediated by aberrant promoter DNA methylation can potentially be reversed by hypomethylating agents, and hence may pose a new therapeutic target in cancer. In this review, the authors will focus on the aberrant methylation of miRNAs in the pathogenesis of lymphoid malignancies including chronic lymphocytic leukemia, multiple myeloma and acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Lu Qian Wang
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | | | | |
Collapse
|
10
|
Yim RLH, Kwong YL, Wong KY, Chim CS. DNA Methylation of Tumor Suppressive miRNAs in Non-Hodgkin's Lymphomas. Front Genet 2012; 3:233. [PMID: 23162567 PMCID: PMC3492703 DOI: 10.3389/fgene.2012.00233] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/15/2012] [Indexed: 11/13/2022] Open
Abstract
DNA methylation is an epigenetic alteration leading to heritable phenotypic changes of cells with functional consequences. It is important in early embryonic development, stem cell differentiation, and tissue-specific gene expression. In normal cells, promoter-associated CpG islands (CGI) are generally unmethylated except in X-chromosome inactivation or genomic imprinting. In cancer, tumor cells are characterized by global hypomethylation but locus-specific hypermethylation of promoter-associated CGI, resulting in gene silencing. MicroRNAs (miRNAs) are short, non-coding RNA sequences of 18-25 nucleotides, which can repress the translational of multiple protein-coding mRNAs by sequence-specific binding to the 3'untranslated region. Depending on the genes targeted, miRNA can be tumor suppressive if an oncogene is repressed, or it can be oncogenic when a tumor suppressive gene is repressed. Recently, aberrant methylation of tumor suppressive miRNAs has been reported in different types of cancers including lymphomas. Herein, we review the recent literature of methylation of tumor suppressive miRNAs in different histopathologic subtypes of lymphomas, and discuss its potential diagnostic, prognostic, and therapeutic significance.
Collapse
Affiliation(s)
- Rita Lok-Hay Yim
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong Hong Kong, China
| | | | | | | |
Collapse
|
11
|
Wong KY, Yu L, Chim CS. DNA methylation of tumor suppressor miRNA genes: a lesson from the miR-34 family. Epigenomics 2012; 3:83-92. [PMID: 22126155 DOI: 10.2217/epi.10.74] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
miRNA is a small ncRNA of 22-25 nucleotides, which leads to mRNA degradation or translational inhibition of its target genes. miRNAs are involved in multiple cellular processes, including cellular differentiation, proliferation and apoptosis, and hence miRNA deregulation has been implicated in disease states, including cancer. On the other hand, DNA methylation leads to gene silencing, and serves as an alternative mechanism of gene inactivation. The aberrant DNA methylation of gene promoters has been shown to result in the inactivation of tumor suppressor genes, and therefore is also implicated in carcinogenesis. This article focuses on the role of miRNA methylation, in particular miR-34a, in cancer. The article begins with an overview of DNA methylation in normal and cancer cells and deregulation of miRNA expression by DNA methylation. These discussions are followed by a description of the gene structure of the miR-34 family of miRNA genes, the tumor suppressor role of miR-34a and the deregulation of miR-34a by DNA methylation in both epithelial and hematological cancers. Moreover, the methylation of miR-34b/c in cancer is also described. Finally, the potential role of miRNA methylation as a biomarker for diagnosis, prognosis (and hence the potential of developing a risk-stratified approach) and a therapeutic target is discussed.
Collapse
Affiliation(s)
- Kwan Yeung Wong
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, China
| | | | | |
Collapse
|
12
|
Chim CS, Wan TS, Wong KY, Fung TK, Drexler HG, Wong KF. Methylation of miR-34a, miR-34b/c, miR-124-1 and miR-203 in Ph-negative myeloproliferative neoplasms. J Transl Med 2011; 9:197. [PMID: 22082000 PMCID: PMC3283527 DOI: 10.1186/1479-5876-9-197] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 11/14/2011] [Indexed: 11/16/2022] Open
Abstract
Background MicroRNA (miR) miR-34a, -34b/c, -124-1 and -203 are tumor suppressor miRs implicated in carcinogenesis. Methods We studied DNA methylation of these miRs in Philadelphia-negative (Ph-ve) myeloproliferative neoplasms (MPNs). Methylation-specific PCR (MSP), verified by direct sequencing of the methylated MSP products, was performed in cell lines, normal controls and diagnostic marrow samples of patients with MPNs. Results Methylation of these miRs was absent in the normal controls. miR-34b/c were homozygously methylated in HEL cells but heterozygously in MEG-01. In HEL cells, homozygous miR-34b/c methylation was associated with miR silencing, and 5-aza-2'-deoxycytidine treatment led to re-expression of both miR-34b and miR-34c, consistent with that both miRs are under the regulation of the same promoter CpG island. miR-34a was heterozygously methylated in MEG-01 and K-562. miR-203 was completely unmethylated in K-562 and SET-2 but no MSP amplification was found in both HEL and MEG-01, suggestive of miR deletion. In primary samples, four each had miR-34b/c and -203 methylation, in which two had concomitant methylation of miR-34b/c and -203. miR-34a was methylated in one patient and none had methylation of miR-124-1. Seven patients (15.6%) had methylation of at least one of the four miRs. miR methylation did not correlate with clinical parameters, disease complications or JAK2 V617F mutation. Conclusion This is the first report of miR hypermethylation in MPNs. miR-203 hypermethylation is not specific to Ph+ve leukemias but also present in Ph-ve MPNs. miR-34b/c methylation was associated with reversible miR silencing. There was no correlation of miR methylation with clinical demographic data or outcome.
Collapse
Affiliation(s)
- Chor Sang Chim
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong.
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
Although genetics determines endocrine phenotypes, it cannot fully explain the great variability and reversibility of the system in response to environmental changes. Evidence now suggests that epigenetics, i.e. heritable but reversible changes in gene function without changes in nucleotide sequence, links genetics and environment in shaping endocrine function. Epigenetic mechanisms, including DNA methylation, histone modification, and microRNA, partition the genome into active and inactive domains based on endogenous and exogenous environmental changes and developmental stages, creating phenotype plasticity that can explain interindividual and population endocrine variability. We will review the current understanding of epigenetics in endocrinology, specifically, the regulation by epigenetics of the three levels of hormone action (synthesis and release, circulating and target tissue levels, and target-organ responsiveness) and the epigenetic action of endocrine disruptors. We will also discuss the impacts of hormones on epigenetics. We propose a three-dimensional model (genetics, environment, and developmental stage) to explain the phenomena related to progressive changes in endocrine functions with age, the early origin of endocrine disorders, phenotype discordance between monozygotic twins, rapid shifts in disease patterns among populations experiencing major lifestyle changes such as immigration, and the many endocrine disruptions in contemporary life. We emphasize that the key for understanding epigenetics in endocrinology is the identification, through advanced high-throughput screening technologies, of plasticity genes or loci that respond directly to a specific environmental stimulus. Investigations to determine whether epigenetic changes induced by today's lifestyles or environmental 'exposures' can be inherited and are reversible should open doors for applying epigenetics to the prevention and treatment of endocrine disorders.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Environmental Health, Center for Environmental Genetics, University of Cincinnati College of Medicine, 3223 Eden Avenue, Kettering Complex Suite 130, Cincinnati, Ohio 45267, USA
| | | |
Collapse
|
14
|
Chim CS, Kwong YL. Adverse prognostic impact ofCDKN2Bhyper-methylationin acute promyelocytic leukemia. Leuk Lymphoma 2009; 47:815-25. [PMID: 16753865 DOI: 10.1080/10428190500513827] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The use of all-trans retinoic acid (ATRA) has markedly improved the survival of patients with acute promyelocytic leukemia (APL), making it potentially curable. However, the identification of prognostic markers predictive of durable remission remains an important aspect in risk-adjusted treatment algorithms. High presentation leucocyte count has been found to correlate with inferior disease-free-survival (DFS). However, recent studies have also shown aberrant promoter methylation of the CDKN2B (alias p15) gene to be a negative prognostic factor. Promoter methylation results in the formation of a repressor complex, leading to chromatin compaction and suppression of gene expression and is, therefore, an alternative mechanism of gene inactivation. CDKN2B, a cyclin-dependent kinase inhibitor, is a tumor suppressor gene inhibiting cell cycle progression. The CpG island inside the CDKN2B promoter is hyper-methylated in approximately 50 - 60% of APL patients. CDKN2B methylation correlates negatively with DFS. As methylation-induced inactivation of CDKN2B pre-disposes to unchecked cellular proliferation, CDKN2B hyper-methylation is also associated with high presentation leucocyte count. Multivariate analysis in several studies, however, has shown that the negative prognostic impact of CDKN2B methylation is independent of its association with high leucocyte counts. Therefore, CDKN2B methylation is a potential prognostic factor that may be incorporated into a risk-stratified therapeutic strategy, which aims at achieving a cure with optimal amounts of treatment.
Collapse
Affiliation(s)
- Chor-Sang Chim
- Department of Medicine, University of Hong Kong, Hong Kong, PR China
| | | |
Collapse
|
15
|
Huang AC, Hu L, Kauffman SA, Zhang W, Shmulevich I. Using cell fate attractors to uncover transcriptional regulation of HL60 neutrophil differentiation. BMC SYSTEMS BIOLOGY 2009; 3:20. [PMID: 19222862 PMCID: PMC2652435 DOI: 10.1186/1752-0509-3-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 02/18/2009] [Indexed: 12/16/2022]
Abstract
BACKGROUND The process of cellular differentiation is governed by complex dynamical biomolecular networks consisting of a multitude of genes and their products acting in concert to determine a particular cell fate. Thus, a systems level view is necessary for understanding how a cell coordinates this process and for developing effective therapeutic strategies to treat diseases, such as cancer, in which differentiation plays a significant role. Theoretical considerations and recent experimental evidence support the view that cell fates are high dimensional attractor states of the underlying molecular networks. The temporal behavior of the network states progressing toward different cell fate attractors has the potential to elucidate the underlying molecular mechanisms governing differentiation. RESULTS Using the HL60 multipotent promyelocytic leukemia cell line, we performed experiments that ultimately led to two different cell fate attractors by two treatments of varying dosage and duration of the differentiation agent all-trans-retinoic acid (ATRA). The dosage and duration combinations of the two treatments were chosen by means of flow cytometric measurements of CD11b, a well-known early differentiation marker, such that they generated two intermediate populations that were poised at the apparently same stage of differentiation. However, the population of one treatment proceeded toward the terminally differentiated neutrophil attractor while that of the other treatment reverted back toward the undifferentiated promyelocytic attractor. We monitored the gene expression changes in the two populations after their respective treatments over a period of five days and identified a set of genes that diverged in their expression, a subset of which promotes neutrophil differentiation while the other represses cell cycle progression. By employing promoter based transcription factor binding site analysis, we found enrichment in the set of divergent genes, of transcription factors functionally linked to tumor progression, cell cycle, and development. CONCLUSION Since many of the transcription factors identified by this approach are also known to be implicated in hematopoietic differentiation and leukemia, this study points to the utility of incorporating a dynamical systems level view into a computational analysis framework for elucidating transcriptional mechanisms regulating differentiation.
Collapse
|
16
|
Vivekanandan P, Torbenson M. Epigenetic instability is rare in fibrolamellar carcinomas but common in viral-associated hepatocellular carcinomas. Mod Pathol 2008; 21:670-5. [PMID: 18264082 DOI: 10.1038/modpathol.2008.32] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fibrolamellar carcinomas have a unique predilection for younger individuals and arise in livers without recognizable liver disease. In contrast to typical hepatocellular carcinomas, fibrolamellar carcinomas show few chromosomal changes and lack mutation in key genes such as TP53 and CTNNB1. Epigenetic instability, manifesting as methylation of important tumor suppressor gene promoters, has not been investigated in fibrolamellar carcinomas. Thus, the methylation status of 11 tumor suppressor gene promoters was investigated using methylation-specific PCR: RASSF1, CDH1, CDKN2B, HPP1, CDKN2A, GSTP1, P16, RARA, FLJ13081, SOCS1, and TP53. Nine fibrolamellar carcinomas were studied including primary tumors (N=5) and metastatic deposits (N=4) along with control groups of typical hepatocellular carcinoma arising in livers with (N=21) and without cirrhosis (N=10). In fibrolamellar carcinomas, RASSF1A and CDH1 (e-cadherin) were the most commonly methylated genes with 80-100% of tumors methylated. However, overall fibrolamellar carcinomas showed low levels of methylation with no differences between fibrolamellar carcinomas and their paired normal livers. However, fibrolamellar carcinomas showed significantly less methylation than hepatocellular carcinomas that arose in the background of viral cirrhosis. Overall, methylation was most strongly linked to viral cirrhosis. In conclusion, fibrolamellar carcinoma shows low levels of methylation. In contrast, higher levels of promoter methylation are associated with hepatocellular carcinomas that arise in the setting of viral induced cirrhosis.
Collapse
Affiliation(s)
- Perumal Vivekanandan
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | |
Collapse
|
17
|
Abstract
The retinoic acid receptor (RAR) α gene (RARA) encodes 2 major isoforms and mediates positive effects of all-trans retinoic acid (ATRA) on myelomonocytic differentiation. Expression of the ATRA-inducible (RARα2) isoform increases with myelomonocytic differentiation and appears to be down-regulated in many acute myeloid leukemia (AML) cell lines. Here, we demonstrate that relative to normal myeloid stem/progenitor cells, RARα2 expression is dramatically reduced in primary AML blasts. Expression of the RARα1 isoform is also significantly reduced in primary AML cells, but not in AML cell lines. Although the promoters directing expression of RARα1 and RARα2 are respectively unmethylated and methylated in AML cell lines, these regulatory regions are unmethylated in all the AML patient cell samples analyzed. Moreover, in primary AML cells, histones associated with the RARα2 promoter possessed diminished levels of H3 acetylation and lysine 4 methylation. These results underscore the complexities of the mechanisms responsible for deregulation of gene expression in AML and support the notion that diminished RARA expression contributes to leukemogenesis.
Collapse
|
18
|
Chim CS, Chan WWL, Pang A, Kwong YL. Preferential methylation of Wnt inhibitory factor-1 in acute promyelocytic leukemia: an independent poor prognostic factor. Leukemia 2006; 20:907-9. [PMID: 16525492 DOI: 10.1038/sj.leu.2404176] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
MESH Headings
- Adaptor Proteins, Signal Transducing
- Azacitidine/pharmacology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Humans
- Leukemia, Promyelocytic, Acute/diagnosis
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/physiopathology
- Methylation
- Multivariate Analysis
- Prognosis
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Recurrence
- Remission Induction
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Risk Factors
- Sensitivity and Specificity
- Survival Rate
- Tretinoin/therapeutic use
- Tumor Cells, Cultured
Collapse
|
19
|
Lacayo NJ, DiMartino JF, Wei MC, Dahl GV. CpG Island Methylator Phenotype and Childhood Leukemia. Clin Cancer Res 2006; 12:4787-9. [PMID: 16914562 DOI: 10.1158/1078-0432.ccr-06-0651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Norman J Lacayo
- Department of Pediatrics, Stanford University, Palo Alto, California and Genentech BioOncology, South San Francisco, California, USA
| | | | | | | |
Collapse
|
20
|
Chim CS, Fung TK, Wong KF, Lau JS, Liang R. Frequent DAP kinase but not p14 or Apaf-1 hypermethylation in B-cell chronic lymphocytic leukemia. J Hum Genet 2006; 51:832-838. [PMID: 16897188 DOI: 10.1007/s10038-006-0029-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Accepted: 06/06/2006] [Indexed: 10/24/2022]
Abstract
Dysregulation of apoptosis, and thus the p14/DAP kinase/HDM2/p53/Apaf-1 pathway, is potentially important in carcinogenesis. Chronic lymphocytic leukemia (CLL), uncommon in the Chinese, is a disease characterized by impaired apoptosis, of the neoplastic lymphocytes. Hypermethylation of p14, DAP kinase and Apaf-1 was studied by methylation-specific polymerase chain reaction (MSP) with primers for methylated (M-MSP) and unmethylated (U-MSP) alleles in 50 diagnostic marrow samples from patients with CLL. Chinese CLL patients had an indolent course similar to Caucasians with median overall survival (OS) of 96 months, which was adversely affected by advanced Rai stage (projected 5-year OS = 72% and 39% for Rai < or = 2 and Rai > 2; P = 0.01). DAP kinase was methylated in 18 (36%) patients while p14 and Apaf-1 were completely unmethylated in all the primary CLL samples. There was no correlation between DAP kinase hypermethylation and age, sex, poor-risk karyotype, lymphocyte count and Rai stage at diagnosis. Projected OS for patients with and without DAP kinase hypermethylation were 59 and 57% (P = 0.91). DAP kinase, but not p14 and Apaf-1, of the DAP kinase/p14/HDM2/p53/Apaf-1 pathway is frequently hypermethylated in CLL, but not of prognostic significance. Moreover Chinese patients with CLL share a similarly indolent clinical course, and this is the first comprehensive study on p14, DAP kinase and Apaf-1 hypermethylation in CLL.
Collapse
Affiliation(s)
- C S Chim
- University Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - T K Fung
- University Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - K F Wong
- Department of Pathology, Queen Elizabeth Hospital, Hong Kong, China
| | - J S Lau
- Department of Medicine, Queen Elizabeth Hospital, Hong Kong, China
| | - R Liang
- University Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|