1
|
Basu J, Madhulika S, Murmu KC, Mohanty S, Samal P, Das A, Mahapatra S, Saha S, Sinha I, Prasad P. Molecular and epigenetic alterations in normal and malignant myelopoiesis in human leukemia 60 (HL60) promyelocytic cell line model. Front Cell Dev Biol 2023; 11:1060537. [PMID: 36819104 PMCID: PMC9932920 DOI: 10.3389/fcell.2023.1060537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
In vitro cell line model systems are essential in supporting the research community due to their low cost, uniform culturing conditions, homogeneous biological resources, and easy experimental design to study the cause and effect of a gene or a molecule. Human leukemia 60 (HL60) is an in-vitro hematopoietic model system that has been used for decades to study normal myeloid differentiation and leukemia biology. Here, we show that IMDM supplemented with 20% FBS is an optimal culturing condition and induces effective myeloid differentiation compared with RPMI supplemented with 10% FBS when HL60 is induced with 1α,25-dihydroxyvitamin D3 (Vit D3) and all-trans retinoic acid (ATRA). The chromatin organization is compacted, and the repressive epigenetic mark H3K27me3 is enhanced upon HL60-mediated terminal differentiation. Differential gene expression analysis obtained from RNA sequencing in HL60 cells during myeloid differentiation showed the induction of pathways involved in epigenetic regulation, myeloid differentiation, and immune regulation. Using high-throughput transcriptomic data (GSE74246), we show the similarities (genes that did not satisfy |log2FC|>1 and FDR<0.05) and differences (FDR <0.05 and |log2FC|>1) between granulocyte-monocyte progenitor vs HL60 cells, Vit D3 induced monocytes (vMono) in HL60 cells vs primary monocytes (pMono), and HL60 cells vs leukemic blasts at the transcriptomic level. We found striking similarities in biological pathways between these comparisons, suggesting that the HL60 model system can be effectively used for studying myeloid differentiation and leukemic aberrations. The differences obtained could be attributed to the fact that the cellular programs of the leukemic cell line and primary cells are different. We validated several gene expression patterns for different comparisons with CD34+ cells derived from cord blood for myeloid differentiation and AML patients. In addition to the current knowledge, our study further reveals the significance of using HL60 cells as in vitro model system under optimal conditions to understand its potential as normal myeloid differentiation model as well as leukemic model at the molecular level.
Collapse
Affiliation(s)
- Jhinuk Basu
- Chromatin and Epigenetics Unit, Institute of Life Sciences, Bhubaneswar, India,RCB, Regional Centre for Biotechnology, Faridabad, India
| | - Swati Madhulika
- Chromatin and Epigenetics Unit, Institute of Life Sciences, Bhubaneswar, India,RCB, Regional Centre for Biotechnology, Faridabad, India
| | - Krushna Chandra Murmu
- Chromatin and Epigenetics Unit, Institute of Life Sciences, Bhubaneswar, India,RCB, Regional Centre for Biotechnology, Faridabad, India
| | - Smrutishree Mohanty
- Chromatin and Epigenetics Unit, Institute of Life Sciences, Bhubaneswar, India,RCB, Regional Centre for Biotechnology, Faridabad, India
| | - Priyanka Samal
- IMS and SUM Hospital, Siksha ‘O' Anusandhan University, Bhubaneswar, India
| | - Asima Das
- Department of Obstetrics and Gynecology, KIMS, Bhubaneswar, India
| | - Soumendu Mahapatra
- Chromatin and Epigenetics Unit, Institute of Life Sciences, Bhubaneswar, India,Kalinga Institute of Industrial Technology (KIIT), School of Biotechnology, Bhubaneswar, India
| | - Subha Saha
- Chromatin and Epigenetics Unit, Institute of Life Sciences, Bhubaneswar, India
| | - Indranil Sinha
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Punit Prasad
- Chromatin and Epigenetics Unit, Institute of Life Sciences, Bhubaneswar, India,*Correspondence: Punit Prasad,
| |
Collapse
|
2
|
Sidorova OA, Sayed S, Paszkowski-Rogacz M, Seifert M, Camgöz A, Roeder I, Bornhäuser M, Thiede C, Buchholz F. RNAi-Mediated Screen of Primary AML Cells Nominates MDM4 as a Therapeutic Target in NK-AML with DNMT3A Mutations. Cells 2022; 11:cells11050854. [PMID: 35269477 PMCID: PMC8909053 DOI: 10.3390/cells11050854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/15/2022] [Accepted: 02/23/2022] [Indexed: 12/22/2022] Open
Abstract
DNA-methyltransferase 3A (DNMT3A) mutations belong to the most frequent genetic aberrations found in adult acute myeloid leukemia (AML). Recent evidence suggests that these mutations arise early in leukemogenesis, marking leukemic progenitors and stem cells, and persist through consolidation chemotherapy, providing a pool for AML relapse. Currently, there are no therapeutic approaches directed specifically against this cell population. To unravel therapeutically actionable targets in mutant DNMT3A-driven AML cells, we have performed a focused RNAi screen in a panel of 30 primary AML samples, all carrying a DNMT3A R882 mutation. As one of the strongest hits, we identified MDM4 as a gene essential for proliferation of primary DNMT3AWT/R882X AML cells. We analyzed a publicly available RNA-Seq dataset of primary normal karyotype (NK) AML samples and found a trend towards MDM4 transcript overexpression particularly in DNMT3A-mutant samples. Moreover, we found that the MDM2/4 inhibitor ALRN-6924 impairs growth of DNMT3AWT/R882X primary cells in vitro by inducing cell cycle arrest through upregulation of p53 target genes. Our results suggest that MDM4 inhibition is a potential target in NK-AML patients bearing DNMT3A R882X mutations.
Collapse
Affiliation(s)
- Olga Alexandra Sidorova
- Medical Systems Biology, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany; (O.A.S.); (S.S.); (M.P.-R.)
| | - Shady Sayed
- Medical Systems Biology, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany; (O.A.S.); (S.S.); (M.P.-R.)
| | - Maciej Paszkowski-Rogacz
- Medical Systems Biology, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany; (O.A.S.); (S.S.); (M.P.-R.)
| | - Michael Seifert
- Institute for Medical Informatics and Biometry (IMB), Technische Universität Dresden, 01307 Dresden, Germany; (M.S.); (I.R.)
| | - Aylin Camgöz
- Hopp Children’s Cancer Center Heidelberg, 69120 Heidelberg, Germany;
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.B.); (C.T.)
| | - Ingo Roeder
- Institute for Medical Informatics and Biometry (IMB), Technische Universität Dresden, 01307 Dresden, Germany; (M.S.); (I.R.)
| | - Martin Bornhäuser
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.B.); (C.T.)
- National Center for Tumor Diseases (NCT/UCC), 01307 Dresden, Germany
- Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden—Rossendorf (HZDR), 01328 Dresden, Germany
- Medical Clinic and Polyclinic I, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany
| | - Christian Thiede
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.B.); (C.T.)
- National Center for Tumor Diseases (NCT/UCC), 01307 Dresden, Germany
- Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden—Rossendorf (HZDR), 01328 Dresden, Germany
- Medical Clinic and Polyclinic I, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany
| | - Frank Buchholz
- Medical Systems Biology, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany; (O.A.S.); (S.S.); (M.P.-R.)
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.B.); (C.T.)
- National Center for Tumor Diseases (NCT/UCC), 01307 Dresden, Germany
- Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden—Rossendorf (HZDR), 01328 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany
- Correspondence:
| |
Collapse
|
3
|
Thoms JAI, Truong P, Subramanian S, Knezevic K, Harvey G, Huang Y, Seneviratne JA, Carter DR, Joshi S, Skhinas J, Chacon D, Shah A, de Jong I, Beck D, Göttgens B, Larsson J, Wong JWH, Zanini F, Pimanda JE. Disruption of a GATA2-TAL1-ERG regulatory circuit promotes erythroid transition in healthy and leukemic stem cells. Blood 2021; 138:1441-1455. [PMID: 34075404 DOI: 10.1182/blood.2020009707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/03/2021] [Indexed: 10/21/2022] Open
Abstract
Changes in gene regulation and expression govern orderly transitions from hematopoietic stem cells to terminally differentiated blood cell types. These transitions are disrupted during leukemic transformation, but knowledge of the gene regulatory changes underpinning this process is elusive. We hypothesized that identifying core gene regulatory networks in healthy hematopoietic and leukemic cells could provide insights into network alterations that perturb cell state transitions. A heptad of transcription factors (LYL1, TAL1, LMO2, FLI1, ERG, GATA2, and RUNX1) bind key hematopoietic genes in human CD34+ hematopoietic stem and progenitor cells (HSPCs) and have prognostic significance in acute myeloid leukemia (AML). These factors also form a densely interconnected circuit by binding combinatorially at their own, and each other's, regulatory elements. However, their mutual regulation during normal hematopoiesis and in AML cells, and how perturbation of their expression levels influences cell fate decisions remains unclear. In this study, we integrated bulk and single-cell data and found that the fully connected heptad circuit identified in healthy HSPCs persists, with only minor alterations in AML, and that chromatin accessibility at key heptad regulatory elements was predictive of cell identity in both healthy progenitors and leukemic cells. The heptad factors GATA2, TAL1, and ERG formed an integrated subcircuit that regulates stem cell-to-erythroid transition in both healthy and leukemic cells. Components of this triad could be manipulated to facilitate erythroid transition providing a proof of concept that such regulatory circuits can be harnessed to promote specific cell-type transitions and overcome dysregulated hematopoiesis.
Collapse
Affiliation(s)
| | - Peter Truong
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Shruthi Subramanian
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Kathy Knezevic
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Gregory Harvey
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Yizhou Huang
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
| | - Janith A Seneviratne
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Daniel R Carter
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Swapna Joshi
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Joanna Skhinas
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Diego Chacon
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
| | - Anushi Shah
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Ineke de Jong
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Dominik Beck
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
| | - Berthold Göttgens
- Wellcome and Medical Research Council (MRC) Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | - Jonas Larsson
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Jason W H Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Fabio Zanini
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia; and
| | - John E Pimanda
- School of Medical Sciences
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
- Department of Haematology, Prince of Wales Hospital, Randwick, NSW, Australia
| |
Collapse
|
4
|
Nelson MAM, McLaughlin KL, Hagen JT, Coalson HS, Schmidt C, Kassai M, Kew KA, McClung JM, Neufer PD, Brophy P, Vohra NA, Liles D, Cabot MC, Fisher-Wellman KH. Intrinsic OXPHOS limitations underlie cellular bioenergetics in leukemia. eLife 2021; 10:e63104. [PMID: 34132194 PMCID: PMC8221809 DOI: 10.7554/elife.63104] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
Currently there is great interest in targeting mitochondrial oxidative phosphorylation (OXPHOS) in cancer. However, notwithstanding the targeting of mutant dehydrogenases, nearly all hopeful 'mito-therapeutics' cannot discriminate cancerous from non-cancerous OXPHOS and thus suffer from a limited therapeutic index. Using acute myeloid leukemia (AML) as a model, herein, we leveraged an in-house diagnostic biochemical workflow to identify 'actionable' bioenergetic vulnerabilities intrinsic to cancerous mitochondria. Consistent with prior reports, AML growth and proliferation was associated with a hyper-metabolic phenotype which included increases in basal and maximal respiration. However, despite having nearly 2-fold more mitochondria per cell, clonally expanding hematopoietic stem cells, leukemic blasts, as well as chemoresistant AML were all consistently hallmarked by intrinsic OXPHOS limitations. Remarkably, by performing experiments across a physiological span of ATP free energy, we provide direct evidence that leukemic mitochondria are particularly poised to consume ATP. Relevant to AML biology, acute restoration of oxidative ATP synthesis proved highly cytotoxic to leukemic blasts, suggesting that active OXPHOS repression supports aggressive disease dissemination in AML. Together, these findings argue against ATP being the primary output of leukemic mitochondria and provide proof-of-principle that restoring, rather than disrupting, OXPHOS may represent an untapped therapeutic avenue for combatting hematological malignancy and chemoresistance.
Collapse
Affiliation(s)
- Margaret AM Nelson
- Department of Physiology, Brody School of Medicine, East Carolina UniversityGreenvilleUnited States
- East Carolina Diabetes and Obesity Institute, East Carolina UniversityGreenvilleUnited States
| | - Kelsey L McLaughlin
- Department of Physiology, Brody School of Medicine, East Carolina UniversityGreenvilleUnited States
- East Carolina Diabetes and Obesity Institute, East Carolina UniversityGreenvilleUnited States
| | - James T Hagen
- Department of Physiology, Brody School of Medicine, East Carolina UniversityGreenvilleUnited States
- East Carolina Diabetes and Obesity Institute, East Carolina UniversityGreenvilleUnited States
| | - Hannah S Coalson
- Department of Physiology, Brody School of Medicine, East Carolina UniversityGreenvilleUnited States
- East Carolina Diabetes and Obesity Institute, East Carolina UniversityGreenvilleUnited States
| | - Cameron Schmidt
- Department of Physiology, Brody School of Medicine, East Carolina UniversityGreenvilleUnited States
- East Carolina Diabetes and Obesity Institute, East Carolina UniversityGreenvilleUnited States
| | - Miki Kassai
- East Carolina Diabetes and Obesity Institute, East Carolina UniversityGreenvilleUnited States
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina UniversityGreenvilleUnited States
| | - Kimberly A Kew
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina UniversityGreenvilleUnited States
| | - Joseph M McClung
- Department of Physiology, Brody School of Medicine, East Carolina UniversityGreenvilleUnited States
- East Carolina Diabetes and Obesity Institute, East Carolina UniversityGreenvilleUnited States
- Department of Cardiovascular Sciences, Brody School of Medicine, East Carolina UniversityGreenvilleUnited States
| | - P Darrell Neufer
- East Carolina Diabetes and Obesity Institute, East Carolina UniversityGreenvilleUnited States
| | - Patricia Brophy
- East Carolina Diabetes and Obesity Institute, East Carolina UniversityGreenvilleUnited States
| | - Nasreen A Vohra
- Department of Surgery, Brody School of Medicine, East Carolina UniversityGreenvilleUnited States
| | - Darla Liles
- Department of Internal Medicine, Brody School of Medicine, East Carolina UniversityGreenvilleUnited States
| | - Myles C Cabot
- East Carolina Diabetes and Obesity Institute, East Carolina UniversityGreenvilleUnited States
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina UniversityGreenvilleUnited States
| | - Kelsey H Fisher-Wellman
- Department of Physiology, Brody School of Medicine, East Carolina UniversityGreenvilleUnited States
- East Carolina Diabetes and Obesity Institute, East Carolina UniversityGreenvilleUnited States
| |
Collapse
|
5
|
Cucchi DGJ, Groen RWJ, Janssen JJWM, Cloos J. Ex vivo cultures and drug testing of primary acute myeloid leukemia samples: Current techniques and implications for experimental design and outcome. Drug Resist Updat 2020; 53:100730. [PMID: 33096284 DOI: 10.1016/j.drup.2020.100730] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/03/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022]
Abstract
New treatment options of acute myeloid leukemia (AML) are rapidly emerging. Pre-clinical models such as ex vivo cultures are extensively used towards the development of novel drugs and to study synergistic drug combinations, as well as to discover biomarkers for both drug response and anti-cancer drug resistance. Although these approaches empower efficient investigation of multiple drugs in a multitude of primary AML samples, their translational value and reproducibility are hampered by the lack of standardized methodologies and by culture system-specific behavior of AML cells and chemotherapeutic drugs. Moreover, distinct research questions require specific methods which rely on specific technical knowledge and skills. To address these aspects, we herein review commonly used culture techniques in light of diverse research questions. In addition, culture-dependent effects on drug resistance towards commonly used drugs in the treatment of AML are summarized including several pitfalls that may arise because of culture technique artifacts. The primary aim of the current review is to provide practical guidelines for ex vivo primary AML culture experimental design.
Collapse
Affiliation(s)
- D G J Cucchi
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - R W J Groen
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - J J W M Janssen
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - J Cloos
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands.
| |
Collapse
|
6
|
Thoms JAI, Beck D, Pimanda JE. Transcriptional networks in acute myeloid leukemia. Genes Chromosomes Cancer 2019; 58:859-874. [PMID: 31369171 DOI: 10.1002/gcc.22794] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/16/2022] Open
Abstract
Acute myeloid leukemia (AML) is a complex disease characterized by a diverse range of recurrent molecular aberrations that occur in many different combinations. Components of transcriptional networks are a common target of these aberrations, leading to network-wide changes and deployment of novel or developmentally inappropriate transcriptional programs. Genome-wide techniques are beginning to reveal the full complexity of normal hematopoietic stem cell transcriptional networks and the extent to which they are deregulated in AML, and new understandings of the mechanisms by which AML cells maintain self-renewal and block differentiation are starting to emerge. The hope is that increased understanding of the network architecture in AML will lead to identification of key oncogenic dependencies that are downstream of multiple network aberrations, and that this knowledge will be translated into new therapies that target these dependencies. Here, we review the current state of knowledge of network perturbation in AML with a focus on major mechanisms of transcription factor dysregulation, including mutation, translocation, and transcriptional dysregulation, and discuss how these perturbations propagate across transcriptional networks. We will also review emerging mechanisms of network disruption, and briefly discuss how increased knowledge of network disruption is already being used to develop new therapies.
Collapse
Affiliation(s)
- Julie A I Thoms
- School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Dominik Beck
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales, Australia.,Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - John E Pimanda
- School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia.,Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia.,Department of Haematology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Castro E, Morales L, Zreik R, Donner LR. A Focus of Differentiated Myeloid Sarcoma in a Ligation Specimen of the Fallopian Tube: No Evidence of Hematologic Abnormality in 18 Years of Follow-up Despite Absence of Treatment. Int J Surg Pathol 2019; 28:99-101. [PMID: 31342805 DOI: 10.1177/1066896919864167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A 0.2-cm intramural focus composed predominantly of myelocytes and metamyelocytes, many CD3+, CD43+ T-lymphocytes, scanty CD20+ B-lymphocytes, rare mast cells, but no eosinophils or myeloblasts was incidentally found in a ligation specimen of the left fallopian tube. The myeloid cells were positive for chloroacetate esterase, myeloperoxidase, myeloid marker BM2, and CD43, and they were negative for CD30, CD34, CD117, ERG, and TDT. The findings in the left fallopian tube were consistent with the diagnosis of differentiated myeloid sarcoma. The right fallopian tube was normal. No hematologic abnormalities were found elsewhere in the body. Curiously, the patient remains free of any hematologic abnormality for 18 years despite absence of treatment.
Collapse
Affiliation(s)
- Eduardo Castro
- Baylor Scott & White Medical Center, Temple, TX, USA.,Texas A&M University College of Medicine, Temple, TX, USA
| | - Linden Morales
- Baylor Scott & White Medical Center, Temple, TX, USA.,Texas A&M University College of Medicine, Temple, TX, USA
| | - Riyam Zreik
- Baylor Scott & White Medical Center, Temple, TX, USA.,Texas A&M University College of Medicine, Temple, TX, USA
| | - Ludvik R Donner
- Baylor Scott & White Medical Center, Temple, TX, USA.,Texas A&M University College of Medicine, Temple, TX, USA
| |
Collapse
|
8
|
Lee KCM, Wang M, Cheah KSE, Chan GCF, So HKH, Wong KKY, Tsia KK. Quantitative Phase Imaging Flow Cytometry for Ultra-Large-Scale Single-Cell Biophysical Phenotyping. Cytometry A 2019; 95:510-520. [PMID: 31012276 DOI: 10.1002/cyto.a.23765] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/19/2019] [Accepted: 04/01/2019] [Indexed: 12/21/2022]
Abstract
Cellular biophysical properties are the effective label-free phenotypes indicative of differences in cell types, states, and functions. However, current biophysical phenotyping methods largely lack the throughput and specificity required in the majority of cell-based assays that involve large-scale single-cell characterization for inquiring the inherently complex heterogeneity in many biological systems. Further confounded by the lack of reported robust reproducibility and quality control, widespread adoption of single-cell biophysical phenotyping in mainstream cytometry remains elusive. To address this challenge, here we present a label-free imaging flow cytometer built upon a recently developed ultrafast quantitative phase imaging (QPI) technique, coined multi-ATOM, that enables label-free single-cell QPI, from which a multitude of subcellularly resolvable biophysical phenotypes can be parametrized, at an experimentally recorded throughput of >10,000 cells/s-a capability that is otherwise inaccessible in current QPI. With the aim to translate multi-ATOM into mainstream cytometry, we report robust system calibration and validation (from image acquisition to phenotyping reproducibility) and thus demonstrate its ability to establish high-dimensional single-cell biophysical phenotypic profiles at ultra-large-scale (>1,000,000 cells). Such a combination of throughput and content offers sufficiently high label-free statistical power to classify multiple human leukemic cell types at high accuracy (~92-97%). This system could substantiate the significance of high-throughput QPI flow cytometry in enabling next frontier in large-scale image-derived single-cell analysis applied in biological discovery and cost-effective clinical diagnostics. © 2019 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Kelvin C M Lee
- Department of Electrical and Electronic Engineering, Faculty of Engineering, The University of Hong Kong, Pokfulam, Hong Kong
| | - Maolin Wang
- Department of Electrical and Electronic Engineering, Faculty of Engineering, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kathryn S E Cheah
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Godfrey C F Chan
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Hayden K H So
- Department of Electrical and Electronic Engineering, Faculty of Engineering, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kenneth K Y Wong
- Department of Electrical and Electronic Engineering, Faculty of Engineering, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kevin K Tsia
- Department of Electrical and Electronic Engineering, Faculty of Engineering, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
9
|
Yassin M, Aqaqe N, Yassin AA, van Galen P, Kugler E, Bernstein BE, Koren-Michowitz M, Canaani J, Nagler A, Lechman ER, Dick JE, Wienholds E, Izraeli S, Milyavsky M. A novel method for detecting the cellular stemness state in normal and leukemic human hematopoietic cells can predict disease outcome and drug sensitivity. Leukemia 2019; 33:2061-2077. [PMID: 30705411 DOI: 10.1038/s41375-019-0386-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/02/2018] [Accepted: 12/20/2018] [Indexed: 02/06/2023]
Abstract
Acute leukemia is an aggressive blood malignancy with low survival rates. A high expression of stem-like programs in leukemias predicts poor prognosis and is assumed to act in an aberrant fashion in the phenotypically heterogeneous leukemia stem cell (LSC) population. A lack of suitable genome engineering tools that can isolate LSCs based on their stemness precludes their comprehensive examination and full characterization. We hypothesized that tagging endogenous stemness-regulatory regions could generate a genome reporter for the putative leukemia stemness-state. Our analysis revealed that the ERG + 85 enhancer region can serve as a marker for stemness-state and a fluorescent lentiviral reporter was developed that can accurately recapitulate the endogenous activity. Using our novel reporter, we revealed cellular heterogeneity in several leukemia cell lines and patient-derived samples. Alterations in reporter activity were associated with transcriptomic and functional changes that were closely related to the hematopoietic stem cell (HSC) identity. Notably, the differentiation potential was skewed towards the erythro-megakaryocytic lineage. Moreover, an ERG + 85High fraction of AML cells could regenerate the original cellular heterogeneity and was enriched for LSCs. RNA-seq analysis coupled with in silico drug-screen analysis identified 4HPR as an effective inhibitor of ERG + 85High leukemia growth. We propose that further utilization of our novel molecular tool will identify crucial determinants of LSCs, thus providing a rationale for their therapeutic targeting.
Collapse
Affiliation(s)
- Muhammad Yassin
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Nasma Aqaqe
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Abed Alkader Yassin
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Peter van Galen
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Eitan Kugler
- Department of Pediatric Hemato-Oncology, Schneider Children Medical Center, Petah Tikva, Israel.,The Gene Development and Environment Pediatric Research Institute, Pediatric Hemato-Oncology, Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Department of Molecular Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Bradley E Bernstein
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, 02114, USA
| | | | - Jonathan Canaani
- Hematology Division, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Arnon Nagler
- Hematology Division, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Eric R Lechman
- Princess Margaret Cancer Centre, University Health Network and Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - John E Dick
- Princess Margaret Cancer Centre, University Health Network and Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Erno Wienholds
- Princess Margaret Cancer Centre, University Health Network and Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Shai Izraeli
- Department of Pediatric Hemato-Oncology, Schneider Children Medical Center, Petah Tikva, Israel.,The Gene Development and Environment Pediatric Research Institute, Pediatric Hemato-Oncology, Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Department of Molecular Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Michael Milyavsky
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel.
| |
Collapse
|
10
|
Dehghan Khalilabad N, Hassanpour H. Employing image processing techniques for cancer detection using microarray images. Comput Biol Med 2017; 81:139-147. [DOI: 10.1016/j.compbiomed.2016.12.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/18/2016] [Accepted: 12/19/2016] [Indexed: 12/19/2022]
|
11
|
Romano M, Della Porta MG, Gallì A, Panini N, Licandro SA, Bello E, Craparotta I, Rosti V, Bonetti E, Tancredi R, Rossi M, Mannarino L, Marchini S, Porcu L, Galmarini CM, Zambelli A, Zecca M, Locatelli F, Cazzola M, Biondi A, Rambaldi A, Allavena P, Erba E, D'Incalci M. Antitumour activity of trabectedin in myelodysplastic/myeloproliferative neoplasms. Br J Cancer 2017; 116:335-343. [PMID: 28072764 PMCID: PMC5294481 DOI: 10.1038/bjc.2016.424] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Juvenile myelomonocytic leukaemia (JMML) and chronic myelomonocytic leukaemia (CMML) are myelodysplastic myeloproliferative (MDS/MPN) neoplasms with unfavourable prognosis and without effective chemotherapy treatment. Trabectedin is a DNA minor groove binder acting as a modulator of transcription and interfering with DNA repair mechanisms; it causes selective depletion of cells of the myelomonocytic lineage. We hypothesised that trabectedin might have an antitumour effect on MDS/MPN. METHODS Malignant CD14+ monocytes and CD34+ haematopoietic progenitor cells were isolated from peripheral blood/bone marrow mononuclear cells. The inhibition of CFU-GM colonies and the apoptotic effect on CD14+ and CD34+ induced by trabectedin were evaluated. Trabectedin's effects were also investigated in vitro on THP-1, and in vitro and in vivo on MV-4-11 cell lines. RESULTS On CMML/JMML cells, obtained from 20 patients with CMML and 13 patients with JMML, trabectedin - at concentration pharmacologically reasonable, 1-5 nM - strongly induced apoptosis and inhibition of growth of haematopoietic progenitors (CFU-GM). In these leukaemic cells, trabectedin downregulated the expression of genes belonging to the Rho GTPases pathway (RAS superfamily) having a critical role in cell growth and cytoskeletal dynamics. Its selective activity on myelomonocytic malignant cells was confirmed also on in vitro THP-1 cell line and on in vitro and in vivo MV-4-11 cell line models. CONCLUSIONS Trabectedin could be good candidate for clinical studies in JMML/CMML patients.
Collapse
Affiliation(s)
- Michela Romano
- Department of Oncology, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, Milan, Italy
| | - Matteo Giovanni Della Porta
- Department of Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Internal Medicine, University of Pavia, Pavia, Italy
| | - Anna Gallì
- Department of Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Nicolò Panini
- Department of Oncology, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, Milan, Italy
| | - Simonetta Andrea Licandro
- Department of Oncology, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, Milan, Italy
| | - Ezia Bello
- Department of Oncology, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, Milan, Italy
| | - Ilaria Craparotta
- Department of Oncology, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, Milan, Italy
| | - Vittorio Rosti
- IRCCS Policlinico S. Matteo Foundation, Center for the Study of Myelofibrosis, Pavia, Italy
| | - Elisa Bonetti
- IRCCS Policlinico S. Matteo Foundation, Center for the Study of Myelofibrosis, Pavia, Italy
| | - Richard Tancredi
- Division of Clinical Oncology, IRCCS Fondazione S. Maugeri, Pavia, Italy
| | - Marianna Rossi
- Department of Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Laura Mannarino
- Department of Oncology, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, Milan, Italy
| | - Sergio Marchini
- Department of Oncology, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, Milan, Italy
| | - Luca Porcu
- Department of Oncology, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, Milan, Italy
| | | | - Alberto Zambelli
- Medical Oncology Unit, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Marco Zecca
- Department of Pediatric Hematology-Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology-Oncology, IRCCS, Bambino Gesù Children's Hospital, Roma, Italy.,Department of Pediatric Science, University of Pavia, Pavia, Italy
| | - Mario Cazzola
- Department of Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Andrea Biondi
- Clinica Pediatrica, Università di Milano, Ospedale San Gerardo, Monza, Italy
| | - Alessandro Rambaldi
- Hematology and Bone Marrow Transplantation Unit, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Paola Allavena
- IRCCS Clinical and Research Institute Humanitas, Rozzano, Milano, Italy
| | - Eugenio Erba
- Department of Oncology, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, Milan, Italy
| | - Maurizio D'Incalci
- Department of Oncology, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, Milan, Italy
| |
Collapse
|
12
|
Azarnezhad A, Mehdipour P. Cancer Genetics at a Glance: The Comprehensive Insights. CANCER GENETICS AND PSYCHOTHERAPY 2017:79-389. [DOI: 10.1007/978-3-319-64550-6_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
13
|
Roode SC, Rotroff D, Richards KL, Moore P, Motsinger-Reif A, Okamura Y, Mizuno T, Tsujimoto H, Suter SE, Breen M. Comprehensive genomic characterization of five canine lymphoid tumor cell lines. BMC Vet Res 2016; 12:207. [PMID: 27639374 PMCID: PMC5027081 DOI: 10.1186/s12917-016-0836-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/08/2016] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Leukemia/lymphoma cell lines have been critical in the investigation of the pathogenesis and therapy of hematological malignancies. While human LL cell lines have generally been found to recapitulate the primary tumors from which they were derived, appropriate characterization including cytogenetic and transcriptional assessment is crucial for assessing their clinical predictive value. RESULTS In the following study, five canine LL cell lines, CLBL-1, Ema, TL-1 (Nody-1), UL-1, and 3132, were characterized using extensive immunophenotyping, karyotypic analysis, oligonucleotide array comparative genomic hybridization (oaCGH), and gene expression profiling. Genome-wide DNA copy number data from the cell lines were also directly compared with 299 primary canine round cell tumors to determine whether the cell lines represent primary tumors, and, if so, what subtype each most closely resembled. CONCLUSIONS Based on integrated analyses, CLBL-1 was classified as B-cell lymphoma, Ema and TL-1 as T-cell lymphoma, and UL-1 as T-cell acute lymphoblastic leukemia. 3132, originally classified as a B-cell lymphoma, was reclassified as a histiocytic sarcoma based on characteristic cytogenomic properties. In combination, these data begin to elucidate the clinical predictive value of these cell lines which will enhance the appropriate selection of in vitro models for future studies of canine hematological malignancies.
Collapse
Affiliation(s)
- Sarah C Roode
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, CVM Research Building - Room 348, 1060 William Moore Drive, Raleigh, 27607, NC, USA
| | - Daniel Rotroff
- Bioinformatics Research Center, Department of Statistics, North Carolina State University, Raleigh, NC, USA
| | - Kristy L Richards
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
- Cancer Genetics Program, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- KLR current address: Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Peter Moore
- Department of Pathology, Microbiology, and Immunology, College of Veterinary Medicine, University of California, Davis, CA, USA
| | - Alison Motsinger-Reif
- Bioinformatics Research Center, Department of Statistics, North Carolina State University, Raleigh, NC, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Yasuhiko Okamura
- Veterinary Teaching Hospital, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Takuya Mizuno
- Laboratory of Veterinary Internal Medicine, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
| | - Hajime Tsujimoto
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo, Japan
| | - Steven E Suter
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.
- Cancer Genetics Program, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, CVM Research Building - Room 308, 1051 William Moore Drive, Raleigh, NC, 27607, USA.
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, CVM Research Building - Room 348, 1060 William Moore Drive, Raleigh, 27607, NC, USA.
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.
- Cancer Genetics Program, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
14
|
Monika Belickova M, Merkerova MD, Votavova H, Valka J, Vesela J, Pejsova B, Hajkova H, Klema J, Cermak J, Jonasova A. Up-regulation of ribosomal genes is associated with a poor response to azacitidine in myelodysplasia and related neoplasms. Int J Hematol 2016; 104:566-573. [DOI: 10.1007/s12185-016-2058-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 10/21/2022]
|
15
|
Rücker FG, Lang KM, Fütterer M, Komarica V, Schmid M, Döhner H, Schlenk RF, Döhner K, Knudsen S, Bullinger L. Molecular dissection of valproic acid effects in acute myeloid leukemia identifies predictive networks. Epigenetics 2016; 11:517-25. [PMID: 27309669 DOI: 10.1080/15592294.2016.1187350] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Histone deacetylase inhibitors (HDACIs) like valproic acid (VPA) display activity in leukemia models and induce tumor-selective cytotoxicity against acute myeloid leukemia (AML) blasts. As there are limited data on HDACIs effects, we aimed to dissect VPA effects in vitro using myeloid cell lines with the idea to integrate findings with in vivo data from AML patients treated with VPA additionally to intensive chemotherapy (n = 12). By gene expression profiling we identified an in vitro VPA response signature enriched for genes/pathways known to be implicated in cell cycle arrest, apoptosis, and DNA repair. Following VPA treatment in vivo, gene expression changes in AML patients showed concordant results with the in vitro VPA response despite concomitant intensive chemotherapy. Comparative miRNA profiling revealed VPA-associated miRNA expression changes likely contributing to a VPA-induced reversion of deregulated gene expression. In addition, we were able to define markers predicting VPA response in vivo such as CXCR4 and LBH. These could be validated in an independent cohort of VPA and intensive chemotherapy treated AML patients (n = 114) in which they were inversely correlated with relapse-free survival. In summary, our data provide new insights into the molecular mechanisms of VPA in myeloid blasts, which might be useful in further advancing HDAC inhibition based treatment approaches in AML.
Collapse
Affiliation(s)
- Frank G Rücker
- a Department of Internal Medicine III , University Hospital of Ulm , Ulm , Germany
| | - Katharina M Lang
- a Department of Internal Medicine III , University Hospital of Ulm , Ulm , Germany
| | - Markus Fütterer
- a Department of Internal Medicine III , University Hospital of Ulm , Ulm , Germany
| | - Vladimir Komarica
- a Department of Internal Medicine III , University Hospital of Ulm , Ulm , Germany
| | - Mathias Schmid
- b Department of Medical Oncology and Hematology , Triemli Hospital , Zurich , Switzerland
| | - Hartmut Döhner
- a Department of Internal Medicine III , University Hospital of Ulm , Ulm , Germany
| | - Richard F Schlenk
- a Department of Internal Medicine III , University Hospital of Ulm , Ulm , Germany
| | - Konstanze Döhner
- a Department of Internal Medicine III , University Hospital of Ulm , Ulm , Germany
| | - Steen Knudsen
- c Medical Prognosis Institute (MPI) , Hørsholm , Denmark
| | - Lars Bullinger
- a Department of Internal Medicine III , University Hospital of Ulm , Ulm , Germany
| |
Collapse
|
16
|
Aasebø E, Forthun RB, Berven F, Selheim F, Hernandez-Valladares M. Global Cell Proteome Profiling, Phospho-signaling and Quantitative Proteomics for Identification of New Biomarkers in Acute Myeloid Leukemia Patients. Curr Pharm Biotechnol 2016; 17:52-70. [PMID: 26306748 PMCID: PMC5388801 DOI: 10.2174/1389201016666150826115626] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 05/29/2015] [Accepted: 07/23/2015] [Indexed: 12/31/2022]
Abstract
The identification of protein biomarkers for acute myeloid leukemia (AML) that could find applications in AML diagnosis and prognosis, treatment and the selection for bone marrow transplant requires substantial comparative analyses of the proteomes from AML patients. In the past years, several studies have suggested some biomarkers for AML diagnosis or AML classification using methods for sample preparation with low proteome coverage and low resolution mass spectrometers. However, most of the studies did not follow up, confirm or validate their candidates with more patient samples. Current proteomics methods, new high resolution and fast mass spectrometers allow the identification and quantification of several thousands of proteins obtained from few tens of μg of AML cell lysate. Enrichment methods for posttranslational modifications (PTM), such as phosphorylation, can isolate several thousands of site-specific phosphorylated peptides from AML patient samples, which subsequently can be quantified with high confidence in new mass spectrometers. While recent reports aiming to propose proteomic or phosphoproteomic biomarkers on the studied AML patient samples have taken advantage of the technological progress, the access to large cohorts of AML patients to sample from and the availability of appropriate control samples still remain challenging.
Collapse
Affiliation(s)
| | | | | | | | - Maria Hernandez-Valladares
- Department of Biomedicine, Faculty of Medicine, Building for Basic Biology, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway.
| |
Collapse
|
17
|
Candia J, Cherukuri S, Guo Y, Doshi KA, Banavar JR, Civin CI, Losert W. Uncovering low-dimensional, miR-based signatures of acute myeloid and lymphoblastic leukemias with a machine-learning-driven network approach. CONVERGENT SCIENCE PHYSICAL ONCOLOGY 2015; 1. [PMID: 27274862 DOI: 10.1088/2057-1739/1/2/025002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Complex phenotypic differences among different acute leukemias cannot be fully captured by analyzing the expression levels of one single molecule, such as a miR, at a time, but requires systematic analysis of large sets of miRs. While a popular approach for analysis of such datasets is principal component analysis (PCA), this method is not designed to optimally discriminate different phenotypes. Moreover, PCA and other low-dimensional representation methods yield linear or non-linear combinations of all measured miRs. Global human miR expression was measured in AML, B-ALL, and TALL cell lines and patient RNA samples. By systematically applying support vector machines to all measured miRs taken in dyad and triad groups, we built miR networks using cell line data and validated our findings with primary patient samples. All the coordinately transcribed members of the miR-23a cluster (which includes also miR-24 and miR-27a), known to function as tumor suppressors of acute leukemias, appeared in the AML, B-ALL and T-ALL centric networks. Subsequent qRT-PCR analysis showed that the most connected miR in the B-ALL-centric network, miR-708, is highly and specifically expressed in B-ALLs, suggesting that miR-708 might serve as a biomarker for B-ALL. This approach is systematic, quantitative, scalable, and unbiased. Rather than a single signature, our approach yields a network of signatures reflecting the redundant nature of biological signaling pathways. The network representation allows for visual analysis of all signatures by an expert and for future integration of additional information. Furthermore, each signature involves only small sets of miRs, such as dyads and triads, which are well suited for in depth validation through laboratory experiments. In particular, loss-and gain-of-function assays designed to drive changes in leukemia cell survival, proliferation and differentiation will benefit from the identification of multi-miR signatures that characterize leukemia subtypes and their normal counterpart cells of origin.
Collapse
Affiliation(s)
- Julián Candia
- Center for Human Immunology, Autoimmunity and Inflammation, National Institutes of Health, Bethesda, MD 20892, USA; Department of Physics, University of Maryland, College Park, MD 20742, USA; Center for Stem Cell Biology & Regenerative Medicine, Departments of Pediatrics and Physiology, University of Maryland School of Medicine, Baltimore MD 21201, USA
| | - Srujana Cherukuri
- Center for Stem Cell Biology & Regenerative Medicine, Departments of Pediatrics and Physiology, University of Maryland School of Medicine, Baltimore MD 21201, USA; Noble Life Sciences, 22 Firstfield Rd, Gaithersburg, MD 20878, USA
| | - Yin Guo
- Center for Stem Cell Biology & Regenerative Medicine, Departments of Pediatrics and Physiology, University of Maryland School of Medicine, Baltimore MD 21201, USA
| | - Kshama A Doshi
- Center for Stem Cell Biology & Regenerative Medicine, Departments of Pediatrics and Physiology, University of Maryland School of Medicine, Baltimore MD 21201, USA
| | - Jayanth R Banavar
- Department of Physics, University of Maryland, College Park, MD 20742, USA
| | - Curt I Civin
- Center for Stem Cell Biology & Regenerative Medicine, Departments of Pediatrics and Physiology, University of Maryland School of Medicine, Baltimore MD 21201, USA
| | - Wolfgang Losert
- Department of Physics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
18
|
Jensen HA, Yourish HB, Bunaciu RP, Varner JD, Yen A. Induced myelomonocytic differentiation in leukemia cells is accompanied by noncanonical transcription factor expression. FEBS Open Bio 2015; 5:789-800. [PMID: 26566473 PMCID: PMC4600856 DOI: 10.1016/j.fob.2015.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/15/2015] [Accepted: 09/23/2015] [Indexed: 02/08/2023] Open
Abstract
Transcription factors that drive non-neoplastic myelomonocytic differentiation are well characterized but have not been systematically analyzed in the leukemic context. We investigated widely used, patient-derived myeloid leukemia cell lines with proclivity for differentiation into granulocytes by retinoic acid (RA) and/or monocytes by 1,25-dihyrdroxyvitamin D3 (D3). Using K562 (FAB M1), HL60 (FAB M2), RA-resistant HL60 sublines, NB4 (FAB M3), and U937 (FAB M5), we correlated nuclear transcription factor expression to immunophenotype, G1/G0 cell cycle arrest and functional inducible oxidative metabolism. We found that myelomonocytic transcription factors are aberrantly expressed in these cell lines. Monocytic-lineage factor EGR1 was not induced by D3 (the monocytic inducer) but instead by RA (the granulocytic inducer) in lineage bipotent myeloblastic HL60. In promyelocytic NB4 cells, EGR1 levels were increased by D3, while Gfi-1 expression (which promotes the granulocytic lineage) was upregulated during D3-induced monocytic differentiation in HL60, and by RA treatment in monocytic U937 cells. Furthermore, RARα and VDR expression were not strongly correlated to differentiation. In response to different differentiation inducers, U937 exhibited the most distinct transcription factor expression profile, while similarly mature NB4 and HL60 were better coupled. Overall, the differentiation induction agents RA and D3 elicited cell-specific responses across these common FAB M1-M5 cell lines.
Collapse
Key Words
- AML, acute myeloid leukemia
- APL, acute promyelocytic leukemia
- AhR, aryl hydrocarbon receptor
- C/EBPα, CCAAT-enhancer binding protein α
- CD, cluster of differentiation [marker]
- D3, 1,25-dihydroxyvitamin D3
- Differentiation
- EGR1, early growth response protein 1
- FAB, French–American–British [myeloid leukemia classification]
- Gfi-1, growth factor independent protein 1
- IRF-1, interferon regulatory factor 1
- Lineage selection
- Myeloid leukemia
- Oct4, octamer-binding transcription factor 4
- PU.1, binds PU-box, also called Spi-1
- RA, retinoic acid
- RARα, retinoic acid receptor α
- Retinoic acid
- VDR, vitamin D receptor
- Vitamin D3
Collapse
Affiliation(s)
- Holly A Jensen
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | | | - Rodica P Bunaciu
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Jeffrey D Varner
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Andrew Yen
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| |
Collapse
|
19
|
Abstract
Decreased autophagy contributes to malignancies, however it is unclear how autophagy impacts on tumour growth. Acute myeloid leukemia (AML) is an ideal model to address this as (i) patient samples are easily accessible, (ii) the hematopoietic stem and progenitor population (HSPC) where transformation occurs is well characterized, and (iii) loss of the key autophagy gene Atg7 in hematopoietic stem and progenitor cells (HSPCs) leads to a lethal pre-leukemic phenotype in mice. Here we demonstrate that loss of Atg5 results in an identical HSPC phenotype as loss of Atg7, confirming a general role for autophagy in HSPC regulation. Compared to more committed/mature hematopoietic cells, healthy human and mouse HSCs displayed enhanced basal autophagic flux, limiting mitochondrial damage and reactive oxygen species in this long-lived population. Taken together, with our previous findings these data are compatible with autophagy limiting leukemic transformation. In line with this, autophagy gene losses are found within chromosomal regions that are commonly deleted in human AML. Moreover, human AML blasts showed reduced expression of autophagy genes, and displayed decreased autophagic flux with accumulation of unhealthy mitochondria indicating that deficient autophagy may be beneficial to human AML. Crucially, heterozygous loss of autophagy in an MLL-ENL model of AML led to increased proliferation in vitro, a glycolytic shift, and more aggressive leukemias in vivo. With autophagy gene losses also identified in multiple other malignancies, these findings point to low autophagy providing a general advantage for tumour growth.
Collapse
|
20
|
Veigaard C, Kjeldsen E. Exploring the genome-wide relation between copy number status and microRNA expression. Genomics 2014; 104:271-8. [PMID: 25124499 DOI: 10.1016/j.ygeno.2014.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 07/29/2014] [Accepted: 08/02/2014] [Indexed: 12/19/2022]
Abstract
The deregulation of miRNAs has been associated with several different cancer types. Deregulation occurs in several ways, but generally little is known about the basis for the distorted expression of miRNAs. We investigated the relation between copy number status and miRNA expression at the genome-wide level using cytogenetic and array-based methods to characterize genomic aberrations in hematopoietic cell lines. For the same cell lines, we obtained global miRNA expression profiles, and analyzed the genome-wide correlation using the Spearman's rank test. This analysis showed that the expression of only a two miRNAs (miR-324-5p encoded by MIR324 at 17p13.1 and miR-660 encoded by MIR660 at Xp11.23) was influenced by copy number status. Our data imply that no direct relation between copy number status and miRNA expression exists in the investigated cell lines.
Collapse
Affiliation(s)
- Christopher Veigaard
- Department of Hematology, Aarhus University Hospital, Aarhus University, 8000 Aarhus C, Denmark
| | - Eigil Kjeldsen
- Department of Hematology, Aarhus University Hospital, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
21
|
Fleischmann KK, Pagel P, Schmid I, Roscher AA. RNAi-mediated silencing of MLL-AF9 reveals leukemia-associated downstream targets and processes. Mol Cancer 2014; 13:27. [PMID: 24517546 PMCID: PMC3924703 DOI: 10.1186/1476-4598-13-27] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 02/07/2014] [Indexed: 11/10/2022] Open
Abstract
Background The translocation t(9;11)(p22;q23) leading to the leukemogenic fusion gene MLL-AF9 is a frequent translocation in infant acute myeloid leukemia (AML). This study aimed to identify genes and molecular processes downstream of MLL-AF9 (alias MLL-MLLT3) which could assist to develop new targeted therapies for such leukemia with unfavorable prognosis. Methods In the AML cell line THP1 which harbors this t(9;11) translocation, endogenous MLL-AF9 was silenced via siRNA while ensuring specificity of the knockdown and its efficiency on functional protein level. Results The differential gene expression profile was validated for leukemia-association by gene set enrichment analysis of published gene sets from patient studies and MLL-AF9 overexpression studies and revealed 425 differentially expressed genes. Gene ontology analysis was consistent with a more differentiated state of MLL-AF9 depleted cells, with involvement of a wide range of downstream transcriptional regulators and with defined functional processes such as ribosomal biogenesis, chaperone binding, calcium homeostasis and estrogen response. We prioritized 41 gene products as candidate targets including several novel and potentially druggable effectors of MLL-AF9 (AHR, ATP2B2, DRD5, HIPK2, PARP8, ROR2 and TAS1R3). Applying the antagonist SCH39166 against the dopamine receptor DRD5 resulted in reduced leukemic cell characteristics of THP1 cells. Conclusion Besides potential new therapeutic targets, the described transcription profile shaped by MLL-AF9 provides an information source into the molecular processes altered in MLL aberrant leukemia.
Collapse
Affiliation(s)
- Katrin K Fleischmann
- Children's Research Center, Division of Pediatric Hematology and Oncology, Dr, von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, Lindwurmstrasse 2a, München 80337, Germany.
| | | | | | | |
Collapse
|
22
|
Bullinger L, Schlenk RF, Götz M, Botzenhardt U, Hofmann S, Russ AC, Babiak A, Zhang L, Schneider V, Döhner K, Schmitt M, Döhner H, Greiner J. PRAME-Induced Inhibition of Retinoic Acid Receptor Signaling-Mediated Differentiation—A Possible Target for ATRA Response in AML without t(15;17). Clin Cancer Res 2013; 19:2562-71. [DOI: 10.1158/1078-0432.ccr-11-2524] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Altered miRNA and gene expression in acute myeloid leukemia with complex karyotype identify networks of prognostic relevance. Leukemia 2012; 27:353-61. [PMID: 22810507 DOI: 10.1038/leu.2012.208] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recently, the p53-miR-34a network has been identified to have an important role in tumorigenesis. As in acute myeloid leukemia with complex karyotype (CK-AML) TP53 alterations are the most common known molecular lesion, we further analyzed the p53-miR-34a axis in a large cohort of CK-AML with known TP53 status (TP53(altered), n=57; TP53(unaltered), n=31; altered indicates loss and/or mutation of TP53). Profiling microRNA (miRNA) expression delineated TP53 alteration-associated miRNA profiles, and identified miR-34a and miR-100 as the most significantly down- and upregulated miRNA, respectively. Moreover, we found a distinct miR-34a expression-linked gene expression profile enriched for genes belonging to p53-associated pathways, and implicated in cell cycle progression or apoptosis. Clinically, low miR-34a expression and TP53 alterations predicted for chemotherapy resistance and inferior outcome. Notably, in TP53(unaltered) CK-AML, high miR-34a expression predicted for inferior overall survival (OS), whereas in TP53(biallelic altered) CK-AML, high miR-34a expression pointed to better OS. Thus, detailed molecular profiling links impaired p53 to decreased miR-34a expression, but also identifies p53-independent miR-34a induction mechanisms as shown in TP53(biallelic altered) cell lines treated with 15-deoxy-Δ(12,14)-prostaglandin. An improved understanding of this mechanism might provide novel therapeutic options to restore miR-34a function and thereby induce cell cycle arrest and apoptosis in TP53(altered) CK-AML.
Collapse
|
24
|
Rücker FG, Bullinger L, Gribov A, Sill M, Schlenk RF, Lichter P, Döhner H, Döhner K. Molecular characterization of AML with ins(21;8)(q22;q22q22) reveals similarity to t(8;21) AML. Genes Chromosomes Cancer 2010; 50:51-8. [DOI: 10.1002/gcc.20830] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
25
|
Abstract
We outline the near 50-year history of leukemia-lymphoma (LL) cell lines - a key model system in biomedicine. Due to the detailed documentation of their oncogenomic and transcriptional alterations via recent advances in molecular medicine, LL cell lines may be fitted to parent tumors with a degree of precision unattainable in other cancers. We have surveyed the corpus of published LL cell lines and found 637 examples that meet minimum standards of authentication and characterization. Alarmingly, the rate of establishment of new LL cell lines has plummeted over the last decade. Although the main hematopoietic developmental cell types are represented by cell lines, some LL categories stubbornly resist establishment in vitro. The advent of engineering techniques for immortalizing primary human cells that maintain differentiation means the time is ripe for renewed search for in vitro models from un(der)represented hematologic entities. Given their manifold applications in biomedicine, there is little doubt that LL-derived cell lines will continue to play a vital part well into the next half-century as well.
Collapse
Affiliation(s)
- Hans G Drexler
- DSMZ-German Collection of Microorganisms & Cell Cultures, Department of Human and Animal Cell Cultures, Braunschweig, Germany.
| | | |
Collapse
|
26
|
Marstrand TT, Borup R, Willer A, Borregaard N, Sandelin A, Porse BT, Theilgaard-Mönch K. A conceptual framework for the identification of candidate drugs and drug targets in acute promyelocytic leukemia. Leukemia 2010; 24:1265-75. [PMID: 20508621 DOI: 10.1038/leu.2010.95] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chromosomal translocations of transcription factors generating fusion proteins with aberrant transcriptional activity are common in acute leukemia. In acute promyelocytic leukemia (APL), the promyelocytic leukemia-retinoic-acid receptor alpha (PML-RARA) fusion protein, which emerges as a consequence of the t(15;17) translocation, acts as a transcriptional repressor that blocks neutrophil differentiation at the promyelocyte (PM) stage. In this study, we used publicly available microarray data sets and identified signatures of genes dysregulated in APL by comparison of gene expression profiles of APL cells and normal PMs representing the same stage of differentiation. We next subjected our identified APL signatures of dysregulated genes to a series of computational analyses leading to (i) the finding that APL cells show stem cell properties with respect to gene expression and transcriptional regulation, and (ii) the identification of candidate drugs and drug targets for therapeutic interventions. Significantly, our study provides a conceptual framework that can be applied to any subtype of AML and cancer in general to uncover novel information from published microarray data sets at low cost. In a broader perspective, our study provides strong evidence that genomic strategies might be used in a clinical setting to prospectively identify candidate drugs that subsequently are validated in vitro to define the most effective drug combination for individual cancer patients on a rational basis.
Collapse
Affiliation(s)
- T T Marstrand
- Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
27
|
Pedranzini L, Mottadelli F, Ronzoni S, Rossella F, Ferracin M, Magnani I, Roversi G, Colapietro P, Negrini M, Pelicci PG, Larizza L. Differential cytogenomics and miRNA signature of the Acute Myeloid Leukaemia Kasumi-1 cell line CD34+38- compartment. Leuk Res 2010; 34:1287-95. [PMID: 20227111 DOI: 10.1016/j.leukres.2010.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 02/13/2010] [Accepted: 02/13/2010] [Indexed: 01/23/2023]
Abstract
The t(8;21) Acute Myeloid Leukaemia (AML) Kasumi-1 cell line with N822K KIT mutation, is a model system for leukemogenesis. As AML initiating cells reside in the CD34(+)CD38(-) fraction, we addressed the refined cytogenomic characterization and miRNA expression of Kasumi-1 cell line and its FACS-sorted subpopulations focussing on this compartment. By conventional cytogenetics, Spectral-Karyotyping and array-CGH the cytogenomic profile of Kasumi-1 cells evidenced only subtle regions differentially represented in CD34(+)CD38(-) cells. Expression profiling by a miRNA platform showed a set of miRNA differentially expressed in paired subpopulations and the signature of miR-584 and miR-182 upregulation in the CD34(+)CD38(-) fraction.
Collapse
Affiliation(s)
- Laura Pedranzini
- Genetica Medica, Dipartimento di Medicina, Chirurgia e Odontoiatria, Università di Milano, Via A di Rudinì 8, 20142 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Drexler HG, Dirks WG, MacLeod RA. Many are called MDS cell lines: One is chosen. Leuk Res 2009; 33:1011-6. [DOI: 10.1016/j.leukres.2009.03.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 03/07/2009] [Accepted: 03/08/2009] [Indexed: 11/15/2022]
|
29
|
Kuhn A, Leupin N, Fey M, Delorenzi M. Leukaemia cell lines are robust in vitro models – response to MacLeod & Drexler. Br J Haematol 2008. [DOI: 10.1111/j.1365-2141.2008.07158.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
|
31
|
Calasanz MJ, Cigudosa JC. Molecular cytogenetics in translational oncology: when chromosomes meet genomics. Clin Transl Oncol 2008; 10:20-9. [DOI: 10.1007/s12094-008-0149-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Suela J, Alvarez S, Cigudosa JC. DNA profiling by arrayCGH in acute myeloid leukemia and myelodysplastic syndromes. Cytogenet Genome Res 2007; 118:304-9. [PMID: 18000384 DOI: 10.1159/000108314] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Accepted: 11/09/2006] [Indexed: 12/20/2022] Open
Affiliation(s)
- J Suela
- Molecular Cytogenetics Group, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | | | | |
Collapse
|
33
|
Bullinger L, Rücker FG, Kurz S, Du J, Scholl C, Sander S, Corbacioglu A, Lottaz C, Krauter J, Fröhling S, Ganser A, Schlenk RF, Döhner K, Pollack JR, Döhner H. Gene-expression profiling identifies distinct subclasses of core binding factor acute myeloid leukemia. Blood 2007; 110:1291-300. [PMID: 17485551 DOI: 10.1182/blood-2006-10-049783] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Core binding factor (CBF) leukemias, characterized by either inv(16)/t(16;16) or t(8;21), constitute acute myeloid leukemia (AML) subgroups with favorable prognosis. However, there exists substantial biologic and clinical heterogeneity within these cytogenetic groups that is not fully reflected by the current classification system. To improve the molecular characterization we profiled gene expression in a large series (n = 93) of AML patients with CBF leukemia [(inv (16), n = 55; t(8;21), n = 38)]. By unsupervised hierarchical clustering we were able to define a subgroup of CBF cases (n = 35) characterized by shorter overall survival times (P = .03). While there was no obvious correlation with fusion gene transcript levels, FLT3 tyrosine kinase domain, KIT, and NRAS mutations, the newly defined inv(16)/t(8;21) subgroup was associated with elevated white blood cell counts and FLT3 internal tandem duplications (P = .011 and P = .026, respectively). Supervised analyses of gene expression suggested alternative cooperating pathways leading to transformation. In the "favorable" CBF leukemias, antiapoptotic mechanisms and deregulated mTOR signaling and, in the newly defined "unfavorable" subgroup, aberrant MAPK signaling and chemotherapy-resistance mechanisms might play a role. While the leukemogenic relevance of these signatures remains to be validated, their existence nevertheless supports a prognostically relevant biologic basis for the heterogeneity observed in CBF leukemia.
Collapse
Affiliation(s)
- Lars Bullinger
- Department of Internal Medicine III, University of Ulm, Ulm, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|