1
|
Quintini M, Arniani S, Ascani S, Camerini C, Crescenzi B, Di Battista V, Moretti M, Pellanera F, Pierini V, Mecucci C. Identification of two independent clones underlying the co-existence of myelodysplastic syndrome with excess of blasts type 2 and isolated 5q- and smouldering multiple myeloma. Cytopathology 2019; 31:59-62. [PMID: 31295374 DOI: 10.1111/cyt.12752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/09/2019] [Accepted: 06/30/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Martina Quintini
- Department of Medicine, Section of Hematology and Center for Hemato-Oncology Research CREO, Cytogenetics and Molecular Medicine Laboratory, University of Perugia, Perugia, Italy
| | - Silvia Arniani
- Department of Medicine, Section of Hematology and Center for Hemato-Oncology Research CREO, Cytogenetics and Molecular Medicine Laboratory, University of Perugia, Perugia, Italy
| | - Stefano Ascani
- Department of Medicine, Section of Hematology and Center for Hemato-Oncology Research CREO, Hematopathology Laboratory, University of Perugia, Perugia, Italy
| | - Chiara Camerini
- Department of Medicine, Section of Hematology and Center for Hemato-Oncology Research CREO, Cytogenetics and Molecular Medicine Laboratory, University of Perugia, Perugia, Italy
| | - Barbara Crescenzi
- Department of Medicine, Section of Hematology and Center for Hemato-Oncology Research CREO, Cytogenetics and Molecular Medicine Laboratory, University of Perugia, Perugia, Italy
| | - Valeria Di Battista
- Department of Medicine, Section of Hematology and Center for Hemato-Oncology Research CREO, Cytogenetics and Molecular Medicine Laboratory, University of Perugia, Perugia, Italy
| | - Martina Moretti
- Department of Medicine, Section of Hematology and Center for Hemato-Oncology Research CREO, Cytogenetics and Molecular Medicine Laboratory, University of Perugia, Perugia, Italy
| | - Fabrizia Pellanera
- Department of Medicine, Section of Hematology and Center for Hemato-Oncology Research CREO, Cytogenetics and Molecular Medicine Laboratory, University of Perugia, Perugia, Italy
| | - Valentina Pierini
- Department of Medicine, Section of Hematology and Center for Hemato-Oncology Research CREO, Cytogenetics and Molecular Medicine Laboratory, University of Perugia, Perugia, Italy
| | - Cristina Mecucci
- Department of Medicine, Section of Hematology and Center for Hemato-Oncology Research CREO, Cytogenetics and Molecular Medicine Laboratory, University of Perugia, Perugia, Italy
| |
Collapse
|
2
|
Crescenzi B, Nofrini V, Barba G, Matteucci C, Di Giacomo D, Gorello P, Beverloo B, Vitale A, Wlodarska I, Vandenberghe P, La Starza R, Mecucci C. NUP98/11p15 translocations affect CD34+ cells in myeloid and T lymphoid leukemias. Leuk Res 2015; 39:769-72. [PMID: 26004809 DOI: 10.1016/j.leukres.2015.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 03/05/2015] [Accepted: 04/22/2015] [Indexed: 01/28/2023]
Abstract
We assessed lineage involvement by NUP98 translocations in myelodysplastic syndromes (MDS), acute myeloid leukaemia (AML), and T-cell acute lymphoblastic leukaemia (T-ALL). Single cell analysis by FICTION (Fluorescence Immunophenotype and Interphase Cytogenetics as a Tool for Investigation of Neoplasms) showed that, despite diverse partners, i.e. NSD1, DDX10, RAP1GDS1, and LNP1, NUP98 translocations always affected a CD34+/CD133+ hematopoietic precursor. Interestingly the abnormal clone included myelomonocytes, erythroid cells, B- and T- lymphocytes in MDS/AML and only CD7+/CD3+ cells in T-ALL. The NUP98-RAP1GDS1 affected different hematopoietic lineages in AML and T-ALL. Additional specific genomic events, were identified, namely FLT3 and CEBPA mutations in MDS/AML, and NOTCH1 mutations and MYB duplication in T-ALL.
Collapse
Affiliation(s)
- Barbara Crescenzi
- Laboratory of Molecular Medicine, CREO, University of Perugia and A.O. Perugia, 06132 Perugia, Italy
| | - Valeria Nofrini
- Laboratory of Molecular Medicine, CREO, University of Perugia and A.O. Perugia, 06132 Perugia, Italy
| | - Gianluca Barba
- Laboratory of Molecular Medicine, CREO, University of Perugia and A.O. Perugia, 06132 Perugia, Italy
| | - Caterina Matteucci
- Laboratory of Molecular Medicine, CREO, University of Perugia and A.O. Perugia, 06132 Perugia, Italy
| | - Danika Di Giacomo
- Laboratory of Molecular Medicine, CREO, University of Perugia and A.O. Perugia, 06132 Perugia, Italy
| | - Paolo Gorello
- Laboratory of Molecular Medicine, CREO, University of Perugia and A.O. Perugia, 06132 Perugia, Italy
| | - Berna Beverloo
- Department of Clinical Genetics, Erasmus MC, 3000 CB Rotterdam, The Netherlands
| | - Antonella Vitale
- Hematology, Department of Cellular Biotechnologies and Hematology, La Sapienza University, Via Benevento 6, 06161 Rome, Italy
| | - Iwona Wlodarska
- Center for Human Genetics, K.U. Leuven, Gasthuisberg, Herestraat 49, Box 602, B-3000 Leuven, Belgium
| | - Peter Vandenberghe
- Center for Human Genetics, K.U. Leuven, Gasthuisberg, Herestraat 49, Box 602, B-3000 Leuven, Belgium
| | - Roberta La Starza
- Laboratory of Molecular Medicine, CREO, University of Perugia and A.O. Perugia, 06132 Perugia, Italy
| | - Cristina Mecucci
- Laboratory of Molecular Medicine, CREO, University of Perugia and A.O. Perugia, 06132 Perugia, Italy.
| |
Collapse
|
3
|
Adini A, Adini I, Ghosh K, Benny O, Pravda E, Hu R, Luyindula D, D'Amato RJ. The stem cell marker prominin-1/CD133 interacts with vascular endothelial growth factor and potentiates its action. Angiogenesis 2012; 16:405-16. [PMID: 23150059 DOI: 10.1007/s10456-012-9323-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 11/05/2012] [Indexed: 12/12/2022]
Abstract
Prominin-1, a pentaspan transmembrane protein, is a unique cell surface marker commonly used to identify stem cells, including endothelial progenitor cells and cancer stem cells. However, recent studies have shown that prominin-1 expression is not restricted to stem cells but also occurs in modified forms in many mature adult human cells. Although prominin-1 has been studied extensively as a stem cell marker, its physiological function of the protein has not been elucidated. We investigated prominin-1 function in two cell lines, primary human endothelial cells and B16-F10 melanoma cells, both of which express high levels of prominin-1. We found that prominin-1 directly interacts with the angiogenic and tumor survival factor vascular endothelial growth factor (VEGF) in both the primary endothelial cells and the melanoma cells. Knocking down prominin-1 in the endothelial cells disrupted capillary formation in vitro and decreased angiogenesis in vivo. Similarly, tumors derived from prominin-1 knockdown melanoma cells had a reduced growth rate in vivo. Further, melanoma cells with knocked down prominin-1 had diminished ability to interact with VEGF, which was associated with decreased bcl-2 protein levels and increased apoptosis. In vitro studies with soluble prominin-1 showed that it stabilized dimer formation of VEGF164, but not VEGF121. Taken together, our findings support the notion that prominin-1 plays an active role in cell growth through its ability to interact and potentiate the anti-apoptotic and pro-angiogenic activities of VEGF. Additionally, prominin-1 promotes tumor growth by supporting angiogenesis and inhibiting tumor cell apoptosis.
Collapse
Affiliation(s)
- Avner Adini
- Vascular Biology Program, Department of Surgery, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Montano-Almendras CP, Essaghir A, Schoemans H, Varis I, Noël LA, Velghe AI, Latinne D, Knoops L, Demoulin JB. ETV6-PDGFRB and FIP1L1-PDGFRA stimulate human hematopoietic progenitor cell proliferation and differentiation into eosinophils: the role of nuclear factor-κB. Haematologica 2012; 97:1064-72. [PMID: 22271894 DOI: 10.3324/haematol.2011.047530] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND ETV6-PDGFRB (also called TEL-PDGFRB) and FIP1L1-PDGFRA are receptor-tyrosine kinase fusion genes that cause chronic myeloid malignancies associated with hypereosinophilia. The aim of this work was to gain insight into the mechanisms whereby fusion genes affect human hematopoietic cells and in particular the eosinophil lineage. DESIGN AND METHODS We introduced ETV6-PDGFRB and FIP1L1-PDGFRA into human CD34(+) hematopoietic progenitor and stem cells isolated from umbilical cord blood. RESULTS Cells transduced with these oncogenes formed hematopoietic colonies even in the absence of cytokines. Both oncogenes also stimulated the proliferation of cells in liquid culture and their differentiation into eosinophils. This model thus recapitulated key features of the myeloid neoplasms induced by ETV6-PDGFRB and FIP1L1-PDGFRA. We next showed that both fusion genes activated the transcription factors STAT1, STAT3, STAT5 and nuclear factor-κB. Phosphatidylinositol-3 kinase inhibition blocked nuclear factor-κB activation in transduced progenitor cells and patients' cells. Nuclear factor-κB was also activated in the human FIP1L1-PDGFRA-positive leukemia cell line EOL1, the proliferation of which was blocked by bortezomib and the IκB kinase inhibitor BMS-345541. A mutant IκB that prevents nuclear translocation of nuclear factor-κB inhibited cell growth and the expression of eosinophil markers, such as the interleukin-5 receptor and eosinophil peroxidase, in progenitors transduced with ETV6-PDGFRB. In addition, several potential regulators of this process, including HES6, MYC and FOXO3 were identified using expression microarrays. CONCLUSIONS We show that human CD34(+) cells expressing PDGFR fusion oncogenes proliferate autonomously and differentiate towards the eosinophil lineage in a process that requires nuclear factor-κB. These results suggest new treatment possibilities for imatinib-resistant myeloid neoplasms associated with PDGFR mutations.
Collapse
|
5
|
La Starza R, Crescenzi B, Nofrini V, Barba G, Matteucci C, Brandimarte L, Pierini V, Testoni N, Musto P, Paolini S, Gianfelici V, Storlazzi CT, Pierini A, Berchicci L, Gorello P, Mecucci C. FISH analysis reveals frequent co-occurrence of 4q24/TET2 and 5q and/or 7q deletions. Leuk Res 2011; 36:37-41. [PMID: 21920603 DOI: 10.1016/j.leukres.2011.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 07/05/2011] [Accepted: 08/08/2011] [Indexed: 10/17/2022]
Abstract
We investigated TET2 deletion in 418 patients with hematological malignancies. Overall interphase FISH detected complete or partial TET2 monoallelic deletion (TET2(del)) in 20/418 cases (4.7%). TET2(del) was very rare in lymphoid malignancies (1/242 cases; 0.4%). Among 19 positive myeloid malignancies TET2(del) was associated with a 4q24 karyotypic abnormality in 18 cases. In AML, TET2(del) occurred in CD34-positive hematopoietic precursors and preceded established genomic abnormalities, such as 5q- and -7/7q-, which were the most frequent associated changes (Fisher's exact test P=0.000).
Collapse
Affiliation(s)
- Roberta La Starza
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Gorello P, La Starza R, Di Giacomo D, Messina M, Puzzolo MC, Crescenzi B, Santoro A, Chiaretti S, Mecucci C. SQSTM1-NUP214: a new gene fusion in adult T-cell acute lymphoblastic leukemia. Haematologica 2010; 95:2161-3. [PMID: 20851865 DOI: 10.3324/haematol.2010.029769] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
7
|
Crescenzi B, La Starza R, Sambani C, Parcharidou A, Pierini V, Nofrini V, Brandimarte L, Matteucci C, Aversa F, Martelli MF, Mecucci C. Totipotent stem cells bearing del(20q) maintain multipotential differentiation in Shwachman Diamond syndrome. Br J Haematol 2009; 144:116-9. [DOI: 10.1111/j.1365-2141.2008.07448.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Chase A, Schultheis B, Kreil S, Baxter J, Hidalgo-Curtis C, Jones A, Zhang L, Grand FH, Melo JV, Cross NCP. Imatinib sensitivity as a consequence of a CSF1R-Y571D mutation and CSF1/CSF1R signaling abnormalities in the cell line GDM1. Leukemia 2008; 23:358-64. [PMID: 18971950 DOI: 10.1038/leu.2008.295] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Imatinib is usually a highly effective treatment for myeloproliferative neoplasms (MPNs) associated with ABL, PDGFRA or PDGFRB gene fusions; however, occasional imatinib-responsive patients have been reported without abnormalities of these genes. To identify novel imatinib-sensitive lesions, we screened 11 BCR-ABL-negative cell lines and identified GDM1, derived from a patient with an atypical MPN (aMPN), as being responsive to imatinib. Screening of genes encoding known imatinib targets revealed an exon 12 mutation in the colony-stimulating factor 1 receptor (CSF1R; c-FMS) with a predicted Y571D amino-acid substitution. CSF1R in GDM1 was constitutively phosphorylated, but rapidly dephosphorylated on exposure to imatinib. Y571D did not transform FDCP1 cells to growth factor independence, but resulted in a significantly increased colony growth compared with controls, constitutive CSF1R phosphorylation and elevated CSF1R signaling. We found that GDM1 expresses CSF1, and CSF1 neutralization partially inhibited proliferation, suggesting the importance of both autocrine and intrinsic mechanisms of CSF1R activation. An extensive screen of CSF1R in aMPNs and acute myeloid leukemia identified three additional novel missense variants. None of these variants were active in transformation assays and are therefore likely to be previously unreported rare polymorphisms or non-pathogenic passenger mutations.
Collapse
Affiliation(s)
- A Chase
- Wessex Regional Genetics Laboratory, Salisbury and Human Genetics Division, University of Southampton, Southampton, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
|
10
|
Cross NCP, Reiter A. Fibroblast growth factor receptor and platelet-derived growth factor receptor abnormalities in eosinophilic myeloproliferative disorders. Acta Haematol 2008; 119:199-206. [PMID: 18566537 DOI: 10.1159/000140631] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Rearrangements of the genes encoding the fibroblast growth factor receptor 1 (FGFR1) and platelet-derived growth factor receptors (PDGFR) alpha or beta receptor tyrosine kinases are found in a rare but important subset of patients with atypical myeloproliferative disorders that are usually but not always associated with eosinophilia. Chromosomal translocations or other rearrangements at 8p11-12, 4q12 or 5q31-33 give rise to diverse fusion genes encoding chimaeric proteins with constitutive transforming activity. There is considerable molecular heterogeneity with 8 partner genes currently known for FGFR1, 6 for PDGFRA and 17 for PDGFRB. The vast majority of patients with PDGFRA or PDGFRB fusions achieve rapid and durable complete haematological and molecular responses to sustained imatinib therapy. A key ongoing challenge is to define the molecular pathogenesis of the great majority of atypical myeloproliferative disorders for whom the causative lesion remains unknown, since very few of these cases gain any benefit from imatinib or other second-generation inhibitors.
Collapse
MESH Headings
- Animals
- Benzamides
- Chromosomes, Human/genetics
- Chromosomes, Human/metabolism
- Humans
- Hypereosinophilic Syndrome/drug therapy
- Hypereosinophilic Syndrome/enzymology
- Hypereosinophilic Syndrome/genetics
- Imatinib Mesylate
- Oncogene Proteins, Fusion/antagonists & inhibitors
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Piperazines/therapeutic use
- Protein Kinase Inhibitors/therapeutic use
- Pyrimidines/therapeutic use
- Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Platelet-Derived Growth Factor alpha/antagonists & inhibitors
- Receptor, Platelet-Derived Growth Factor alpha/genetics
- Receptor, Platelet-Derived Growth Factor alpha/metabolism
- Receptor, Platelet-Derived Growth Factor beta/antagonists & inhibitors
- Receptor, Platelet-Derived Growth Factor beta/genetics
- Receptor, Platelet-Derived Growth Factor beta/metabolism
- Translocation, Genetic
Collapse
Affiliation(s)
- Nicholas C P Cross
- Wessex Regional Genetics Laboratory, University of Southampton, Salisbury District Hospital, Salisbury, UK.
| | | |
Collapse
|
11
|
Targeting survival cascades induced by activation of Ras/Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways for effective leukemia therapy. Leukemia 2008; 22:708-22. [PMID: 18337766 DOI: 10.1038/leu.2008.27] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways are frequently activated in leukemia and other hematopoietic disorders by upstream mutations in cytokine receptors, aberrant chromosomal translocations as well as other genetic mechanisms. The Jak2 kinase is frequently mutated in many myeloproliferative disorders. Effective targeting of these pathways may result in suppression of cell growth and death of leukemic cells. Furthermore it may be possible to combine various chemotherapeutic and antibody-based therapies with low molecular weight, cell membrane-permeable inhibitors which target the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways to ultimately suppress the survival pathways, induce apoptosis and inhibit leukemic growth. In this review, we summarize how suppression of these pathways may inhibit key survival networks important in leukemogenesis and leukemia therapy as well as the treatment of other hematopoietic disorders. Targeting of these and additional cascades may also improve the therapy of chronic myelogenous leukemia, which are resistant to BCR-ABL inhibitors. Furthermore, we discuss how targeting of the leukemia microenvironment and the leukemia stem cell are emerging fields and challenges in targeted therapies.
Collapse
|
12
|
Chase A, Grand FH, Cross NCP. Activity of TKI258 against primary cells and cell lines with FGFR1 fusion genes associated with the 8p11 myeloproliferative syndrome. Blood 2007; 110:3729-34. [PMID: 17698633 DOI: 10.1182/blood-2007-02-074286] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abstract
The 8p11 myeloproliferative syndrome (EMS) is an aggressive, atypical stem cell myeloproliferative disorder associated with chromosome translocations that disrupt and constitutively activate FGFR1 by fusion to diverse partner genes. To explore the possibility of targeted therapy for EMS, we have investigated the use of TKI258, a multitargeted receptor tyrosine kinase inhibitor with activity against FGFR, VEGFR, PDGFR, FLT3, and KIT that is currently being assessed for the treatment of a variety of malignancies in phase 1 clinical studies. The viability of Ba/F3 cells transformed to IL3 independence by ZNF198-FGFR1 or BCR-FGFR1 was specifically inhibited by TKI258 with IC50 values of 150 nM and 90 nM, respectively. Inhibition was accompanied by dose-dependent inhibition of phosphorylation of each fusion gene, ERK, and STAT5. TKI258 also specifically inhibited proliferation and survival of the FGFR1OP2-FGFR1–positive KG1 and KG1A cell lines, resulting in increased levels of apoptosis. Primary cells from EMS patients showed significant, dose-dependent responses in liquid culture and in methylcellulose colony assays compared with controls. This work provides evidence that targeted therapy may be beneficial for patients with EMS.
Collapse
Affiliation(s)
- Andrew Chase
- Wessex Regional Genetics Laboratory, Salisbury and Human Genetics Division, University of Southampton, Southampton, United Kingdom
| | | | | |
Collapse
|