1
|
Braun VZ, Karbon G, Schuler F, Schapfl MA, Weiss JG, Petermann PY, Spierings DC, Tijhuis AE, Foijer F, Labi V, Villunger A. Extra centrosomes delay DNA damage-driven tumorigenesis. SCIENCE ADVANCES 2024; 10:eadk0564. [PMID: 38552015 PMCID: PMC10980279 DOI: 10.1126/sciadv.adk0564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/23/2024] [Indexed: 04/01/2024]
Abstract
Deregulated centrosome numbers are frequently found in human cancer and can promote malignancies in model organisms. Current research aims to clarify if extra centrosomes are cause or consequence of malignant transformation, and if their biogenesis can be targeted for therapy. Here, we show that oncogene-driven blood cancer is inert to genetic manipulation of centrosome numbers, whereas the formation of DNA damage-induced malignancies is delayed. We provide first evidence that this unexpected phenomenon is connected to extra centrosomes eliciting a pro-death signal engaging the apoptotic machinery. Apoptosis induction requires the PIDDosome multi-protein complex, as it can be abrogated by loss of any of its three components, Caspase-2, Raidd/Cradd, or Pidd1. BCL2 overexpression equally blocks cell death, documenting for the first time induction of mitochondrial apoptosis downstream of extra centrosomes. Our findings demonstrate context-dependent effects of centrosome amplification during transformation and ask to adjust current belief that extra centrosomes are intrinsically pro-tumorigenic.
Collapse
Affiliation(s)
- Vincent Z. Braun
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Gerlinde Karbon
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Fabian Schuler
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Marina A. Schapfl
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes G. Weiss
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Paul Y. Petermann
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Diana C.J. Spierings
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Andrea E. Tijhuis
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Verena Labi
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
- The CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
2
|
Prinzhorn W, Stehle M, Kleiner H, Ruppenthal S, Müller MC, Hofmann WK, Fabarius A, Seifarth W. c-MYB is a transcriptional regulator of ESPL1/Separase in BCR-ABL-positive chronic myeloid leukemia. Biomark Res 2016; 4:5. [PMID: 26937281 PMCID: PMC4774018 DOI: 10.1186/s40364-016-0059-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/24/2016] [Indexed: 01/05/2023] Open
Abstract
Background Genomic instability and clonal evolution are hallmarks of progressing chronic myeloid leukemia (CML). Recently, we have shown that clonal evolution and blast crisis correlate with altered expression and activity of Separase, a cysteine endopeptidase that is a mitotic key player in chromosomal segregation and centriole duplication. Hyperactivation of Separase in human hematopoietic cells has been linked to a feedback mechanism that posttranslationally stimulates Separase proteolytic activity after imatinib therapy-induced reduction of Separase protein levels. Methods and Results In search for potential therapy-responsive transcriptional mechanisms we have investigated the role of the transcription factor c-MYB for Separase expression in CML cell lines (LAMA-84, K562, BV-173) and in clinical samples. Quantitative RT-PCR and Western blot immunostaining experiments revealed that c-MYB expression levels are decreased in an imatinib-dependent manner and positively correlate with Separase expression levels in cell lines and in clinical CML samples. RNA silencing of c-MYB expression in CML cell lines resulted in reduced Separase protein levels. Gelshift and ChIP assays confirmed that c-MYB binds to a putative c-MYB binding sequence located within the ESPL1 promoter. Conclusions Our data suggest that ESPL1/Separase is a regulatory target of c-MYB. Therefore, c-MYB, known to be required for BCR-ABL-dependent transformation of hematopoietic progenitors and leukemogenesis, may also control the Separase-dependent fidelity of mitotic chromosomal segregation and centriole duplication essential for maintenance of genomic stability.
Collapse
Affiliation(s)
- Wiltrud Prinzhorn
- III. Medizinische Klinik (Hämatologie und Onkologie), Wissenschaftliches Labor, Medizinische Fakultät Mannheim der Universität Heidelberg, Pettenkofer Str. 22, 68169 Mannheim, Germany
| | - Michael Stehle
- III. Medizinische Klinik (Hämatologie und Onkologie), Wissenschaftliches Labor, Medizinische Fakultät Mannheim der Universität Heidelberg, Pettenkofer Str. 22, 68169 Mannheim, Germany
| | - Helga Kleiner
- III. Medizinische Klinik (Hämatologie und Onkologie), Wissenschaftliches Labor, Medizinische Fakultät Mannheim der Universität Heidelberg, Pettenkofer Str. 22, 68169 Mannheim, Germany
| | - Sabrina Ruppenthal
- III. Medizinische Klinik (Hämatologie und Onkologie), Wissenschaftliches Labor, Medizinische Fakultät Mannheim der Universität Heidelberg, Pettenkofer Str. 22, 68169 Mannheim, Germany
| | - Martin C Müller
- III. Medizinische Klinik (Hämatologie und Onkologie), Wissenschaftliches Labor, Medizinische Fakultät Mannheim der Universität Heidelberg, Pettenkofer Str. 22, 68169 Mannheim, Germany
| | - Wolf-Karsten Hofmann
- III. Medizinische Klinik (Hämatologie und Onkologie), Wissenschaftliches Labor, Medizinische Fakultät Mannheim der Universität Heidelberg, Pettenkofer Str. 22, 68169 Mannheim, Germany
| | - Alice Fabarius
- III. Medizinische Klinik (Hämatologie und Onkologie), Wissenschaftliches Labor, Medizinische Fakultät Mannheim der Universität Heidelberg, Pettenkofer Str. 22, 68169 Mannheim, Germany
| | - Wolfgang Seifarth
- III. Medizinische Klinik (Hämatologie und Onkologie), Wissenschaftliches Labor, Medizinische Fakultät Mannheim der Universität Heidelberg, Pettenkofer Str. 22, 68169 Mannheim, Germany
| |
Collapse
|
3
|
Haaß W, Kleiner H, Weiß C, Haferlach C, Schlegelberger B, Müller MC, Hehlmann R, Hofmann WK, Fabarius A, Seifarth W. Clonal Evolution and Blast Crisis Correlate with Enhanced Proteolytic Activity of Separase in BCR-ABL b3a2 Fusion Type CML under Imatinib Therapy. PLoS One 2015; 10:e0129648. [PMID: 26087013 PMCID: PMC4472749 DOI: 10.1371/journal.pone.0129648] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/07/2015] [Indexed: 11/18/2022] Open
Abstract
Unbalanced (major route) additional cytogenetic aberrations (ACA) at diagnosis of chronic myeloid leukemia (CML) indicate an increased risk of progression and shorter survival. Moreover, newly arising ACA under imatinib treatment and clonal evolution are considered features of acceleration and define failure of therapy according to the European LeukemiaNet (ELN) recommendations. On the basis of 1151 Philadelphia chromosome positive chronic phase patients of the randomized CML-study IV, we examined the incidence of newly arising ACA under imatinib treatment with regard to the p210BCR-ABL breakpoint variants b2a2 and b3a2. We found a preferential acquisition of unbalanced ACA in patients with b3a2 vs. b2a2 fusion type (ratio: 6.3 vs. 1.6, p = 0.0246) concurring with a faster progress to blast crisis for b3a2 patients (p = 0.0124). ESPL1/Separase, a cysteine endopeptidase, is a key player in chromosomal segregation during mitosis. Separase overexpression and/or hyperactivity has been reported from a wide range of cancers and cause defective mitotic spindles, chromosome missegregation and aneuploidy. We investigated the influence of p210BCR-ABL breakpoint variants and imatinib treatment on expression and proteolytic activity of Separase as measured with a specific fluorogenic assay on CML cell lines (b2a2: KCL-22, BV-173; b3a2: K562, LAMA-84). Despite a drop in Separase protein levels an up to 5.4-fold increase of Separase activity under imatinib treatment was observed exclusively in b3a2 but not in b2a2 cell lines. Mimicking the influence of imatinib on BV-173 and LAMA-84 cells by ESPL1 silencing stimulated Separase proteolytic activity in both b3a2 and b2a2 cell lines. Our data suggest the existence of a fusion type-related feedback mechanism that posttranslationally stimulates Separase proteolytic activity after therapy-induced decreases in Separase protein levels. This could render b3a2 CML cells more prone to aneuploidy and clonal evolution than b2a2 progenitors and may therefore explain the cytogenetic results of CML patients.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Antineoplastic Agents/therapeutic use
- Blast Crisis/enzymology
- Blast Crisis/genetics
- Blast Crisis/pathology
- Cell Line, Tumor
- Chromosome Aberrations
- Chromosome Breakage
- Clonal Evolution
- Fusion Proteins, bcr-abl/genetics
- Humans
- Imatinib Mesylate/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Middle Aged
- Proteolysis
- Separase/metabolism
- Young Adult
Collapse
Affiliation(s)
- Wiltrud Haaß
- III. Medizinische Universitätsklinik (Hämatologie und Onkologie), Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany
| | - Helga Kleiner
- III. Medizinische Universitätsklinik (Hämatologie und Onkologie), Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany
| | - Christel Weiß
- Abteilung Medizinische Statistik und Biomathematik, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany
| | | | | | - Martin C. Müller
- III. Medizinische Universitätsklinik (Hämatologie und Onkologie), Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany
| | - Rüdiger Hehlmann
- III. Medizinische Universitätsklinik (Hämatologie und Onkologie), Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany
| | - Wolf-Karsten Hofmann
- III. Medizinische Universitätsklinik (Hämatologie und Onkologie), Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany
| | - Alice Fabarius
- III. Medizinische Universitätsklinik (Hämatologie und Onkologie), Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany
| | - Wolfgang Seifarth
- III. Medizinische Universitätsklinik (Hämatologie und Onkologie), Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany
- * E-mail:
| | | |
Collapse
|
4
|
Nolte F, Giehl M, Haass W, Nowak V, Schumann C, Nowak D, Mossner M, Popp HD, Schulze TJ, Klein S, Seifarth W, Hofmann WK, Fabarius A. Centrosome aberrations in bone marrow cells from patients with myelodysplastic syndromes correlate with chromosomal instability. Ann Hematol 2013; 92:1325-33. [PMID: 23645217 DOI: 10.1007/s00277-013-1772-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/22/2013] [Indexed: 12/11/2022]
Abstract
Centrosomes play important roles in the maintenance of genetic stability and centrosomal aberrations are a hallmark of cancer. Deregulation of centriole duplication leads to supernumerary centrosomes, sister chromatid missegregation and could result in chromosomal instability (CIN) and aneuploidy. CIN is a common feature in at least 45% of patients with myelodysplastic syndromes (MDS). Therefore, we sought to investigate the centrosomal status and its role for development of CIN in bone marrow (BM) cells of MDS patients. BM cells of 34 MDS patients were examined cytogenetically. Furthermore, cells were immunostained with a centrosome-specific antibody to pericentrin to analyze the centrosomal status. Umbilical cord blood specimens and BM cells of healthy persons (n = 11 and n = 4) served as controls. In addition, the protein expression of the protease separase responsible for genetic stability was examined by western blot analysis. Centrosome abnormalities were detected in 10% (range, 4-17%) of cells of MDS samples, but in only 2% (range, 0-4%) of cells of healthy controls. Normal karyotypes were found in control cells and in BM cells of 16/34 MDS patients. The incidence of centrosomal alterations was higher in BM cells of patients with cytogenetic alterations (mean, 12%) compared to BM cells of patients without cytogenetic changes (mean, 7%). Our results indicate that centrosome alterations are a common and early detectable feature in MDS patients and may contribute to the acquisition of chromosomal aberrations. We assume that centrosome defects could be involved in disease progression and may serve as a future prognostic marker.
Collapse
Affiliation(s)
- Florian Nolte
- III. Medizinische Klinik, Hämatologie und Onkologie, Medizinische Fakultät Mannheim der Universität Heidelberg, Universitätsmedizin Mannheim, Pettenkoferstrasse 22, 68169 Mannheim, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Haaß W, Stehle M, Nittka S, Giehl M, Schrotz-King P, Fabarius A, Hofmann WK, Seifarth W. The proteolytic activity of separase in BCR-ABL-positive cells is increased by imatinib. PLoS One 2012; 7:e42863. [PMID: 22870341 PMCID: PMC3411713 DOI: 10.1371/journal.pone.0042863] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 07/13/2012] [Indexed: 01/10/2023] Open
Abstract
Separase, an endopeptidase required for the separation of sister-chromatides in mitotic anaphase, triggers centriole disengagement during centrosome duplication. In cancer, separase is frequently overexpressed, pointing to a functional role as an aneuploidy promoter associated with centrosomal amplification and genomic instability. Recently, we have shown that centrosomal amplification and subsequent chromosomal aberrations are a hallmark of chronic myeloid leukemia (CML), increasing from chronic phase (CP) toward blast crisis (BC). Moreover, a functional linkage of p210BCR-ABL tyrosine kinase activity with centrosomal amplification and clonal evolution has been established in long-term cell culture experiments. Unexpectedly, therapeutic doses of imatinib (IM) did not counteract; instead induced similar centrosomal alterations in vitro. We investigated the influence of IM and p210BCR-ABL on Separase as a potential driver of centrosomal amplification in CML. Short-term cell cultures of p210BCR-ABL-negative (NHDF, UROtsa, HL-60, U937), positive (K562, LAMA-84) and inducible (U937p210BCR-ABL/c6 (Tet-ON)) human cell lines were treated with therapeutic doses of IM and analyzed by qRT-PCR, Western blot analysis and quantitative Separase activity assays. Decreased Separase protein levels were observed in all cells treated with IM in a dose dependent manner. Accordingly, in all p210BCR-ABL-negative cell lines, decreased proteolytic activity of Separase was found. In contrast, p210BCR-ABL-positive cells showed increased Separase proteolytic activity. This activation of Separase was consistent with changes in the expression levels of Separase regulators (Separase phosphorylation at serine residue 1126, Securin, CyclinB1 and PP2A). Our data suggest that regulation of Separase in IM-treated BCR-ABL-positive cells occurs on both the protein expression and the proteolytic activity levels. Activation of Separase proteolytic activity exclusively in p210BCR-ABL-positive cells during IM treatment may act as a driving force for centrosomal amplification, contributing to genomic instability, clonal evolution and resistance in CML.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Benzamides
- Blast Crisis/drug therapy
- Blast Crisis/enzymology
- Blast Crisis/genetics
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cyclin B1/genetics
- Cyclin B1/metabolism
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Endopeptidases/genetics
- Endopeptidases/metabolism
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Genomic Instability/drug effects
- Genomic Instability/genetics
- HL-60 Cells
- Humans
- Imatinib Mesylate
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Phosphorylation/drug effects
- Phosphorylation/genetics
- Piperazines/pharmacology
- Protein Phosphatase 2/genetics
- Protein Phosphatase 2/metabolism
- Proteolysis
- Pyrimidines/pharmacology
- Securin
- Separase
- U937 Cells
Collapse
Affiliation(s)
- Wiltrud Haaß
- Department of Hematology and Oncology, Mannheim Medical Center, University of Heidelberg, Mannheim, Germany
| | - Michael Stehle
- Department of Hematology and Oncology, Mannheim Medical Center, University of Heidelberg, Mannheim, Germany
| | - Stefanie Nittka
- Department of Clinical Chemistry, Mannheim Medical Center, University of Heidelberg, Mannheim, Germany
| | - Michelle Giehl
- Department of Hematology and Oncology, Mannheim Medical Center, University of Heidelberg, Mannheim, Germany
| | - Petra Schrotz-King
- National Center for Tumor Diseases (NCT), German Cancer Center (DKFZ), Heidelberg, Germany
| | - Alice Fabarius
- Department of Hematology and Oncology, Mannheim Medical Center, University of Heidelberg, Mannheim, Germany
| | - Wolf-Karsten Hofmann
- Department of Hematology and Oncology, Mannheim Medical Center, University of Heidelberg, Mannheim, Germany
| | - Wolfgang Seifarth
- Department of Hematology and Oncology, Mannheim Medical Center, University of Heidelberg, Mannheim, Germany
- * E-mail:
| |
Collapse
|
6
|
Centrosomal targeting of tyrosine kinase activity does not enhance oncogenicity in chronic myeloproliferative disorders. Leukemia 2011; 26:728-35. [PMID: 22015771 DOI: 10.1038/leu.2011.283] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Constitutive tyrosine kinase activation by reciprocal chromosomal translocation is a common pathogenetic mechanism in chronic myeloproliferative disorders. Since centrosomal proteins have been recurrently identified as translocation partners of tyrosine kinases FGFR1, JAK2, PDGFRα and PDGFRβ in these diseases, a role for the centrosome in oncogenic transformation has been hypothesized. In this study, we addressed the functional role of centrosomally targeted tyrosine kinase activity. First, centrosomal localization was not routinely found for all chimeric fusion proteins tested. Second, targeting of tyrosine kinases to the centrosome by creating artificial chimeric fusion kinases with the centrosomal targeting domain of AKAP450 failed to enhance the oncogenic transforming potential in both Ba/F3 and U2OS cells, although phospho-tyrosine-mediated signal transduction pathways were initiated at the centrosome. We conclude that the centrosomal localization of constitutively activated tyrosine kinases does not contribute to disease pathogenesis in chronic myeloproliferative disorders.
Collapse
|
7
|
Chan JY. A clinical overview of centrosome amplification in human cancers. Int J Biol Sci 2011; 7:1122-44. [PMID: 22043171 PMCID: PMC3204404 DOI: 10.7150/ijbs.7.1122] [Citation(s) in RCA: 279] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 10/06/2011] [Indexed: 01/11/2023] Open
Abstract
The turn of the 21st century had witnessed a surge of interest in the centrosome and its causal relation to human cancer development - a postulate that has existed for almost a century. Centrosome amplification (CA) is frequently detected in a growing list of human cancers, both solid and haematological, and is a candidate "hallmark" of cancer cells. Several lines of evidence support the progressive involvement of CA in the transition from early to advanced stages of carcinogenesis, being also found in pre-neoplastic lesions and even in histopathologically-normal tissue. CA constitutes the major mechanism leading to chromosomal instability and aneuploidy, via the formation of multipolar spindles and chromosomal missegregation. Clinically, CA may translate to a greater risk for initiation of malignant transformation, tumour progression, chemoresistance and ultimately, poor patient prognosis. As mechanisms underlying CA are progressively being unravelled, the centrosome has emerged as a novel candidate target for cancer treatment. This Review summarizes mainly the clinical studies performed to date focusing on the mechanisms underlying CA in human neoplasia, and highlights the potential utility of centrosomes in the diagnosis, prognosis and treatment of human cancers.
Collapse
|
8
|
Urine from current smokers induces centrosome aberrations and spindle defects in vitro in nonmalignant human cell lines. ACTA ACUST UNITED AC 2011; 203:253-62. [PMID: 21156241 DOI: 10.1016/j.cancergencyto.2010.07.135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 07/14/2010] [Accepted: 07/28/2010] [Indexed: 12/21/2022]
Abstract
Tobacco smoke containing numerous derived chemical carcinogens is the main risk factor for urothelial carcinoma. These carcinogens can induce DNA damage leading to chromosomal instability, which plays a fundamental role in urothelial carcinogenesis. Possible mechanisms could be centrosomal aberrations, which cause defective spindles and may be responsible for genetic instability. We evaluated the effect of urine from never smokers (NS) and current smokers (CS) in concentrations of 0 to 50% on cell proliferation, chromosomes, centrosomes, and the spindle status of normal human dermal fibroblasts and normal human urothelial cells (UROtsa). After 2 weeks of urine treatment, cell cultures were analyzed by centrosome and spindle immunostaining and conventional cytogenetics. Effects were compared to results of untreated controls. Analysis of normal human dermal fibroblasts and UROtsa cells revealed that urine from CS induced higher values of centrosome aberrations in a dose-dependent and cell line-independent manner when compared to cultures treated with urine from NS and untreated controls. Centrosomal alterations correlated with spindle defects and an increase of sporadic chromosomal aberrations. The observations suggest a causative role of chemical carcinogens in urine from CS in the origin of centrosome and spindle defects in vitro leading to chromosomal instability and may be involved in urothelial carcinogenesis.
Collapse
|
9
|
Burke BA, Carroll M. BCR-ABL: a multi-faceted promoter of DNA mutation in chronic myelogeneous leukemia. Leukemia 2010; 24:1105-12. [PMID: 20445577 DOI: 10.1038/leu.2010.67] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The role of the BCR-ABL oncogene in the progression of chronic myeloid leukemia (CML) to blast crisis (BC) is unknown. The appearance of chromosomal aberrations in patients with CML BC has led to many attempts to elucidate a mechanism whereby BCR-ABL affects DNA damage and repair. BCR-ABL-expressing cells have been found to accumulate genetic abnormalities, but the mechanism leading to this genomic instability is controversial. In this study, we review the effects of BCR-ABL on DNA repair mechanisms, centrosomes, checkpoint activation and apoptosis. BCR-ABL has diverse effects on these mechanisms, but which of these effects are necessary for the progression of CML to BC is still unresolved.
Collapse
Affiliation(s)
- B A Burke
- Division of Hematology and Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
10
|
Giehl M, Leitner A, Haferlach C, Duesberg P, Hofmann WK, Hofheinz R, Seifarth W, Hochhaus A, Fabarius A. Detection of centrosome aberrations in disease-unrelated cells from patients with tumor treated with tyrosine kinase inhibitors. Eur J Haematol 2010; 85:139-48. [PMID: 20408871 DOI: 10.1111/j.1600-0609.2010.01459.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Tyrosine kinase inhibitors (TKIs) target various pathways associated with proliferation of aberrant clones in malignant diseases. Despite good response and acceptable tolerability, little is known concerning long-term toxicity. Furthermore, the influence of these inhibitors on disease-unrelated cells is not investigated yet. METHODS Centrosome aberrations are hallmarks of various cancers. We sought to evaluate the effect of TKIs on centrosomes of disease-unrelated cells. We examined cells of the oral mucosa (OM) and fibroblasts of patients with chronic myeloid leukemia (CML) treated with dasatinib and bosutinib. Results were compared with data from patients with CML treated with imatinib or nilotinib and with data from patients suffering from renal and hepatocellular carcinomas (RCC/HCC) treated with sorafenib or sunitinib. Cells of healthy donors served as controls. RESULTS OM cells (n = 12) and fibroblasts (n = 7) of patients with CML treated with dasatinib and OM cells of three patients with CML treated with bosutinib showed centrosomal alterations (mean, 14%) compared with 16 (10 OM and 6 fibroblasts) controls (mean, 3%). OM cells of five patients with CML and one patient with systemic mastocytosis treated with imatinib or nilotinib and of eight patients with RCC or HCC treated with sorafenib or sunitinib showed centrosome defects in a mean of 15%. CONCLUSIONS Our data have shown that TKI treatment of tumor patients may influence centrosomes in disease-unrelated cells or tissues. This may be important with regard to various observed side effects.
Collapse
Affiliation(s)
- Michelle Giehl
- III Medizinische Klinik, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Plo I, Vainchenker W. Molecular and genetic bases of myeloproliferative disorders: questions and perspectives. ACTA ACUST UNITED AC 2010; 9 Suppl 3:S329-39. [PMID: 19778861 DOI: 10.3816/clm.2009.s.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The discovery of the JAK2V617F mutation followed by the discovery of JAK2 exon 12 and MPLW515 mutations has completely modified the understanding, diagnosis, and management of the classic myeloproliferative disorders (MPDs), which include polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). Nonetheless, genetic defects have not yet been identified in about 40% of ET and PMF. There is now strong evidence that these mutations are the oncogenic events that drive these disorders and are responsible for most biologic and clinical abnormalities. In addition, there are convincing data indicating that the number of JAK2V617F copies (homozygosity vs. heterozygosity) is important in explaining how a single mutation can be associated with several disorders. However, it is still uncertain whether these mutations are sufficient to explain the full development, heterogeneity, and progression of MPD, or if other genetic or epigenetic events are also necessary. In this review, we discuss different hypothetical models of MPD pathogenesis supported by recent findings. Further characterization of the molecular events operating in these disorders will be essential in fully understanding their pathogenesis and in developing new therapeutic approaches.
Collapse
Affiliation(s)
- Isabelle Plo
- INSERM U790, Villejuif, France Institut Gustave Roussy, 94805 Villejuif, France
| | | |
Collapse
|
12
|
Abstract
Abnormal numbers, structures and functions of centrosomes in chronic myeloid leukaemia (CML) may influence cell proliferation and genomic instability, which are features of the disease. Centrosomes are regulators of mitotic spindle orientation and can act as scaffolds for centrosome-associated regulators of the cell cycle. This study showed, for the first time, that p210(BCR-ABL1) and p145(ABL1) are both centrosome-associated proteins, as demonstrated by co-immunoprecipitation with the pericentriolar protein, pericentrin. Furthermore, when CML cells were treated with imatinib there was a 55% and 20% reduction of p210(BCR-ABL1) and p145(ABL1) binding to pericentrin, respectively. Cell lines expressing p210(BCR-ABL1) and primary CD34(+) cells from CML patients exhibited more numerical and structural centrosomal abnormalities than p210(BCR-ABL1) negative cells. Primary cells from CML blast crisis (BC) patients exhibited a distinctive amorphous staining pattern of pericentrin compared to normal and CML chronic phase (CP) patients, suggesting a possible defect in pericentrin localisation at the centrosomes. Proteins, such as aurora kinases, pericentrin, survivin and separase, regulate centrosome structure and function, cell cycle and mitotic spindle formation. Levels of the protease, separase are abnormally high in CML CP and BC cells in comparison to normal CD34(+) cells. The data imply that expression of p210(BCR-ABL1) is associated with abnormalities in the centrosome-centriole cycle and increased separase expression.
Collapse
Affiliation(s)
- Hetal Patel
- Faculty of Medicine, Department of Haematology, Imperial College, Hammersmith Campus, London, UK.
| | | |
Collapse
|
13
|
Dierov J, Sanchez PV, Burke BA, Padilla-Nash H, Putt ME, Ried T, Carroll M. BCR/ABL induces chromosomal instability after genotoxic stress and alters the cell death threshold. Leukemia 2008; 23:279-86. [PMID: 19020542 DOI: 10.1038/leu.2008.308] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Earlier reports have suggested that the BCR/ABL oncogene, associated with chronic myeloid leukemia, induces a mutator phenotype; however, it is unclear whether this leads to long-term changes in chromosomes and whether the phenotype is found in primary chronic myelogeneous leukemia (CML) cells. We have addressed both these issues. BCR/ABL-expressing cell lines show an increase in DNA breaks after treatment with etoposide as compared to control cells. However, although BCR/ABL-expressing cell lines have an equivalent cell survival, they have an increase in chromosomal translocations after DNA repair as compared to control cells. This demonstrates that BCR/ABL expression decreases the fidelity of DNA repair. To see whether this is true in primary CML samples, normal CD34+ progenitor cells and CML progenitor cells were treated with etoposide. CML progenitor cells have equivalent survival but have an increase in DNA double-strand breaks (DSBs). Spectral karyotyping demonstrates new chromosomal translocations in CML cells, but not normal progenitor cells, consistent with error-prone DNA repair. Taken together, these data demonstrate that BCR/ABL enhances the accumulation of DSBs and alters the apoptotic threshold in CML leading to error-prone DNA repair.
Collapse
Affiliation(s)
- J Dierov
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
BCR-ABL1-positive CML and BCR-ABL1-negative chronic myeloproliferative disorders: some common and contrasting features. Leukemia 2008; 22:1975-89. [PMID: 19002192 DOI: 10.1038/leu.2008.231] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|