1
|
Puranik N, Yadav D, Chauhan PS, Kwak M, Jin JO. Exploring the Role of Gene Therapy for Neurological Disorders. Curr Gene Ther 2021; 21:11-22. [PMID: 32940177 DOI: 10.2174/1566523220999200917114101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 11/22/2022]
Abstract
Gene therapy is one of the frontier fields of medical breakthroughs that poses as an effective solution to previously incurable diseases. The delivery of the corrective genetic material or a therapeutic gene into the cell restores the missing gene function and cures a plethora of diseases, incurable by the conventional medical approaches. This discovery holds the potential to treat many neurodegenerative disorders such as muscular atrophy, multiple sclerosis, Parkinson's disease (PD) and Alzheimer's disease (AD), among others. Gene therapy proves as a humane, cost-effective alternative to the exhaustive often arduous and timely impossible process of finding matched donors and extensive surgery. It also overcomes the shortcoming of conventional methods to cross the blood-brain barrier. However, the use of gene therapy is only possible after procuring the in-depth knowledge of the immuno-pathogenesis and molecular mechanism of the disease. The process of gene therapy can be broadly categorized into three main steps: elucidating the target gene, culling the appropriate vector, and determining the best mode of transfer; each step mandating pervasive research. This review aims to dissertate and summarize the role, various vectors and methods of delivery employed in gene therapy with special emphasis on therapy directed at the central nervous system (CNS) associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Nidhi Puranik
- Biological Science Department, Bharathiar University, Coimbatore, Tamil Nadu-641046, India
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea
| | - Pallavi Singh Chauhan
- Amity Institute of Biotechnology, Amity University, Gwalior, Madhya Pradesh 474005, India
| | - Minseok Kwak
- Department of Chemistry, Pukyong National University, Busan, South Korea
| | - Jun-O Jin
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea
| |
Collapse
|
2
|
Xu S, Yang W, Yuan P, Yan J, Tang Y, Zheng Y, Li Z, Sun Y, Han S, Yin J, Peng B, He X, Pan Q, Liu W. The Long-Noncoding RNA lnc-NONH Enhances the Early Transcription of Prototype Foamy Virus Via Upregulating Expression of miR-34c-5p and Tas Protein. Intervirology 2019; 62:156-163. [PMID: 31430761 DOI: 10.1159/000502038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 07/10/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Prototype foamy virus (PFV) is a complex and unique retrovirus with the longest genome among the retroviruses and is used as a vector for gene therapies. The viral Tas protein transactivates the viral long terminal repeat promoter and is required for viral replication. We have utilized RNA sequencing to identify and characterize the long-noncoding RNA NONHSAG000101 (lnc-NONH), which markedly increases in PFV-infected cells. However, little is known about the function of lnc-NONH. OBJECTIVES We aim to explore the role of lnc-NONH during PFV infection. METHODS To assess the lnc-NONH role during PFV infection, the siRNAs were used to silence the lnc-NONH expression. The microRNA (miRNA) mimic and inhibitor were employed to explore the function of lnc-NONH-related miRNA miR-34c-5p. Quantitative real-time polymerase chain reaction assay and Western blotting were applied to measure the mRNA and protein levels of PFV transactivator Tas. Luciferase assay was used to determine the transcriptional activity of the PFV unique internal promoter (IP). RESULTS lnc-NONH promotes the expression of PFV Tas and miR-34c-5p. The interaction between lnc-NONH and miR-34c-5p enhances the transcriptional activity of the PFV IP. CONCLUSIONS In the current study, we report a novel mechanism for the lnc-NONH-mediated upregulation of Tas expression. Our findings contribute to the understanding of regulatory network of Tas expression and PFV replication.
Collapse
Affiliation(s)
- Shanshan Xu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Department of Allergy, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wenqiong Yang
- Department of Neurology, Dongfeng Hospital, Hubei University of Medicine, Shiyan, China
| | - Peipei Yuan
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jun Yan
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yinglian Tang
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yingcheng Zheng
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Zhi Li
- College of Life Sciences, Shanxi Normal University, Xi'an, China
| | - Yan Sun
- College of Life Sciences, Shanxi Normal University, Xi'an, China
| | - Song Han
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jun Yin
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Biwen Peng
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xiaohua He
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Qin Pan
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China,
| | - Wanhong Liu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Xu S, Dong L, Shi Y, Chen L, Yuan P, Wang S, Li Z, Sun Y, Han S, Yin J, Peng B, He X, Liu W. The Novel Landscape of Long Non-Coding RNAs in Response to Human Foamy Virus Infection Characterized by RNA-Seq. AIDS Res Hum Retroviruses 2017; 33:452-464. [PMID: 27750433 DOI: 10.1089/aid.2016.0156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human foamy virus (HFV) is a complex and unique retrovirus with the longest genomes among retroviruses that are used as vectors for gene therapy. Long non-coding RNAs (lncRNAs) are regarded as key regulators that are involved in diverse biological processes during viral infection. However, the role of lncRNAs in HFV infection remains unknown. In this study, we utilized next-generation sequencing to first characterize lncRNAs in 293T cells after HFV infection, evaluating length distribution, exon number distribution, volcano picture, and lncRNA class distribution. We identified 11,336 lncRNAs (4,729 upregulated lncRNAs and 6,588 downregulated lncRNAs) and 61,367 mRNAs (30,133 upregulated mRNAs and 31,220 downregulated mRNAs), which were differentially expressed in the HFV-infected 293T cells. Subsequently, six differentially expressed lncRNAs characterized using RNA-seq were confirmed by quantitative real-time polymerase chain reaction assays. Interestingly, Gene Ontology (GO)/Gene Ontology Tree Machine (GOTM) and Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway analyses indicated that positive regulation of interleukin 8 (IL8) production and cytokine-cytokine receptor interaction might be involved in the functional enrichment of lncRNAs. Moreover, cis-acting and trans-acting regulatory networks show that NR_028036 may target the fas gene in a cis-acting manner and that ENST00000354838 may target the IL18 gene in a trans-acting manner. Overall, these results not only provide novel insights into the relationship between HFV and lncRNAs in the host response to infection but also have implications for the future wider application of HFV as a vector.
Collapse
Affiliation(s)
- Shanshan Xu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Lanlan Dong
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Wuhan General Hospital, Guangzhou Military Command, Wuhan, China
| | - Yingying Shi
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Liujun Chen
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Peipei Yuan
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Shuang Wang
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Zhi Li
- College of Life Sciences, Shanxi Normal University, Xi'an, Shanxi, China
| | - Yan Sun
- College of Life Sciences, Shanxi Normal University, Xi'an, Shanxi, China
| | - Song Han
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Jun Yin
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Biwen Peng
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Xiaohua He
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Wanhong Liu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
4
|
Chira S, Jackson CS, Oprea I, Ozturk F, Pepper MS, Diaconu I, Braicu C, Raduly LZ, Calin GA, Berindan-Neagoe I. Progresses towards safe and efficient gene therapy vectors. Oncotarget 2016; 6:30675-703. [PMID: 26362400 PMCID: PMC4741561 DOI: 10.18632/oncotarget.5169] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/22/2015] [Indexed: 12/11/2022] Open
Abstract
The emergence of genetic engineering at the beginning of the 1970′s opened the era of biomedical technologies, which aims to improve human health using genetic manipulation techniques in a clinical context. Gene therapy represents an innovating and appealing strategy for treatment of human diseases, which utilizes vehicles or vectors for delivering therapeutic genes into the patients' body. However, a few past unsuccessful events that negatively marked the beginning of gene therapy resulted in the need for further studies regarding the design and biology of gene therapy vectors, so that this innovating treatment approach can successfully move from bench to bedside. In this paper, we review the major gene delivery vectors and recent improvements made in their design meant to overcome the issues that commonly arise with the use of gene therapy vectors. At the end of the manuscript, we summarized the main advantages and disadvantages of common gene therapy vectors and we discuss possible future directions for potential therapeutic vectors.
Collapse
Affiliation(s)
- Sergiu Chira
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania
| | - Carlo S Jackson
- Department of Immunology and Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Iulian Oprea
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Ferhat Ozturk
- Department of Molecular Biology and Genetics, Canik Başari University, Samsun, Turkey
| | - Michael S Pepper
- Department of Immunology and Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | | | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania
| | - Lajos-Zsolt Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania.,Department of Physiopathology, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, Cluj Napoca, Romania
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania.,Department of Immunology, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania.,Department of Functional Genomics and Experimental Pathology, Oncological Institute "Prof. Dr. Ion Chiricuţă", Cluj Napoca, Romania.,Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
5
|
Kibaly C, Loh H, Law PY. A Mechanistic Approach to the Development of Gene Therapy for Chronic Pain. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 327:89-161. [DOI: 10.1016/bs.ircmb.2016.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Nayerossadat N, Maedeh T, Ali PA. Viral and nonviral delivery systems for gene delivery. Adv Biomed Res 2012; 1:27. [PMID: 23210086 PMCID: PMC3507026 DOI: 10.4103/2277-9175.98152] [Citation(s) in RCA: 537] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 03/10/2012] [Indexed: 12/14/2022] Open
Abstract
Gene therapy is the process of introducing foreign genomic materials into host cells to elicit a therapeutic benefit. Although initially the main focus of gene therapy was on special genetic disorders, now diverse diseases with different patterns of inheritance and acquired diseases are targets of gene therapy. There are 2 major categories of gene therapy, including germline gene therapy and somatic gene therapy. Although germline gene therapy may have great potential, because it is currently ethically forbidden, it cannot be used; however, to date human gene therapy has been limited to somatic cells. Although numerous viral and nonviral gene delivery systems have been developed in the last 3 decades, no delivery system has been designed that can be applied in gene therapy of all kinds of cell types in vitro and in vivo with no limitation and side effects. In this review we explain about the history of gene therapy, all types of gene delivery systems for germline (nuclei, egg cells, embryonic stem cells, pronuclear, microinjection, sperm cells) and somatic cells by viral [retroviral, adenoviral, adeno association, helper-dependent adenoviral systems, hybrid adenoviral systems, herpes simplex, pox virus, lentivirus, Epstein-Barr virus)] and nonviral systems (physical: Naked DNA, DNA bombardant, electroporation, hydrodynamic, ultrasound, magnetofection) and (chemical: Cationic lipids, different cationic polymers, lipid polymers). In addition to the above-mentioned, advantages, disadvantages, and practical use of each system are discussed.
Collapse
Affiliation(s)
- Nouri Nayerossadat
- Molecular Genetic Laboratory, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
- Pediatric Inherited Disease Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Talebi Maedeh
- Molecular Genetic Laboratory, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Palizban Abas Ali
- Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences and Health Services, Isfahan, Iran
| |
Collapse
|
7
|
Huang Y, Liu X, Dong L, Liu Z, He X, Liu W. Development of viral vectors for gene therapy for chronic pain. PAIN RESEARCH AND TREATMENT 2011; 2011:968218. [PMID: 22110937 PMCID: PMC3200086 DOI: 10.1155/2011/968218] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 01/31/2011] [Indexed: 11/17/2022]
Abstract
Chronic pain is a major health concern that affects millions of people. There are no adequate long-term therapies for chronic pain sufferers, leading to significant cost for both society and the individual. The most commonly used therapy for chronic pain is the application of opioid analgesics and nonsteroidal anti-inflammatory drugs, but these drugs can lead to addiction and may cause side effects. Further studies of the mechanisms of chronic pain have opened the way for development of new treatment strategies, one of which is gene therapy. The key to gene therapy is selecting safe and highly efficient gene delivery systems that can deliver therapeutic genes to overexpress or suppress relevant targets in specific cell types. Here we review several promising viral vectors that could be applied in gene transfer for the treatment of chronic pain and further discuss the possible mechanisms of genes of interest that could be delivered with viral vectors for the treatment of chronic pain.
Collapse
Affiliation(s)
- Yu Huang
- School of Medicine, Wuhan University, Donghu Road #185, Wuchang, Wuhan 430071, China
| | - Xin Liu
- College of Pharmacy, Wuhan University, Donghu Road #185, Wuchang, Wuhan 430071, China
| | - Lanlan Dong
- School of Medicine, Wuhan University, Donghu Road #185, Wuchang, Wuhan 430071, China
| | - Zhongchun Liu
- School of Medicine, Wuhan University, Donghu Road #185, Wuchang, Wuhan 430071, China
| | - Xiaohua He
- School of Medicine, Wuhan University, Donghu Road #185, Wuchang, Wuhan 430071, China
- Research Center of Food and Drug Evaluation, Wuhan University, Donghu Road #185, Wuchang, Wuhan 430071, China
| | - Wanhong Liu
- School of Medicine, Wuhan University, Donghu Road #185, Wuchang, Wuhan 430071, China
- Research Center of Food and Drug Evaluation, Wuhan University, Donghu Road #185, Wuchang, Wuhan 430071, China
| |
Collapse
|
8
|
Gwak YS, Hulsebosch CE. GABA and central neuropathic pain following spinal cord injury. Neuropharmacology 2011; 60:799-808. [PMID: 21216257 DOI: 10.1016/j.neuropharm.2010.12.030] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 12/02/2010] [Accepted: 12/22/2010] [Indexed: 12/31/2022]
Abstract
Spinal cord injury induces maladaptive synaptic transmission in the somatosensory system that results in chronic central neuropathic pain. Recent literature suggests that glial-neuronal interactions are important modulators in synaptic transmission following spinal cord injury. Neuronal hyperexcitability is one of the predominant phenomenon caused by maladaptive synaptic transmission via altered glial-neuronal interactions after spinal cord injury. In the somatosensory system, spinal inhibitory neurons counter balance the enhanced synaptic transmission from peripheral input. For a decade, the literature suggests that hypofunction of GABAergic inhibitory tone is an important factor in the enhanced synaptic transmission that often results in neuronal hyperexcitability in dorsal horn neurons following spinal cord injury. Neurons and glial cells synergistically control intracellular chloride ion gradients via modulation of chloride transporters, extracellular glutamate and GABA concentrations via uptake mechanisms. Thus, the intracellular "GABA-glutamate-glutamine cycle" is maintained for normal physiological homeostasis. However, hyperexcitable neurons and glial activation after spinal cord injury disrupts the balance of chloride ions, glutamate and GABA distribution in the spinal dorsal horn and results in chronic neuropathic pain. In this review, we address spinal cord injury induced mechanisms in hypofunction of GABAergic tone that results in chronic central neuropathic pain. This article is part of a Special Issue entitled 'Synaptic Plasticity & Interneurons'.
Collapse
Affiliation(s)
- Young S Gwak
- Department of Neuroscience & Cell Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1043, USA.
| | | |
Collapse
|
9
|
Foamy virus: an available vector for gene transfer in neural cells and other nondividing cells. J Neurovirol 2010; 16:419-26. [DOI: 10.1007/bf03210847] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
10
|
Vit JP, Ohara PT, Sundberg C, Rubi B, Maechler P, Liu C, Puntel M, Lowenstein P, Castro M, Jasmin L. Adenovector GAD65 gene delivery into the rat trigeminal ganglion produces orofacial analgesia. Mol Pain 2009; 5:42. [PMID: 19656360 PMCID: PMC2734545 DOI: 10.1186/1744-8069-5-42] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 08/05/2009] [Indexed: 01/15/2023] Open
Abstract
Background Our goal is to use gene therapy to alleviate pain by targeting glial cells. In an animal model of facial pain we tested the effect of transfecting the glutamic acid decarboxylase (GAD) gene into satellite glial cells (SGCs) of the trigeminal ganglion by using a serotype 5 adenovector with high tropisms for glial cells. We postulated that GABA produced from the expression of GAD would reduce pain behavior by acting on GABA receptors on neurons within the ganglion. Results Injection of adenoviral vectors (AdGAD65) directly into the trigeminal ganglion leads to sustained expression of the GAD65 isoform over the 4 weeks observation period. Immunohistochemical analysis showed that adenovirus-mediated GAD65 expression and GABA synthesis were mainly in SGCs. GABAA and GABAB receptors were both seen in sensory neurons, yet only GABAA receptors decorated the neuronal surface. GABA receptors were not found on SGCs. Six days after injection of AdGAD65 into the trigeminal ganglion, there was a statistically significant decrease of pain behavior in the orofacial formalin test, a model of inflammatory pain. Rats injected with control virus (AdGFP or AdLacZ) had no reduction in their pain behavior. AdGAD65-dependent analgesia was blocked by bicuculline, a selective GABAA receptor antagonist, but not by CGP46381, a selective GABAB receptor antagonist. Conclusion Transfection of glial cells in the trigeminal ganglion with the GAD gene blocks pain behavior by acting on GABAA receptors on neuronal perikarya.
Collapse
Affiliation(s)
- Jean-Philippe Vit
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Transduction of human neural progenitor cells with foamy virus vectors for differentiation-dependent gene expression. Gene Ther 2008; 16:349-58. [DOI: 10.1038/gt.2008.173] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
12
|
Liu W, Liu Z, Liu L, Xiao Z, Cao X, Cao Z, Xue L, Miao L, He X, Li W. A novel human foamy virus mediated gene transfer of GAD67 reduces neuropathic pain following spinal cord injury. Neurosci Lett 2007; 432:13-8. [PMID: 18180106 DOI: 10.1016/j.neulet.2007.11.054] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 10/15/2007] [Accepted: 11/29/2007] [Indexed: 10/22/2022]
Abstract
Neuropathic pain is a long-lasting clinical problem that is often refractory to medical management. Gene transfer of specific genes for therapeutic benefit offers a novel approach to the treatment of neuropathic pain. In this study, we tested whether the transfer of the glutamic acid decarboxylase (GAD) gene to dorsal root ganglion (DRG) cells would attenuate below-injury level central neuropathic pain after spinal cord injury (SCI) by using a novel human foamy virus (HFV) vector to achieve release of gamma-aminobutyric acid (GABA). Subcutaneous inoculation of a replication-defective HFV vector, which expresses GAD (vector rdvGAD67) for 7days after T13 spinal cord hemisection, reversed mechanical allodynia and thermal hyperalgesia evoked by SCI. The antiallodynic effect lasted 6 weeks and was reestablished by reinoculation. We also found that subcutaneous inoculation of rdvGAD67 resulted in enhanced production of GAD and tonical GABA release from transduced DRG neurons. These results suggest that HFV-mediated gene transfer to DRG could be employed to treat below-injury level central neuropathic pain after incomplete SCI.
Collapse
Affiliation(s)
- Wanhong Liu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Medicine, Wuhan University, Wuhan 430071, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|