1
|
Xie G, Si Q, Zhang G, Fan Y, Li Q, Leng P, Qiao F, Liang S, Yu R, Wang Y. The role of imprinting genes' loss of imprints in cancers and their clinical implications. Front Oncol 2024; 14:1365474. [PMID: 38812777 PMCID: PMC11133587 DOI: 10.3389/fonc.2024.1365474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/23/2024] [Indexed: 05/31/2024] Open
Abstract
Genomic imprinting plays an important role in the growth and development of mammals. When the original imprint status of these genes is lost, known as loss of imprinting (LOI), it may affect growth, neurocognitive development, metabolism, and even tumor susceptibility. The LOI of imprint genes has gradually been found not only as an early event in tumorigenesis, but also to be involved in progression. More than 120 imprinted genes had been identified in humans. In this review, we summarized the most studied LOI of two gene clusters and 13 single genes in cancers. We focused on the roles they played, that is, as growth suppressors and anti-apoptosis agents, sustaining proliferative signaling or inducing angiogenesis; the molecular pathways they regulated; and especially their clinical significance. It is notable that 12 combined forms of multi-genes' LOI, 3 of which have already been used as diagnostic models, achieved good sensitivity, specificity, and accuracy. In addition, the methods used for LOI detection in existing research are classified into detection of biallelic expression (BAE), differentially methylated regions (DMRs), methylation, and single-nucleotide polymorphisms (SNPs). These all indicated that the detection of imprinting genes' LOI has potential clinical significance in cancer diagnosis, treatment, and prognosis.
Collapse
Affiliation(s)
- Guojing Xie
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qin Si
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guangjie Zhang
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Clinical Laboratory, Chengdu Fifth People’s Hospital, Chengdu, China
| | - Yu Fan
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Key Laboratory of Medical Molecular Testing, Chengdu, China
| | - Qinghua Li
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Leng
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Key Laboratory of Medical Molecular Testing, Chengdu, China
| | - Fengling Qiao
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Key Laboratory of Medical Molecular Testing, Chengdu, China
| | - Simin Liang
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Yu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Key Laboratory of Medical Molecular Testing, Chengdu, China
| | - Yingshuang Wang
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Key Laboratory of Medical Molecular Testing, Chengdu, China
| |
Collapse
|
2
|
Vicha A, Jencova P, Novakova-Kodetova D, Stolova L, Voriskova D, Vyletalova K, Broz P, Drahokoupilova E, Guha A, Kopecká M, Krskova L. Changes on chromosome 11p15.5 as specific marker for embryonal rhabdomyosarcoma? Genes Chromosomes Cancer 2023; 62:732-739. [PMID: 37530573 DOI: 10.1002/gcc.23194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/04/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023] Open
Abstract
Rhabdomyosarcomas (RMS) constitute a heterogeneous spectrum of tumors with respect to clinical behavior and tumor morphology. The paternal uniparental disomy (pUPD) of 11p15.5 is a molecular change described mainly in embryonal RMS. In addition to LOH, UPD, the MLPA technique (ME030kit) also determines copy number variants and methylation of H19 and KCNQ1OT1 genes, which have not been systematically investigated in RMS. All 127 RMS tumors were divided by histology and PAX status into four groups, pleomorphic histology (n = 2); alveolar RMS PAX fusion-positive (PAX+; n = 39); embryonal RMS (n = 70) and fusion-negative RMS with alveolar pattern (PAX-RMS-AP; n = 16). The following changes were detected; negative (n = 21), pUPD (n = 75), gain of paternal allele (n = 9), loss of maternal allele (n = 9), hypermethylation of H19 (n = 6), hypomethylation of KCNQ1OT1 (n = 6), and deletion of CDKN1C (n = 1). We have shown no difference in the frequency of pUPD 11p15.5 in all groups. Thus, we have proven that changes in the 11p15.5 are not only specific to the embryonal RMS (ERMS), but are often also present in alveolar RMS (ARMS). We have found changes that have not yet been described in RMS. We also demonstrated new potential diagnostic markers for ERMS (paternal duplication and UPD of whole chromosome 11) and for ARMS PAX+ (hypomethylation KCNQ1OT1).
Collapse
Affiliation(s)
- Ales Vicha
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Pavla Jencova
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Daniela Novakova-Kodetova
- Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Lucie Stolova
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Dagmar Voriskova
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Kristyna Vyletalova
- Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Petr Broz
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
- BIOXSYS, Ústí nad Labem, Czech Republic
| | - Eva Drahokoupilova
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Anasuya Guha
- Department of Otorhinolaryngology, 3rd Faculty of Medicine, Charles University in Prague and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Marie Kopecká
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Lenka Krskova
- Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
3
|
Silva FLT, Ruas JS, Euzébio MF, Hoffmann IL, Junqueira T, Tedeschi H, Pereira LH, Cassone AE, Cardinalli IA, Seidinger AL, Jotta PY, Maschietto M. 11p15 Epimutations in Pediatric Embryonic Tumors: Insights from a Methylome Analysis. Cancers (Basel) 2023; 15:4256. [PMID: 37686532 PMCID: PMC10486592 DOI: 10.3390/cancers15174256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 09/10/2023] Open
Abstract
Embryonic tumors share few recurrent mutations, suggesting that other mechanisms, such as aberrant DNA methylation, play a prominent role in their development. The loss of imprinting (LOI) at the chromosome region 11p15 is the germline alteration behind Beckwith-Wiedemann syndrome that results in an increased risk of developing several embryonic tumors. This study analyzed the methylome, using EPIC Beadchip arrays from 99 sporadic embryonic tumors. Among these tumors, 46.5% and 14.6% presented alterations at imprinted control regions (ICRs) 1 and 2, respectively. Based on the methylation levels of ICR1 and ICR2, four clusters formed with distinct methylation patterns, mostly for medulloblastomas (ICR1 loss of methylation (LOM)), Wilms tumors, and hepatoblastomas (ICR1 gain of methylation (GOM), with or without ICR2 LOM). To validate the results, the methylation status of 29 cases was assessed with MS-MLPA, and a high level of agreement was found between both methodologies: 93% for ICR1 and 79% for ICR2. The MS-MLPA results indicate that 15 (51.7%) had ICR1 GOM and 11 (37.9%) had ICR2 LOM. To further validate our findings, the ICR1 methylation status was characterized via digital PCR (dPCR) in cell-free DNA (cfDNA) extracted from peripheral blood. At diagnosis, we detected alterations in the methylation levels of ICR1 in 62% of the cases, with an agreement of 76% between the tumor tissue (MS-MLPA) and cfDNA methods. Among the disagreements, the dPCR was able to detect ICR1 methylation level changes presented at heterogeneous levels in the tumor tissue, which were detected only in the methylome analysis. This study highlights the prevalence of 11p15 methylation status in sporadic embryonic tumors, with differences relating to methylation levels (gain or loss), location (ICR1 or ICR2), and tumor types (medulloblastomas, Wilms tumors, and hepatoblastomas).
Collapse
Affiliation(s)
- Felipe Luz Torres Silva
- Research Center, Boldrini Children’s Hospital, Campinas 13083-884, SP, Brazil; (F.L.T.S.); (J.S.R.); (M.F.E.); (P.Y.J.)
- Genetics and Molecular Biology, Institute of Biology, State University of Campinas, Campinas 13083-862, SP, Brazil
| | - Juliana Silveira Ruas
- Research Center, Boldrini Children’s Hospital, Campinas 13083-884, SP, Brazil; (F.L.T.S.); (J.S.R.); (M.F.E.); (P.Y.J.)
| | - Mayara Ferreira Euzébio
- Research Center, Boldrini Children’s Hospital, Campinas 13083-884, SP, Brazil; (F.L.T.S.); (J.S.R.); (M.F.E.); (P.Y.J.)
- Genetics and Molecular Biology, Institute of Biology, State University of Campinas, Campinas 13083-862, SP, Brazil
| | | | - Thais Junqueira
- Boldrini Children’s Hospital, Campinas 13083-210, SP, Brazil
| | - Helder Tedeschi
- Boldrini Children’s Hospital, Campinas 13083-210, SP, Brazil
| | | | | | | | - Ana Luiza Seidinger
- Research Center, Boldrini Children’s Hospital, Campinas 13083-884, SP, Brazil; (F.L.T.S.); (J.S.R.); (M.F.E.); (P.Y.J.)
| | - Patricia Yoshioka Jotta
- Research Center, Boldrini Children’s Hospital, Campinas 13083-884, SP, Brazil; (F.L.T.S.); (J.S.R.); (M.F.E.); (P.Y.J.)
| | - Mariana Maschietto
- Research Center, Boldrini Children’s Hospital, Campinas 13083-884, SP, Brazil; (F.L.T.S.); (J.S.R.); (M.F.E.); (P.Y.J.)
- Genetics and Molecular Biology, Institute of Biology, State University of Campinas, Campinas 13083-862, SP, Brazil
| |
Collapse
|
4
|
Liao J, Chen B, Zhu Z, Du C, Gao S, Zhao G, Zhao P, Wang Y, Wang A, Schwartz Z, Song L, Hong J, Wagstaff W, Haydon RC, Luu HH, Fan J, Reid RR, He TC, Shi L, Hu N, Huang W. Long noncoding RNA (lncRNA) H19: An essential developmental regulator with expanding roles in cancer, stem cell differentiation, and metabolic diseases. Genes Dis 2023; 10:1351-1366. [PMID: 37397543 PMCID: PMC10311118 DOI: 10.1016/j.gendis.2023.02.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/07/2023] [Accepted: 02/08/2023] [Indexed: 07/04/2023] Open
Abstract
Recent advances in deep sequencing technologies have revealed that, while less than 2% of the human genome is transcribed into mRNA for protein synthesis, over 80% of the genome is transcribed, leading to the production of large amounts of noncoding RNAs (ncRNAs). It has been shown that ncRNAs, especially long non-coding RNAs (lncRNAs), may play crucial regulatory roles in gene expression. As one of the first isolated and reported lncRNAs, H19 has gained much attention due to its essential roles in regulating many physiological and/or pathological processes including embryogenesis, development, tumorigenesis, osteogenesis, and metabolism. Mechanistically, H19 mediates diverse regulatory functions by serving as competing endogenous RNAs (CeRNAs), Igf2/H19 imprinted tandem gene, modular scaffold, cooperating with H19 antisense, and acting directly with other mRNAs or lncRNAs. Here, we summarized the current understanding of H19 in embryogenesis and development, cancer development and progression, mesenchymal stem cell lineage-specific differentiation, and metabolic diseases. We discussed the potential regulatory mechanisms underlying H19's functions in those processes although more in-depth studies are warranted to delineate the exact molecular, cellular, epigenetic, and genomic regulatory mechanisms underlying the physiological and pathological roles of H19. Ultimately, these lines of investigation may lead to the development of novel therapeutics for human diseases by exploiting H19 functions.
Collapse
Affiliation(s)
- Junyi Liao
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Bowen Chen
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Zhenglin Zhu
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Chengcheng Du
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Shengqiang Gao
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Piao Zhao
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zander Schwartz
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- School of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Lily Song
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jeffrey Hong
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- The Medical Scientist Training Program, The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lewis Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Ning Hu
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Wei Huang
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
5
|
Castle JT, Levy BE, Allison DB, Rodeberg DA, Rellinger EJ. Pediatric Rhabdomyosarcomas of the Genitourinary Tract. Cancers (Basel) 2023; 15:2864. [PMID: 37345202 PMCID: PMC10216134 DOI: 10.3390/cancers15102864] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/23/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in the pediatric and adolescent population, with 350 new cases diagnosed each year. While they can develop anywhere in the body, the genitourinary tract is the second most common primary location for an RMS to develop. Overall survival has improved through the increased use of protocols and multidisciplinary approaches. However, the guidelines for management continue to change as systemic and radiation therapeutics advance. Given the relative rarity of this disease compared to other non-solid childhood malignancies, healthcare providers not directly managing RMS may not be familiar with their presentation and updated management. This review aims to provide foundational knowledge of the management of RMSs with an emphasis on specific management paradigms for those arising from the genitourinary tract. The genitourinary tract is the second most common location for an RMS to develop but varies greatly in symptomology and survival depending on the organ of origin. As the clinical understanding of these tumors advances, treatment paradigms have evolved. Herein, we describe the breadth of presentations for genitourinary RMSs with diagnostic and treatment management considerations, incorporating the most recently available guidelines and societal consensus recommendations.
Collapse
Affiliation(s)
- Jennifer T. Castle
- Department of Surgery, Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA;
| | - Brittany E. Levy
- Department of Surgery, University of Kentucky, Lexington, KY 40536, USA;
| | - Derek B. Allison
- Department of Pathology and Laboratory Medicine, Department of Urology, Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA;
| | - David A. Rodeberg
- Department of Surgery, Department of Pediatric Surgery, University of Kentucky, Lexington, KY 40536, USA;
| | - Eric J. Rellinger
- Department of Surgery, Department of Pediatric Surgery, Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
6
|
Pomella S, Danielli SG, Alaggio R, Breunis WB, Hamed E, Selfe J, Wachtel M, Walters ZS, Schäfer BW, Rota R, Shipley JM, Hettmer S. Genomic and Epigenetic Changes Drive Aberrant Skeletal Muscle Differentiation in Rhabdomyosarcoma. Cancers (Basel) 2023; 15:2823. [PMID: 37345159 DOI: 10.3390/cancers15102823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Rhabdomyosarcoma (RMS), the most common soft-tissue sarcoma in children and adolescents, represents an aberrant form of skeletal muscle differentiation. Both skeletal muscle development, as well as regeneration of adult skeletal muscle are governed by members of the myogenic family of regulatory transcription factors (MRFs), which are deployed in a highly controlled, multi-step, bidirectional process. Many aspects of this complex process are deregulated in RMS and contribute to tumorigenesis. Interconnected loops of super-enhancers, called core regulatory circuitries (CRCs), define aberrant muscle differentiation in RMS cells. The transcriptional regulation of MRF expression/activity takes a central role in the CRCs active in skeletal muscle and RMS. In PAX3::FOXO1 fusion-positive (PF+) RMS, CRCs maintain expression of the disease-driving fusion oncogene. Recent single-cell studies have revealed hierarchically organized subsets of cells within the RMS cell pool, which recapitulate developmental myogenesis and appear to drive malignancy. There is a large interest in exploiting the causes of aberrant muscle development in RMS to allow for terminal differentiation as a therapeutic strategy, for example, by interrupting MEK/ERK signaling or by interfering with the epigenetic machinery controlling CRCs. In this review, we provide an overview of the genetic and epigenetic framework of abnormal muscle differentiation in RMS, as it provides insights into fundamental mechanisms of RMS malignancy, its remarkable phenotypic diversity and, ultimately, opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Silvia Pomella
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS Istituto Ospedale Pediatrico Bambino Gesu, Viale San Paolo 15, 00146 Rome, Italy
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Sara G Danielli
- Department of Oncology and Children's Research Center, University Children's Hospital of Zurich, 8032 Zürich, Switzerland
| | - Rita Alaggio
- Department of Pathology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Viale San Paolo 15, 00146 Rome, Italy
| | - Willemijn B Breunis
- Department of Oncology and Children's Research Center, University Children's Hospital of Zurich, 8032 Zürich, Switzerland
| | - Ebrahem Hamed
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, 79106 Freiburg, Germany
| | - Joanna Selfe
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London SM2 FNG, UK
| | - Marco Wachtel
- Department of Oncology and Children's Research Center, University Children's Hospital of Zurich, 8032 Zürich, Switzerland
| | - Zoe S Walters
- Translational Epigenomics Team, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Beat W Schäfer
- Department of Oncology and Children's Research Center, University Children's Hospital of Zurich, 8032 Zürich, Switzerland
| | - Rossella Rota
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS Istituto Ospedale Pediatrico Bambino Gesu, Viale San Paolo 15, 00146 Rome, Italy
| | - Janet M Shipley
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London SM2 FNG, UK
| | - Simone Hettmer
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, 79106 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), 79104 Freiburg, Germany
- Comprehensive Cancer Centre Freiburg (CCCF), University Medical Center Freiburg, 790106 Freiburg, Germany
| |
Collapse
|
7
|
Duan Y, Du Y, Gu Z, Zheng X, Wang C. Prognostic Value, Immune Signature, and Molecular Mechanisms of the PHLDA Family in Pancreatic Adenocarcinoma. Int J Mol Sci 2022; 23:ijms231810316. [PMID: 36142223 PMCID: PMC9499624 DOI: 10.3390/ijms231810316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/28/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Increasing evidence supports the belief that the pleckstrin homology domain family A (PHLDA) family is associated with the development of a variety of cancers. However, the function of the PHLDA family members in PAAD is still unclear. Methods: Comprehensive bioinformatic analyses using R (version 3.6.3), Cytoscape (version 3.9.1), UALCAN, etc., were performed to study the clinicopathological characteristics, prognostic value, immune features, and functional mechanisms of the PHLDA family members in PAAD. Results: The PHLDA family members showed significantly elevated expression in PAAD compared with paracancerous or normal tissues. Their high expression or amplification were significantly correlated with worse clinicopathological characteristics and prognosis in PAAD patients. In addition, the role of the PHLDA family members in the immune regulation is diverse and complex. Mechanistically, TP53 mutations were significantly associated with the promoter methylation and expression levels of the PHLDA family members, which were activated in multiple oncogenic pathways, including the EMT, RAS/MAPK, and TSC/mTOR pathways. Moreover, we found that their expression levels were significantly correlated with the sensitivity of multiple traditional chemotherapeutic drugs and novel targeted MEK1/2 inhibitors. Conclusion: The PHLDA family members play an oncogenic role in the development of PAAD and might serve as new biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Yunjie Duan
- State Key Lab of Molecular Oncology and Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Yongxing Du
- State Key Lab of Molecular Oncology and Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Zongting Gu
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou 310000, China
| | - Xiaohao Zheng
- State Key Lab of Molecular Oncology and Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Chengfeng Wang
- State Key Lab of Molecular Oncology and Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
- Correspondence: ; Tel.: +86-10-87787120; Fax: +86-10-87787123
| |
Collapse
|
8
|
Khurshid S, Montes M, Comiskey DF, Shane B, Matsa E, Jung F, Brown C, Bid HK, Wang R, Houghton PJ, Roberts R, Rigo F, Chandler D. Splice-switching of the insulin receptor pre-mRNA alleviates tumorigenic hallmarks in rhabdomyosarcoma. NPJ Precis Oncol 2022; 6:1. [PMID: 35017650 PMCID: PMC8752779 DOI: 10.1038/s41698-021-00245-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 12/16/2021] [Indexed: 01/07/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is an aggressive pediatric tumor with a poor prognosis for metastasis and recurrent disease. Large-scale sequencing endeavors demonstrate that Rhabdomyosarcomas have a dearth of precisely targetable driver mutations. However, IGF-2 signaling is known to be grossly altered in RMS. The insulin receptor (IR) exists in two alternatively spliced isoforms, IR-A and IR-B. The IGF-2 signaling molecule binds both its innate IGF-1 receptor as well as the insulin receptor variant A (IR-A) with high affinity. Mitogenic and proliferative signaling via the canonical IGF-2 pathway is, therefore, augmented by IR-A. This study shows that RMS patients express increased IR-A levels compared to control tissues that predominantly express the IR-B isoform. We also found that Hif-1α is significantly increased in RMS tumors, portraying their hypoxic phenotype. Concordantly, the alternative splicing of IR adapts to produce more IR-A in response to hypoxic stress. Upon examining the pre-mRNA structure of the gene, we identified a potential hypoxia-responsive element, which is also the binding site for the RNA-binding protein CUG-BP1 (CELF1). We designed Splice Switching Oligonucleotides (SSO) against this binding site to decrease IR-A levels in RMS cell lines and, consequently, rescue the IR-B expression levels. SSO treatment resulted in a significant reduction in cell proliferation, migration, and angiogenesis. Our data shows promising insight into how impeding the IGF-2 pathway by reducing IR-A expression mitigates tumor growth. It is evident that Rhabdomyosarcomas use IR alternative splicing as yet another survival strategy that can be exploited as a therapeutic intervention in conjunction with already established anti-IGF-1 receptor therapies.
Collapse
Affiliation(s)
- Safiya Khurshid
- Department of Pediatrics and the Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
- Center for Childhood Cancer, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Matias Montes
- Department of Pediatrics and the Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
- Center for Childhood Cancer, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Daniel F Comiskey
- Department of Pediatrics and the Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
- Center for Childhood Cancer, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Brianne Shane
- Department of Pediatrics and the Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
- Center for Childhood Cancer, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Eleftheria Matsa
- Department of Pediatrics and the Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
- Center for Childhood Cancer, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Francesca Jung
- Department of Pediatrics and the Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
- Center for Childhood Cancer, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Chelsea Brown
- Department of Pediatrics and the Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
- Center for Childhood Cancer, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | | | - Ruoning Wang
- Department of Pediatrics and the Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
- Center for Childhood Cancer, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Peter J Houghton
- Greenhey Children's Cancer Research Institute, UT Health, San Antonio, TX, 78229, USA
| | - Ryan Roberts
- Department of Pediatrics and the Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
- Center for Childhood Cancer, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA, 92010, USA
| | - Dawn Chandler
- Department of Pediatrics and the Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA.
- Center for Childhood Cancer, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, 43205, USA.
| |
Collapse
|
9
|
Mascarenhas L. A Step Forward in Realizing the Promise of Genomic Medicine for Childhood Rhabdomyosarcoma. J Clin Oncol 2021; 39:2851-2854. [PMID: 34181486 PMCID: PMC8425823 DOI: 10.1200/jco.21.01296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/03/2021] [Indexed: 11/20/2022] Open
Affiliation(s)
- Leo Mascarenhas
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
10
|
Unraveling the IGF System Interactome in Sarcomas Exploits Novel Therapeutic Options. Cells 2021; 10:cells10082075. [PMID: 34440844 PMCID: PMC8392407 DOI: 10.3390/cells10082075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
Aberrant bioactivity of the insulin-like growth factor (IGF) system results in the development and progression of several pathologic conditions including cancer. Preclinical studies have shown promising anti-cancer therapeutic potentials for anti-IGF targeted therapies. However, a clear but limited clinical benefit was observed only in a minority of patients with sarcomas. The molecular complexity of the IGF system, which comprises multiple regulators and interactions with other cancer-related pathways, poses a major limitation in the use of anti-IGF agents and supports the need of combinatorial therapeutic strategies to better tackle this axis. In this review, we will initially highlight multiple mechanisms underlying IGF dysregulation in cancer and then focus on the impact of the IGF system and its complexity in sarcoma development and progression as well as response to anti-IGF therapies. We will also discuss the role of Ephrin receptors, Hippo pathway, BET proteins and CXCR4 signaling, as mediators of sarcoma malignancy and relevant interactors with the IGF system in tumor cells. A deeper understanding of these molecular interactions might provide the rationale for novel and more effective therapeutic combinations to treat sarcomas.
Collapse
|
11
|
Bolomiti M, Båtnes-Pedersen E, Telman G, Januszkiewicz-Lewandowska D. A Case report: Co-occurrence of IMAGe syndrome and Rhabdomyosarcoma. Cancer Genet 2021; 256-257:100-105. [PMID: 34098225 DOI: 10.1016/j.cancergen.2021.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/30/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022]
Abstract
IMAGe syndrome is a rare congenital disorder, presenting with intrauterine growth restriction, metaphyseal dysplasia, adrenal hypoplasia congenita and genital anomalies (in males). So far only 17 individuals have been diagnosed molecularly with IMAGe syndrome, this patient is the first case of an individual diagnosed with IMAGe and concurrent rhabdomyosarcoma. The patient was born at 30 weeks' gestation and received treatment for hyponatremia and hyperkalemia. At 4 9/12 years of age the patient showed a painless, non-mobile mass on the left thigh. In the biopsy performed a sarcoma weave with solid, nest-like growth, with characteristics of rhabdomyosarcoma was identified. The family history and physical examination indicated IMAGe syndrome so genetic testing was requested. A whole exome sequencing procedure with use of SureSelectXT Human ALL Exon V7, confirmed a single nucleotide variant NM_000076.2(CDKN1C):c.820G>A (p.Asp274Asn); identifying a missense mutation in the imprinted gene CDKN1C associated with IMAGe syndrome. Although tumours associated with CDKN1C are rare, deregulation of imprinted genes is increasingly being recognised as a mechanism of tumorigenesis in cancer; chromosomal region 11p15.5 contains a cluster of imprinted genes. This same region is the most consistent site of allele loss in rhabdomyosarcoma and is the same region altered in both IMAGe and Beckwith-Wiedemann syndrome. Molecular studies have found genetic changes in the 11p15 region in a variety of embryonal tumours like Wilms tumours which are commonly developed in Beckwith-Wiedemann syndrome and embryonal rhabdomyosarcoma. Through this case we aim to present the possibility of oncogenesis in patients with IMAGe syndrome, specifically rhabdomyosarcoma.
Collapse
Affiliation(s)
- Maria Bolomiti
- Poznan University of Medical Sciences, 60-512, Poznan, Poland.
| | | | - Gabriela Telman
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, Szpitalna Street 27/33, 60-572 Poznan, Poland.
| | - Danuta Januszkiewicz-Lewandowska
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, Szpitalna Street 27/33, 60-572 Poznan, Poland.
| |
Collapse
|
12
|
Almasi S, Crawford Parks TE, Ravel-Chapuis A, MacKenzie A, Côté J, Cowan KN, Jasmin BJ. Differential regulation of autophagy by STAU1 in alveolar rhabdomyosarcoma and non-transformed skeletal muscle cells. Cell Oncol (Dordr) 2021; 44:851-870. [PMID: 33899158 DOI: 10.1007/s13402-021-00607-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 11/30/2022] Open
Abstract
PURPOSE Recent work has highlighted the therapeutic potential of targeting autophagy to modulate cell survival in a variety of diseases including cancer. Recently, we found that the RNA-binding protein Staufen1 (STAU1) is highly expressed in alveolar rhabdomyosarcoma (ARMS) and that this abnormal expression promotes tumorigenesis. Here, we asked whether STAU1 is involved in the regulation of autophagy in ARMS cells. METHODS We assessed the impact of STAU1 expression modulation in ARMS cell lines (RH30 and RH41), non-transformed skeletal muscle cells (C2C12) and STAU1-transgenic mice using complementary techniques. RESULTS We found that STAU1 silencing reduces autophagy in the ARMS cell lines RH30 and RH41, while increasing their apoptosis. Mechanistically, this inhibitory effect was found to be caused by a direct negative impact of STAU1 depletion on the stability of Beclin-1 (BECN1) and ATG16L1 mRNAs, as well as by an indirect inhibition of JNK signaling via increased expression of Dual specificity phosphatase 8 (DUSP8). Pharmacological activation of JNK or expression silencing of DUSP8 was sufficient to restore autophagy in STAU1-depleted cells. By contrast, we found that STAU1 downregulation in non-transformed skeletal muscle cells activates autophagy in a mTOR-dependent manner, without promoting apoptosis. A similar effect was observed in skeletal muscles obtained from STAU1-overexpressing transgenic mice. CONCLUSIONS Together, our data indicate an effect of STAU1 on autophagy regulation in ARMS cells and its differential role in non-transformed skeletal muscle cells. Our findings suggest a cancer-specific potential of targeting STAU1 for the treatment of ARMS.
Collapse
Affiliation(s)
- Shekoufeh Almasi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada.,The Eric J. Poulin Centre for Neuromuscular Diseases, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Tara E Crawford Parks
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada.,The Eric J. Poulin Centre for Neuromuscular Diseases, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Aymeric Ravel-Chapuis
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada.,The Eric J. Poulin Centre for Neuromuscular Diseases, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Alex MacKenzie
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada.,The Eric J. Poulin Centre for Neuromuscular Diseases, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Division of Endocrinology, Department of Paediatric, CHEO, University of Ottawa, Ottawa, ON, Canada
| | - Jocelyn Côté
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada.,The Eric J. Poulin Centre for Neuromuscular Diseases, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Kyle N Cowan
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada.,Division of Paediatric Surgery, Department of Surgery, CHEO, University of Ottawa, Ottawa, ON, Canada.,Molecular Biomedicine Program, CHEO, Ottawa, ON, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada. .,The Eric J. Poulin Centre for Neuromuscular Diseases, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
13
|
Abstract
Rhabdomyosarcoma (RMS) is an aggressive childhood mesenchymal tumor with two major molecular and histopathologic subtypes: fusion-positive (FP)RMS, characterized by the PAX3-FOXO1 fusion protein and largely of alveolar histology, and fusion-negative (FN)RMS, the majority of which exhibit embryonal tumor histology. Metastatic disease continues to be associated with poor overall survival despite intensive treatment strategies. Studies on RMS biology have provided some insight into autocrine as well as paracrine signaling pathways that contribute to invasion and metastatic propensity. Such pathways include those driven by the PAX3-FOXO1 fusion oncoprotein in FPRMS and signaling pathways such as IGF/RAS/MEK/ERK, PI3K/AKT/mTOR, cMET, FGFR4, and PDGFR in both FP and FNRMS. In addition, specific cytoskeletal proteins, G protein coupled receptors, Hedgehog, Notch, Wnt, Hippo, and p53 pathways play a role, as do specific microRNA. Paracrine factors, including secreted proteins and RMS-derived exosomes that carry cargo of protein and miRNA, have also recently emerged as potentially important players in RMS biology. This review summarizes the known factors contributing to RMS invasion and metastasis and their implications on identifying targets for treatment and a better understanding of metastatic RMS.
Collapse
|
14
|
Diagnostic classification of soft tissue malignancies: A review and update from a surgical pathology perspective. Curr Probl Cancer 2019; 43:250-272. [DOI: 10.1016/j.currproblcancer.2019.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023]
|
15
|
Codenotti S, Faggi F, Ronca R, Chiodelli P, Grillo E, Guescini M, Megiorni F, Marampon F, Fanzani A. Caveolin-1 enhances metastasis formation in a human model of embryonal rhabdomyosarcoma through Erk signaling cooperation. Cancer Lett 2019; 449:135-144. [DOI: 10.1016/j.canlet.2019.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/08/2019] [Accepted: 02/10/2019] [Indexed: 11/15/2022]
|
16
|
Analysis of the Paternally-Imprinted DLK1-MEG3 and IGF2-H19 Tandem Gene Loci in NT2 Embryonal Carcinoma Cells Identifies DLK1 as a Potential Therapeutic Target. Stem Cell Rev Rep 2019; 14:823-836. [PMID: 29980981 DOI: 10.1007/s12015-018-9838-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The paternally-imprinted genes insulin-like growth factor 2 (IGF2), H19, delta-like homologue 1 (DLK1), and maternally-expressed gene 3 (MEG3) are expressed from the tandem gene loci IGF2-H19 and DLK1-MEG3, which play crucial roles in initiating embryogenesis and development. The erasure of imprinting (EOI) at differentially methylated regions (DMRs) which regulate the expression of these genes maintains the developmental quiescence of primordial germ cells (PGCs) migrating through the embryo proper during embryogenesis and prevents them from forming teratomas. To address the potential involvement of the IGF2-H19 and DLK1-MEG3 loci in the pathogenesis of embryonal carcinoma (EC), we investigated their genomic imprinting at DMRs in the human PGC-derived EC cell line NTera-2 (NT2). We observed EOI at the IGF2-H19 locus and, somewhat to our surprise, a loss of imprinting (LOI) at the DLK1-MEG3 locus. As a result, NT2 cells express imprinted gene ratios from these loci such that there are i) low levels of the proliferation-promoting IGF2 relative to ii) high levels of the proliferation-inhibiting long noncoding RNA (lncRNA) H19 and iii) high levels of proliferation-promoting DLK1 relative to iv) low levels of the proliferation-inhibiting lncRNA MEG3. Consistent with this pattern of expression, the knockdown of DLK1 mRNA by shRNA resulted in decreased in vitro cell proliferation and in vivo tumor growth as well as decreased in vivo organ seeding by NT2 cells. Furthermore, treatment of NT2 cells with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-azaD) inhibited their proliferation. This inhibition was accompanied by changes in expression of both tandem gene sets: a decrease in the expression of DLK1 and upregulation of the proliferation-inhibiting lncRNA MEG3, and at the same time upregulation of IGF2 and downregulation of the lncRNA H19. These results suggest that the DLK1-MEG3 locus, and not the IGF2-H19 locus, drives the tumorigenicity of NT2 cells. Based on these results, we identified DLK1 as a novel treatment target for EC that could be downregulated by 5-azaD.
Collapse
|
17
|
Tarnowski M, Tkacz M, Kopytko P, Bujak J, Piotrowska K, Pawlik A. Trichostatin A Inhibits Rhabdomyosarcoma Proliferation and Induces Differentiation through MyomiR Reactivation. Folia Biol (Praha) 2019; 65:43-52. [PMID: 31171081 DOI: 10.14712/fb2019065010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Rhabdomyosarcoma (RMS) is a malignant tumour of soft tissues, occurring mainly in children and young adults. RMS cells derive from muscle cells, which due to mutations and epigenetic modifications have lost their ability to differentiate. Epigenetic modifications regulate expression of genes responsible for cell proliferation, maturation, differentiation and apoptosis. HDAC inhibitors suppress histone acetylation; therefore, they are a promising tool used in cancer therapy. Trichostatin A (TsA) is a pan-inhibitor of HDAC. In our study, we investigated the effect of TsA on RMS cell biology. Our findings strongly suggest that TsA inhibits RMS cell proliferation, induces cell apoptosis, and reactivates tumour cell differentiation. TsA up-regulates miR-27b expression, which is involved in the process of myogenesis. Moreover, TsA increases susceptibility of RMS cells to routinely used chemotherapeutics. In conclusion, TsA exhibits anti-cancer properties, triggers differentiation, and thereby can complement an existing spectrum of chemotherapeutics used in RMS therapy.
Collapse
Affiliation(s)
- M Tarnowski
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - M Tkacz
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - P Kopytko
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - J Bujak
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - K Piotrowska
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - A Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
18
|
Vanaja KG, Timp W, Feinberg AP, Levchenko A. A Loss of Epigenetic Control Can Promote Cell Death through Reversing the Balance of Pathways in a Signaling Network. Mol Cell 2018; 72:60-70.e3. [PMID: 30244832 DOI: 10.1016/j.molcel.2018.08.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 06/04/2018] [Accepted: 08/15/2018] [Indexed: 12/31/2022]
Abstract
Epigenetic control of regulatory networks is only partially understood. Expression of Insulin-like growth factor-II (IGF2) is controlled by genomic imprinting, mediated by silencing of the maternal allele. Loss of imprinting of IGF2 (LOI) is linked to intestinal and colorectal cancers, causally in murine models and epidemiologically in humans. However, the molecular underpinnings of the LOI phenotype are not clear. Surprisingly, in LOI cells, we find a reversal of the relative activities of two canonical signaling pathways triggered by IGF2, causing further rebalancing between pro- and anti-apoptotic signaling. A predictive mathematical model shows that this network rebalancing quantitatively accounts for the effect of receptor tyrosine kinase inhibition in both WT and LOI cells. This mechanism also quantitatively explains both the stable LOI phenotype and the therapeutic window for selective killing of LOI cells, and thus prevention of epigenetically controlled cancers. These findings suggest a framework for understanding epigenetically modified cell signaling.
Collapse
Affiliation(s)
- Kiran G Vanaja
- Yale Systems Biology Institute and Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine and Whiting School of Engineering, Baltimore, MD 21205, USA
| | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine and Whiting School of Engineering, Baltimore, MD 21205, USA
| | - Andrew P Feinberg
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine and Whiting School of Engineering, Baltimore, MD 21205, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | - Andre Levchenko
- Yale Systems Biology Institute and Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine and Whiting School of Engineering, Baltimore, MD 21205, USA.
| |
Collapse
|
19
|
Fanzani A, Poli M. Iron, Oxidative Damage and Ferroptosis in Rhabdomyosarcoma. Int J Mol Sci 2017; 18:ijms18081718. [PMID: 28783123 PMCID: PMC5578108 DOI: 10.3390/ijms18081718] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 12/14/2022] Open
Abstract
Recent data have indicated a fundamental role of iron in mediating a non-apoptotic and non-necrotic oxidative form of programmed cell death termed ferroptosis that requires abundant cytosolic free labile iron to promote membrane lipid peroxidation. Different scavenger molecules and detoxifying enzymes, such as glutathione (GSH) and glutathione peroxidase 4 (GPX4), have been shown to overwhelm or exacerbate ferroptosis depending on their expression magnitude. Ferroptosis is emerging as a potential weapon against tumor growth since it has been shown to potentiate cell death in some malignancies. However, this mechanism has been poorly studied in Rhabdomyosarcoma (RMS), a myogenic tumor affecting childhood and adolescence. One of the main drivers of RMS genesis is the Retrovirus Associated DNA Sequences/Extracellular signal Regulated Kinases (RAS/ERK)signaling pathway, the deliberate activation of which correlates with tumor aggressiveness and oxidative stress levels. Since recent studies have indicated that treatment with oxidative inducers can significantly halt RMS tumor progression, in this review we covered different aspects, ranging from iron metabolism in carcinogenesis and tumor growth, to mechanisms of iron-mediated cell death, to highlight the potential role of ferroptosis in counteracting RMS growth.
Collapse
Affiliation(s)
- Alessandro Fanzani
- Department of Molecular and Translational Medicine (DMMT), University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Maura Poli
- Department of Molecular and Translational Medicine (DMMT), University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| |
Collapse
|
20
|
Yu Y, Fu L, Wang S, Jin Y, Han S, Chu P, Lu J, Guo Y, He L, Ni X. Investigation of IGF2, IGFBP2 and p63 proteins in rhabdomyosarcoma tumors. Growth Horm IGF Res 2017; 33:17-22. [PMID: 28129571 DOI: 10.1016/j.ghir.2017.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 01/12/2017] [Accepted: 01/12/2017] [Indexed: 12/21/2022]
Abstract
UNLABELLED Many efforts have been made to address involvement of the insulin-like growth-factor (IGF) pathway in rhabdomyosarcoma (RMS) pathogenesis, but the actual role of IGF in RMS is still controversial. OBJECTIVE To investigate the implications of IGF2, IGFBP2 and p63 in RMS, and further explored their potential interaction. DESIGN A total of 114 specimens of RMS along with clinic-pathologic characteristics were collected from the year of 2003 to 2013. Protein abundance was detected by immunohistochemical staining, potential relationships between protein levels and clinic-pathological parameters were applied using correlation analysis. RESULTS The results showed positive correlation between IGFBP2 and p63 (r=0.271, p=0.003), suggesting that the interaction of IGFBP2 and p63 might account for the pathogenesis of RMS. In the subtype analysis, positive correlation was still found in embryonal rhabdomyosarcoma (ERMS, r=0.214, p=0.034) and alveolar rhabdomyosarcoma (ARMS, r=0.498, p=0.048). By focusing on the interaction of IGF pathway and p63, our results reveal additional signs to elucidate difference of pathogenesis and severity between ERMS and ARMS. CONCLUSIONS The present study provides novel evidence to elucidate RMS pathogenesis and may be beneficial to clinical diagnosis and therapy for RMS.
Collapse
Affiliation(s)
- Yongbo Yu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Libing Fu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Shen Wang
- Clinical Diagnostic Center, 302nd Hospital of the People's Liberation Army, Beijing, China
| | - Yaqiong Jin
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Shujing Han
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Ping Chu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Jie Lu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yongli Guo
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Lejian He
- Department of Pathology, Beijing Children's Hospital, Capital Medical University, Beijing, China.
| | - Xin Ni
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China; Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
21
|
Novel Roles for Staufen1 in Embryonal and Alveolar Rhabdomyosarcoma via c-myc-dependent and -independent events. Sci Rep 2017; 7:42342. [PMID: 28211476 PMCID: PMC5314364 DOI: 10.1038/srep42342] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/09/2017] [Indexed: 01/19/2023] Open
Abstract
Rhabdomyosarcoma is the most common soft tissue sarcoma in children and young adults. Rhabdomyosarcomas are skeletal muscle-like tumours that typically arise in muscle beds, and express key myogenic regulatory factors. However, their developmental program remains blocked in the proliferative phase with cells unable to exit the cell cycle to fuse into myotubes. Recently, we uncovered a key role for the RNA-binding protein Staufen1 during myogenic differentiation through the regulation of c-myc translation. Given the known implication of c-myc in rhabdomyosarcoma, we hypothesized in the current work that Staufen1 controls rhabdomyosarcoma tumorigenesis. Here, we report for the first time the novel role of Staufen1 in cancer, specifically in rhabdomyosarcoma. We demonstrate that Staufen1 is markedly upregulated in human rhabdomyosarcoma tumours and cell lines as compared to normal skeletal muscle. Moreover, we show that Staufen1 promotes the tumorigenesis of embryonal and alveolar rhabdomyosarcoma subtypes both in cell culture and in animal models. Finally, our data demonstrate that Staufen1 has differential roles in embryonal versus alveolar rhabdomyosarcoma through the control of proliferative and apoptotic pathways, respectively. Together, these results provide the first evidence for Staufen1’s direct implication in cancer biology. Accordingly, Staufen1 thus represents a novel target for the development of future therapeutic strategies for rhabdomyosarcoma.
Collapse
|
22
|
Abstract
Rhabdomyosarcoma (RMS) is a myogenic tumor classified as the most frequent soft tissue sarcoma affecting children and adolescents. The histopathological classification includes 5 different histotypes, with 2 most predominant referred as to embryonal and alveolar, the latter being characterized by adverse outcome. The current molecular classification identifies 2 major subsets, those harboring the fused Pax3-Foxo1 transcription factor generating from a recurrent specific translocation (fusion-positive RMS), and those lacking this signature but harboring mutations in the RAS/PI3K/AKT signaling axis (fusion-negative RMS). Since little attention has been devoted to RMS metabolism until now, in this review we summarize the "state of art" of metabolism and discuss how some of the molecular signatures found in this cancer, as observed in other more common tumors, can predict important metabolic challenges underlying continuous cell growth, oxidative stress resistance and metastasis, which could be the subject of future targeted therapies.
Collapse
Affiliation(s)
- Eugenio Monti
- a Department of Molecular and Translational Medicine , University of Brescia , Brescia , Italy
| | - Alessandro Fanzani
- a Department of Molecular and Translational Medicine , University of Brescia , Brescia , Italy.,b Interuniversity Institute of Myology , Rome , Italy
| |
Collapse
|
23
|
Robbins KM, Stabley DL, Holbrook J, Sahraoui R, Sadreameli A, Conard K, Baker L, Gripp KW, Sol-Church K. Paternal uniparental disomy with segmental loss of heterozygosity of chromosome 11 are hallmark characteristics of syndromic and sporadic embryonal rhabdomyosarcoma. Am J Med Genet A 2016; 170:3197-3206. [PMID: 27589201 DOI: 10.1002/ajmg.a.37949] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 08/14/2016] [Indexed: 01/22/2023]
Abstract
Costello syndrome (CS) arises from a typically paternally derived germline mutation in the proto-oncogene HRAS, and is considered a rasopathy. CS results in failure-to-thrive, intellectual disabilities, short stature, coarse facial features, skeletal abnormalities, congenital heart disease, and a predisposition for cancer, most commonly embryonal rhabdomyosarcoma (ERMS). The goal of this study was to characterize CS ERMS at the molecular level and to determine how divergent it is from sporadic ERMS. We characterized eleven ERMS tumors from eight unrelated CS patients, carrying paternally derived HRAS c.34G>A (p.Gly12Ser; 6) or c.35G>C (p.Gly12Ala; 2) mutations. Loss of heterozygosity (LOH) was evaluated in all CS ERMS by microarray and/or short tandem repeat (STR) markers spanning the entire chromosome 11. Eight CS ERMS tumors displayed complete paternal uniparental disomy of chromosome 11 (pUPD11), whereas two displayed UPD only at 11p and a second primary ERMS tumor showed UPD limited to 11p15.5, the classical hallmark for ERMS. Three sporadic ERMS cell lines (RD, Rh36, Rh18) and eight formalin fixed paraffin embedded (FFPE) ERMS tumors were also analyzed for RAS mutations and LOH status. We found a higher than anticipated frequency of RAS mutations (HRAS or NRAS; 50%) in sporadic ERMS cell lines/tumors. Unexpectedly, complete uniparental disomy (UPD11) was observed in five specimens, while the other six showed LOH extending across the p and q arms of chromosome 11. In this study, we are able to clearly demonstrate complete UPD11 in both syndromic and sporadic ERMS. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Katherine M Robbins
- Department of Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware.,Biological Sciences, University of Delaware, Newark, Delaware
| | - Deborah L Stabley
- Department of Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Jennifer Holbrook
- Department of Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Rebecca Sahraoui
- Department of Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware.,Delaware State University, Dover, Delaware
| | - Alexa Sadreameli
- Department of Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Katrina Conard
- Department of Pathology, Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Laura Baker
- Division of Medical Genetics, Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Karen W Gripp
- Division of Medical Genetics, Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Katia Sol-Church
- Department of Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware
| |
Collapse
|
24
|
Poniewierska-Baran A, Schneider G, Sun W, Abdelbaset-Ismail A, Barr FG, Ratajczak MZ. Human rhabdomyosarcoma cells express functional pituitary and gonadal sex hormone receptors: Therapeutic implications. Int J Oncol 2016; 48:1815-24. [PMID: 26983595 PMCID: PMC4809652 DOI: 10.3892/ijo.2016.3439] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/20/2016] [Indexed: 12/16/2022] Open
Abstract
Evidence has accumulated that sex hormones play an important role in several types of cancer. Because they are also involved in skeletal muscle development and regeneration, we were therefore interested in their potential involvement in the pathogenesis of human rhabdomyosarcoma (RMS), a skeletal muscle tumor. In the present study, we employed eight RMS cell lines (three fusion positive and five fusion negative RMS cell lines) and mRNA samples obtained from RMS patients. The expression of sex hormone receptors was evaluated by RT-PCR and their functionality by chemotaxis, adhesion and direct cell proliferation assays. We report here for the first time that follicle-stimulating hormone (FSH) and luteinizing hormone (LH) receptors are expressed in established human RMS cell lines as well as in primary tumor samples isolated from RMS patients. We also report that human RMS cell lines responded both to pituitary and gonadal sex hormone stimulation by enhanced proliferation, chemotaxis, cell adhesion and phosphorylation of MAPKp42/44 and AKT. In summary, our results indicate that sex hormones are involved in the pathogenesis and progression of RMS, and therefore, their therapeutic application should be avoided in patients that have been diagnosed with RMS.
Collapse
Affiliation(s)
- Agata Poniewierska-Baran
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Gabriela Schneider
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Wenyue Sun
- Department of Regenerative Medicine, Warsaw Medical University, Warsaw, Poland
| | - Ahmed Abdelbaset-Ismail
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Frederic G Barr
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| |
Collapse
|
25
|
Faggi F, Codenotti S, Poliani PL, Cominelli M, Chiarelli N, Colombi M, Vezzoli M, Monti E, Bono F, Tulipano G, Fiorentini C, Zanola A, Lo HP, Parton RG, Keller C, Fanzani A. MURC/cavin-4 Is Co-Expressed with Caveolin-3 in Rhabdomyosarcoma Tumors and Its Silencing Prevents Myogenic Differentiation in the Human Embryonal RD Cell Line. PLoS One 2015; 10:e0130287. [PMID: 26086601 PMCID: PMC4472524 DOI: 10.1371/journal.pone.0130287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 05/19/2015] [Indexed: 12/28/2022] Open
Abstract
The purpose of this study was to investigate whether MURC/cavin-4, a plasma membrane and Z-line associated protein exhibiting an overlapping distribution with Caveolin-3 (Cav-3) in heart and muscle tissues, may be expressed and play a role in rhabdomyosarcoma (RMS), an aggressive myogenic tumor affecting childhood. We found MURC/cavin-4 to be expressed, often concurrently with Cav-3, in mouse and human RMS, as demonstrated through in silico analysis of gene datasets and immunohistochemical analysis of tumor samples. In vitro expression studies carried out using human cell lines and primary mouse tumor cultures showed that expression levels of both MURC/cavin-4 and Cav-3, while being low or undetectable during cell proliferation, became robustly increased during myogenic differentiation, as detected via semi-quantitative RT-PCR and immunoblotting analysis. Furthermore, confocal microscopy analysis performed on human RD and RH30 cell lines confirmed that MURC/cavin-4 mostly marks differentiated cell elements, colocalizing at the cell surface with Cav-3 and labeling myosin heavy chain (MHC) expressing cells. Finally, MURC/cavin-4 silencing prevented the differentiation in the RD cell line, leading to morphological cell impairment characterized by depletion of myogenin, Cav-3 and MHC protein levels. Overall, our data suggest that MURC/cavin-4, especially in combination with Cav-3, may play a consistent role in the differentiation process of RMS.
Collapse
Affiliation(s)
- Fiorella Faggi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
- Interuniversity Institute of Myology (IIM), Rome, Italy
| | - Silvia Codenotti
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
- Interuniversity Institute of Myology (IIM), Rome, Italy
| | - Pietro Luigi Poliani
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Manuela Cominelli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Nicola Chiarelli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Marina Colombi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Marika Vezzoli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Eugenio Monti
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Federica Bono
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Giovanni Tulipano
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Chiara Fiorentini
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Alessandra Zanola
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Harriet P. Lo
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Robert G. Parton
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Charles Keller
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, United States of America
- Children’s Cancer Therapy Development Institute, Fort Collins, CO, United States of America
| | - Alessandro Fanzani
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
- Interuniversity Institute of Myology (IIM), Rome, Italy
- * E-mail:
| |
Collapse
|
26
|
Wang X, Li G, Koul S, Ohki R, Maurer M, Borczuk A, Halmos B. PHLDA2 is a key oncogene-induced negative feedback inhibitor of EGFR/ErbB2 signaling via interference with AKT signaling. Oncotarget 2015; 9:24914-24926. [PMID: 29861842 PMCID: PMC5982771 DOI: 10.18632/oncotarget.3674] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 03/24/2015] [Indexed: 11/25/2022] Open
Abstract
Pleckstrin homology-like domain family A member 2 (PHLDA2) is located within the tumor suppressor region of 11p15, and its expression is suppressed in several malignant tumor types. We recently identified PHLDA2 as a robustly induced, novel downstream target of oncogenic EGFR/ErbB2 signaling. In an immunohistochemical study, we find that PHLDA2 protein expression correlates positively with AKT activation in human lung cancers corroborating our data that PHLDA2 is induced upon oncogenic activation and might serve as a biomarker for AKT pathway activation. We show that PHLDA2 overexpression inhibits AKT phosphorylation while decreased PHLDA2 expression increases AKT activity. We further find that PHLDA2 competes with the PH domain of AKT for binding of membrane lipids, thereby directly inhibiting AKT translocation to the cellular membrane and subsequent activation. Indeed, PHLDA2 overexpression suppresses anchorage-independent cell growth and decreased PHLDA2 expression results in increased cell proliferation and reduced sensitivity to targeted agents of EGFR/ErbB2-driven cancers demonstrating functional relevance for this interaction. In summary, our studies demonstrate that PHLDA2 is strongly regulated by EGFR/ErbB2 signaling and inhibits cell proliferation via repressing AKT activation in lung cancers in a negative feedback loop. We highlight a novel action for PHLDA2 as a potential biomarker for AKT pathway activation.
Collapse
Affiliation(s)
- Xiaoqi Wang
- Division of Hematology/Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Guangyuan Li
- Division of Hematology/Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA.,Department of Pathology, University Hospitals of Case Medical Center, Case Western Reserve University, Cleveland, OH, USA
| | - Sanjay Koul
- Division of Hematology/Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Rieko Ohki
- Radiobiology Division, National Cancer Center Research Institute, Tokyo, Japan
| | - Matthew Maurer
- Division of Hematology/Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Alain Borczuk
- Department of Pathology, Columbia University Medical Center, New York, NY, USA
| | - Balazs Halmos
- Division of Hematology/Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
27
|
Tarnowski M, Tkacz M, Czerewaty M, Poniewierska-Baran A, Grymuła K, Ratajczak MZ. 5‑Azacytidine inhibits human rhabdomyosarcoma cell growth by downregulating insulin‑like growth factor 2 expression and reactivating the H19 gene product miR‑675, which negatively affects insulin‑like growth factors and insulin signaling. Int J Oncol 2015; 46:2241-50. [PMID: 25707431 DOI: 10.3892/ijo.2015.2906] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 12/29/2014] [Indexed: 11/05/2022] Open
Abstract
Insulin-like growth factor 2 (IGF2) and 1 (IGF1) and insulin (INS) promote proliferation of rhabdomyosarcoma (RMS) cells by interacting with the insulin-like growth factor 1 receptor (IGF1R) and the insulin receptor (INSR). Loss of imprinting (LOI) by DNA hypermethylation at the differentially methylated region (DMR) for the IGF2‑H19 locus is commonly observed in RMS cells and results in an increase in the expression of proliferation-promoting IGF2 and downregulation of proliferation-inhibiting non-coding H19 miRNAs. One of these miRNAs, miR‑675, has been reported in murine cells to be a negative regulator of IGF1R expression. To better address the role of IGF2 and 1, as well as INS signaling in the pathogenesis of RMS and the involvement of LOI at the IGF2‑H19 locus, we employed the DNA demethylating agent 5‑azacytidine (AzaC). We observed that AzaC‑mediated demethylation of the DMR at the IGF2‑H19 locus resulted in downregulation of IGF2 and an increase in the expression of H19. This epigenetic change resulted in a decrease in RMS proliferation due to downregulation of IGF2 and, IGF1R expression in an miR‑675‑dependent manner. Interestingly, we observed that miR‑675 not only inhibited the expression of IGF1R in a similar manner in human and murine cells, but we also observed its negative effect on the expression of the INSR. These results confirm the crucial role of LOI at the IGF2‑H19 DMR in the pathogenesis of RMS and are relevant to the development of new treatment strategies.
Collapse
Affiliation(s)
- Maciej Tarnowski
- Department of Physiology Pomeranian Medical University, Szczecin, Poland
| | - Marta Tkacz
- Department of Physiology Pomeranian Medical University, Szczecin, Poland
| | - Michał Czerewaty
- Department of Physiology Pomeranian Medical University, Szczecin, Poland
| | | | - Katarzyna Grymuła
- Department of Physiology Pomeranian Medical University, Szczecin, Poland
| | - Mariusz Z Ratajczak
- Stem Cell Biology Program at the James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| |
Collapse
|
28
|
Arul ASKJ, Verma S, Arul ASSJ, Verma R. Oral rhabdomyosarcoma-embryonal subtype in an adult: A rarity. J Nat Sci Biol Med 2014; 5:222-5. [PMID: 24678235 PMCID: PMC3961943 DOI: 10.4103/0976-9668.127347] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Rhabdomyosarcoma is a malignant tumor composed of neoplastic mesenchymal cells, with varying degrees of striated muscle cell differentiation. With most cases occurring in children younger than 10 years, it is remarkably rare in adults. Further in adults, the typical pediatric rhabdomyosarcoma variants (embryonal and alveolar sub-types) occur less frequently and exhibit predilection for viscera followed by the head and neck region. A rare case of embryonal rhabdomyosarcoma arising from the buccal mucosa in a 36-year old male patient is herewith reported. Recognition of the correct diagnosis and histological sub-type is of critical importance in the therapy of this disease, since the treatment is not uniform in the literature because of the rarity of this neoplasm in the adult population.
Collapse
Affiliation(s)
- A. Sri Kennath J. Arul
- Department of Oral and Maxillofacial Pathology, Best Dental Science College, Madurai, Tamil Nadu, India
| | - Sonika Verma
- Department of Oral and Maxillofacial Pathology, Best Dental Science College, Madurai, Tamil Nadu, India
| | | | | |
Collapse
|
29
|
Dynkevich Y, Rother KI, Whitford I, Qureshi S, Galiveeti S, Szulc AL, Danoff A, Breen TL, Kaviani N, Shanik MH, Leroith D, Vigneri R, Koch CA, Roth J. Tumors, IGF-2, and hypoglycemia: insights from the clinic, the laboratory, and the historical archive. Endocr Rev 2013; 34:798-826. [PMID: 23671155 DOI: 10.1210/er.2012-1033] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tumors of mesenchymal and epithelial origin produce IGF-2, which activates pathways in the tumors. In a minority of patients, the tumors (hepatomas, fibromas, and fibrosarcomas are the most common among many) release into the circulation enough IGF-2-related peptides to mimic the fasting hypoglycemia characteristic of patients with insulin-producing islet-cell tumors. Rarely, markedly elevated IGF-2 levels produce somatic changes suggestive of acromegaly. Typically, the elevated IGF-2 levels are associated with suppressed plasma levels of insulin, IGF-1, and GH. Complicating the pathophysiology are the IGF binding proteins (IGFBPs) that can bind IGF-2 and IGF-1, modifying hormone metabolism and action. IGFBP concentrations are often altered in the presence of these tumors. At the cellular level, the 3 hormone-related ligands, IGF-2, IGF-1, and insulin, all bind to 4 (or more) types of IGF-1 receptor (IGF-1R) and insulin receptor (IR). Each receptor has its own characteristic affinity for each ligand, a tyrosine kinase, and overlapping profiles of action in the target cells. The IGF-2R, in addition to binding mannose-6-phosphate-containing proteins, provides an IGF-2 degradation pathway. Recent evidence suggests IGF-2R involvement also in signal transduction. Surgery, the treatment of choice, can produce a cure. For patients not cured by surgery, multiple therapies exist, for the tumor and for hypoglycemia. Potential future therapeutic approaches are sketched. From 1910 to 1930, hypoglycemia, insulin, insulinomas, and non-islet-cell tumors were recognized. The latter third of the century witnessed the emergence of the immunoassay for insulin; the IGFs, their binding proteins, and assays to measure them; and receptors for the insulin-related peptides as well as the intracellular pathways beyond the receptor. In closing, we replace non-islet-cell tumor hypoglycemia, an outdated and misleading label, with IGF-2-oma, self-explanatory and consistent with names of other hormone-secreting tumors.
Collapse
Affiliation(s)
- Yevgeniya Dynkevich
- MD, FACP, Investigator, Feinstein Institute for Medical Research, Laboratory of Diabetes and Diabetes-Related Research, 350 Community Drive, Manhasset, NY 11030.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Garavelli L, Piemontese MR, Cavazza A, Rosato S, Wischmeijer A, Gelmini C, Albertini E, Albertini G, Forzano F, Franchi F, Carella M, Zelante L, Superti-Furga A. Multiple tumor types including leiomyoma and Wilms tumor in a patient with Gorlin syndrome due to 9q22.3 microdeletion encompassing the PTCH1 and FANC-C loci. Am J Med Genet A 2013; 161A:2894-901. [PMID: 24124115 DOI: 10.1002/ajmg.a.36259] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 08/30/2013] [Indexed: 01/05/2023]
Abstract
Gorlin syndrome or nevoid basal cell carcinoma syndrome (NBCCS) is an autosomal dominant condition mainly characterized by the development of mandibular keratocysts which often have their onset during the second decade of life and/or multiple basal cell carcinoma (BCC) normally arising during the third decade. Cardiac and ovarian fibromas can be found. Patients with NBCCS develop the childhood brain malignancy medulloblastoma (now often called primitive neuro-ectodermal tumor [PNET]) in 5% of cases. The risk of other malignant neoplasms is not clearly increased, although lymphoma and meningioma can occur in this condition. Wilms tumor has been mentioned in the literature four times. We describe a patient with a 10.9 Mb 9q22.3 deletion spanning 9q22.2 through 9q31.1 that includes the entire codifying sequence of the gene PTCH1, with Wilms tumor, multiple neoplasms (lung, liver, mesenteric, gastric and renal leiomyomas, lung typical carcinoid tumor, adenomatoid tumor of the pleura) and a severe clinical presentation. We propose including leiomyomas among minor criteria of the NBCCS.
Collapse
Affiliation(s)
- Livia Garavelli
- Clinical Genetics Unit, Obstetric and Paediatric Department, Istituto di Ricovero e Cura a Carattere Scientifico, Arcispedale S Maria Nuova, Reggio Emilia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Mentrikoski MJ, Golden W, Bourne TD, Legallo R. Spindle cell rhabdomyosarcoma of the neck with t(6;8) translocation: report of a case and literature review. Pediatr Dev Pathol 2013; 16:35-8. [PMID: 23113671 DOI: 10.2350/12-04-1180-cr.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Spindle cell rhabdomyosarcoma is an uncommon subtype of embryonal rhabdomyosarcoma. Found almost exclusively in children, these tumors are classically located in the paratesticular and head and neck regions. Morphologically these lesions can resemble several other benign or malignant soft-tissue spindle cell lesions, especially smooth muscle or myofibroblastic tumors, and thus immunohistochemical staining is often needed to prove skeletal muscle differentiation. Although there is extensive literature reporting the genetics of embryonal rhabdomyosarcoma, little is reported specific to the spindle cell subtype. Below we present the case of a 7-month-old male presenting with a large posterior neck mass that was diagnosed as spindle cell rhabdomyosarcoma. Karyotype evaluation revealed a t(6;8) (p12;q11.2) chromosomal translocation within the lesion. We review the histologic and immunohistochemical diagnosis of these tumors and discuss the genetics of rhabdomyoscarcomas.
Collapse
Affiliation(s)
- Mark J Mentrikoski
- Department of Pathology, University of Virginia, 1215 Lee Street Box 800214, Charlottesville, VA 22903, USA.
| | | | | | | |
Collapse
|
32
|
Simon-Keller K, Barth S, Vincent A, Marx A. Targeting the fetal acetylcholine receptor in rhabdomyosarcoma. Expert Opin Ther Targets 2012; 17:127-38. [PMID: 23231343 DOI: 10.1517/14728222.2013.734500] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood and adolescence. Recent efforts to enhance overall survival of patients with clinically advanced RMS have failed and there is a demand for conceptually novel treatments. Immune therapeutic options targeting the fetal nicotinic acetylcholine receptor (fnAChR), which is broadly expressed on RMS, are novel approaches to overcome the therapeutic resistance of RMS. Expression of the fnAChR is restricted to developing fetal muscles, some apparently dispensable ocular muscle fibers and thymic myoid cells. Therefore, after-birth fnAChR is a tumor-associated and almost tumor-specific antigen on RMS cells. AREAS COVERED This review gives an overview on nAChR function and expression pattern in RMS tumor cells, and deals with the immunological significance of fnAChR-expressing cells, including the risk of anti-nAChR autoimmunity as a potential side effect of fnAChR-directed immunotherapies. The article also addresses the advantages and disadvantages of vaccination strategies, immunotoxins and chimeric T cells targeting the fnAChR. EXPERT OPINION Finally, we suggest technical and biological strategies to improve the available immunotherapeutic tools including increasing the in vivo expression of the target fnAChR on RMS cells.
Collapse
Affiliation(s)
- Katja Simon-Keller
- University Medical Centre Mannheim, University of Heidelberg, Institute of Pathology, Theodor-Kutzer-Ufer 1-3, D-68135 Mannheim, Germany.
| | | | | | | |
Collapse
|
33
|
Tuna M, Ju Z, Amos CI, Mills GB. Soft tissue sarcoma subtypes exhibit distinct patterns of acquired uniparental disomy. BMC Med Genomics 2012; 5:60. [PMID: 23217126 PMCID: PMC3541987 DOI: 10.1186/1755-8794-5-60] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 11/24/2012] [Indexed: 01/09/2023] Open
Abstract
Background Soft tissue sarcomas (STS) are heterogeneous mesenchymal tumors with diverse subtypes. STS can be classified into two main categories according to the type of genomic alteration: recurrent translocation driven STS, and non-recurrent translocations. However, little has known about acquired uniparental disomy in STS. Methods In this study, we analyzed SNP microarray data to determine the frequency and distribution patterns of acquired uniparental disomy (aUPD) in major soft tissue sarcoma (STS) subtypes using CNAG and R softwares. Results We identified recurrent aUPD regions specific to alveolar rhabdomyosarcoma with the most frequent at 11p15.4, gastrointestinal stromal tumor at 1p36.11-p35.3, leiomyosarcoma at 17p13.3-p13.1, myxofibrosarcoma at 1p35.1-p34.2 and 16q23.3-q24.1, and pleomorphic liposarcoma at 13q13.2-q13.3 and 13q14.11-q14.2. In contrast, specific recurrent aUPD regions were not identified in dedifferentiated liposarcoma, Ewing sarcoma, myxoid/round cell liposarcoma, and synovial sarcoma. Strikingly total, centromeric and segmental aUPD regions are more frequent in STS that do not exhibit recurrent translocation events. Conclusions Our study yields a detailed map of aUPD across 9 diverse STS subtypes and suggests the potential location of several novel tumor suppressor genes and oncogenes.
Collapse
Affiliation(s)
- Musaffe Tuna
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA.
| | | | | | | |
Collapse
|
34
|
Marshall AD, Grosveld GC. Alveolar rhabdomyosarcoma - The molecular drivers of PAX3/7-FOXO1-induced tumorigenesis. Skelet Muscle 2012. [PMID: 23206814 PMCID: PMC3564712 DOI: 10.1186/2044-5040-2-25] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Rhabdomyosarcoma is a soft tissue sarcoma arising from cells of a mesenchymal or skeletal muscle lineage. Alveolar rhabdomyosarcoma (ARMS) is more aggressive than the more common embryonal (ERMS) subtype. ARMS is more prone to metastasis and carries a poorer prognosis. In contrast to ERMS, the majority of ARMS tumors carry one of several characteristic chromosomal translocations, such as t(2;13)(q35;q14), which results in the expression of a PAX3-FOXO1 fusion transcription factor. In this review we discuss the genes that cooperate with PAX3-FOXO1, as well as the target genes of the fusion transcription factor that contribute to various aspects of ARMS tumorigenesis. The characterization of these pathways will lead to a better understanding of ARMS tumorigenesis and will allow the design of novel targeted therapies that will lead to better treatment for this aggressive pediatric tumor.
Collapse
Affiliation(s)
- Amy D Marshall
- Department of Genetics, St Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | | |
Collapse
|
35
|
de Souza RR, Oliveira ID, Caran EMM, Alves MTDS, Abib S, Toledo SRC. Investigation of PAX3/7-FKHR fusion genes and IGF2 gene expression in rhabdomyosarcoma tumors. Growth Horm IGF Res 2012; 22:245-249. [PMID: 23079386 DOI: 10.1016/j.ghir.2012.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 07/06/2012] [Accepted: 07/24/2012] [Indexed: 12/29/2022]
Abstract
The purpose of our study was to investigate the prevalence of the PAX3/7-FKHR fusion genes and quantify the IGF2 gene expression in rhabdomyosarcoma (RMS) samples. Soft tissue sarcomas account 5% of childhood cancers and 50% of them are RMS. Morphological evaluation of pediatric RMS has defined two histological subtypes, embryonal (ERMS) and alveolar (ARMS). Chromosomal analyses have demonstrated two translocations associated with ARMS, resulting in the PAX3/7-FKHR rearrangements. Reverse transcriptase-polymerase chain reaction (RT-PCR) is extremely useful in the diagnosis of ARMS positive for these rearrangements. Additionally, several studies have shown a significant involvement of IGF pathway in the pathogenesis of RMS. The presence of PAX3/7-FKHR gene fusions was studied in 25 RMS samples from patients attending the IOP-GRAACC/UNIFESP and three RMS cell lines by RT-PCR. IGF2 gene expression was quantified by qPCR and related with clinic pathological parameters. Of the 25 samples, nine (36%) were ARMS and 16 (64%) were ERMS. PAX3/7-FKHR gene fusions expression was detected in 56% of ARMS tumor samples. IGF2 overexpression was observed in 80% of samples and could indicate an important role of this pathway in RMS biology.
Collapse
Affiliation(s)
- Robson Ramos de Souza
- Pediatric Oncology Institute (GRAACC), Department of Pediatrics, Federal University of São Paulo, São Paulo, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
36
|
Zanola A, Rossi S, Faggi F, Monti E, Fanzani A. Rhabdomyosarcomas: an overview on the experimental animal models. J Cell Mol Med 2012; 16:1377-91. [PMID: 22225829 PMCID: PMC3823208 DOI: 10.1111/j.1582-4934.2011.01518.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Rhabdomyosarcomas (RMS) are aggressive childhood soft-tissue malignancies deriving from mesenchymal progenitors that are committed to muscle-specific lineages. Despite the histopathological signatures associated with three main histological variants, termed embryonal, alveolar and pleomorphic, a plethora of genetic and molecular changes are recognized in RMS. Over the years, exposure to carcinogens or ionizing radiations and gene-targeting approaches in vivo have greatly contributed to disclose some of the mechanisms underlying RMS onset. In this review, we describe the principal distinct features associated with RMS variants and focus on the current available experimental animal models to point out the molecular determinants cooperating with RMS development and progression.
Collapse
Affiliation(s)
- Alessandra Zanola
- Department of Biomedical Sciences and Biotechnologies, Interuniversity Institute of Myology (IIM), University of Brescia, Brescia, Italy
| | | | | | | | | |
Collapse
|
37
|
Hosur V, Kavirayani A, Riefler J, Carney LMB, Lyons B, Gott B, Cox GA, Shultz LD. Dystrophin and dysferlin double mutant mice: a novel model for rhabdomyosarcoma. Cancer Genet 2012; 205:232-41. [PMID: 22682622 DOI: 10.1016/j.cancergen.2012.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 02/29/2012] [Accepted: 03/30/2012] [Indexed: 01/07/2023]
Abstract
Although researchers have yet to establish a link between muscular dystrophy (MD) and sarcomas in human patients, literature suggests that the MD genes dystrophin and dysferlin act as tumor suppressor genes in mouse models of MD. For instance, dystrophin-deficient mdx and dysferlin-deficient A/J mice, models of human Duchenne MD and limb-girdle MD type 2B, respectively, develop mixed sarcomas with variable penetrance and latency. To further establish the correlation between MD and sarcoma development, and to test whether a combined deletion of dystrophin and dysferlin exacerbates MD and augments the incidence of sarcomas, we generated dystrophin and dysferlin double mutant mice (STOCK-Dysf(prmd)Dmd(mdx-5Cv)). Not surprisingly, the double mutant mice develop severe MD symptoms and, moreover, develop rhabdomyosarcoma (RMS) at an average age of 12 months, with an incidence of >90%. Histological and immunohistochemical analyses, using a panel of antibodies against skeletal muscle cell proteins, electron microscopy, cytogenetics, and molecular analysis reveal that the double mutant mice develop RMS. The present finding bolsters the correlation between MD and sarcomas, and provides a model not only to examine the cellular origins but also to identify mechanisms and signal transduction pathways triggering development of RMS.
Collapse
|
38
|
Tarnowski M, Schneider G, Amann G, Clark G, Houghton P, Barr FG, Kenner L, Ratajczak MZ, Kucia M. RasGRF1 regulates proliferation and metastatic behavior of human alveolar rhabdomyosarcomas. Int J Oncol 2012; 41:995-1004. [PMID: 22752028 PMCID: PMC3582851 DOI: 10.3892/ijo.2012.1536] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 05/25/2012] [Indexed: 11/05/2022] Open
Abstract
The involvement of the Ras superfamily of GTPases in the pathogenesis of rhabdomysarcoma (RMS) is not well understood. While mutant H-Ras leads to embryonal RMS (ERMS) formation in experimental animals and in Costello syndrome patients, no data exists on the potential role of Ras GTPases in the pathogenesis of alveolar RMS (ARMS). To address this issue better, we focused on the role of the GTP exchange factor RasGRF1 in this process. We observed that, in comparison to normal skeletal muscle cells, RasGRF1 mRNA is upregulated in the majority of human ARMS cell lines and subsequently confirmed its high expression in patient samples. By employing confocal microscopy analysis, we observed RasGRF1 accumulation in cell filopodia, which suggests its involvement in ARMS cell migration. Furthermore, we observed that RasGRF1 becomes phosphorylated in ARMS after stimulation by several pro-metastatic factors, such as SDF-1 and HGF/SF, as well as after exposure to growth-promoting Igf-2 and insulin. More importantly, activation of RasGRF1 expression correlated with activation of p42/44 MAPK and AKT. When the expression of RasGRF1 was down-regulated in ARMS cells by an shRNA strategy, these RasGRF1-kd RMS cells did not respond to stimulation by SDF-1, HGF/SF, Igf-2 or insulin by phosphorylation of p42/44 MAPK and AKT and lost their chemotactic responsiveness; however, their adhesion was not affected. We also observed that RasGRF1-kd ARMS cells proliferated at a very low rate in vitro, and, more importantly, after inoculation into immunodeficient SCID/beige inbred mice they formed significantly smaller tumors. We conclude that RasGRF1 plays an important role in ARMS pathogenesis and is a new potential therapeutic target to inhibit ARMS growth.
Collapse
Affiliation(s)
- Maciej Tarnowski
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Neoplasms of striated and smooth muscle in children are a diverse group of neoplasms that have some unique aspects in contrast to these tumors in adults. Rhabdomyosarcoma is the most common soft tissue sarcoma of infancy and childhood and is relatively common in adolescents. In contrast, smooth muscle tumors are relatively rare, and the various types of rhabdomyoma and smooth and skeletal muscle hamartomas are very uncommon. In recent years, the understanding of the pathologic and genetic aspects of rhabdomyosarcoma has been enhanced by adjunct techniques, such as immunohistochemistry and cytogenetic or molecular genetic analysis. The current classification of rhabdomyosarcoma emphasizes the histologic-prognostic correlations. This article reviews the clinicopathologic features of striated and smooth muscle tumors with an emphasis on the unique aspects of these neoplasms in children and adolescents and the differential diagnosis.
Collapse
Affiliation(s)
- David M Parham
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | | | | |
Collapse
|
40
|
Van Gaal JC, De Bont ES, Kaal SE, Versleijen-Jonkers Y, van der Graaf WT. Building the bridge between rhabdomyosarcoma in children, adolescents and young adults: The road ahead. Crit Rev Oncol Hematol 2012; 82:259-79. [DOI: 10.1016/j.critrevonc.2011.06.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 06/29/2011] [Accepted: 06/30/2011] [Indexed: 01/02/2023] Open
|
41
|
Abstract
Caveolins are scaffolding proteins that play a pivotal role in numerous processes, including caveolae biogenesis, vesicular transport, cholesterol homeostasis and regulation of signal transduction. There are three different isoforms (Cav-1, -2 and -3) that form homo- and hetero-aggregates at the plasma membrane and modulate the activity of a number of intracellular binding proteins. Cav-1 and Cav-3, in particular, are respectively expressed in the reserve elements (e.g. satellite cells) and in mature myofibres of skeletal muscle and their expression interplay characterizes the switch from muscle precursors to differentiated elements. Recent findings have shown that caveolins are also expressed in rhabdomyosarcoma, a group of heterogeneous childhood soft-tissue sarcomas in which the cancer cells seem to derive from progenitors that resemble myogenic cells. In this review, we will focus on the role of caveolins in rhabdomyosarcomas and on their potential use as markers of the degree of differentiation in these paediatric tumours. Given that the function of Cav-1 as tumour conditional gene in cancer has been well-established, we will also discuss the relationship between Cav-1 and the progression of rhabdomyosarcoma.
Collapse
Affiliation(s)
- Stefania Rossi
- Department of Biomedical Sciences and Biotechnologies, Interuniversity Institute of Myology (IIM), University of Brescia, Brescia, Italy Department of Pathology, University of Brescia, Brescia, Italy
| | | | | | | | | |
Collapse
|
42
|
A set of imprinted genes required for normal body growth also promotes growth of rhabdomyosarcoma cells. Pediatr Res 2012; 71:32-8. [PMID: 22289848 PMCID: PMC3420822 DOI: 10.1038/pr.2011.6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION In many normal tissues, proliferation rates decline postnatally, causing somatic growth to slow. Previous evidence suggests that this decline is due, in part, to decline in the expression of growth-promoting imprinted genes including Mest, Plagl1, Peg3, Dlk1, and Igf2. Embryonal cancers are composed of cells that maintain embryonic characteristics and proliferate rapidly in childhood. We hypothesized that the abnormal persistent rapid proliferation in embryonal cancers occurs in part because of abnormal persistent high expression of growth-promoting imprinted genes. RESULTS Analysis of microarray data showed elevated expression of MEST, PLAGL1, PEG3, DLK1, and IGF2 in various embryonal cancers, especially rhabdomyosarcoma, as compared to nonembryonal cancers and normal tissues. Similarly, mRNA expression, assessed by real-time PCR, of MEST, PEG3, and IGF2 in rhabdomyosarcoma cell lines was increased as compared to nonembryonal cancer cell lines. Furthermore, siRNA-mediated knockdown of MEST, PLAGL1, PEG3, and IGF2 expression inhibited proliferation in Rh30 rhabdomyosarcoma cells. DISCUSSION These findings suggest that the normal postnatal downregulation of growth-promoting imprinted genes fails to occur in some embryonal cancers, particularly rhabdomyosarcoma, and contributes to the persistent rapid proliferation of rhabdomyosarcoma cells and, more generally, that failure of the mechanisms responsible for normal somatic growth deceleration can promote tumorigenesis.
Collapse
|
43
|
Camboni M, Hammond S, Martin LT, Martin PT. Induction of a regenerative microenvironment in skeletal muscle is sufficient to induce embryonal rhabdomyosarcoma in p53-deficient mice. J Pathol 2011; 226:40-9. [PMID: 21915858 DOI: 10.1002/path.2996] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 08/29/2011] [Accepted: 09/06/2011] [Indexed: 12/30/2022]
Abstract
We have previously reported that mice with muscular dystrophy, including mdx mice, develop embryonal rhabdomyosarcoma (eRMS) with a low incidence after 1 year of age and that almost all such tumours contain cancer-associated p53 mutations. To further demonstrate the relevance of p53 inactivation, we created p53-deficient mdx mice. Here we demonstrate that loss of one or both p53 (Trp53) alleles accelerates eRMS incidence in the mdx background, such that almost all Trp53(-/-) mdx animals develop eRMS by 5 months of age. To ascertain whether increased tumour incidence was due to the regenerative microenvironment found in dystrophic skeletal muscles, we induced muscle regeneration in Trp53(+/+) and Trp53(-/-) animals using cardiotoxin (Ctx). Wild-type (Trp53(+/+) ) animals treated with Ctx, either once every 7 days or once every 14 days from 1 month of age onwards, developed no eRMS; however, all similarly Ctx-treated Trp53(-/-) animals developed eRMS by 5 months of age at the site of injection. Most of these tumours displayed markers of human eRMS, including over-expression of Igf2 and phosphorylated Akt. These data demonstrate that the presence of a regenerative microenvironment in skeletal muscle, coupled with Trp53 deficiency, is sufficient to robustly induce eRMS in young mice. These studies further suggest that consideration should be given to the potential of the muscle microenvironment to support tumourigenesis in regenerative therapies for myopathies.
Collapse
Affiliation(s)
- Marybeth Camboni
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | | | | | | |
Collapse
|
44
|
Rengaswamy V, Kontny U, Rössler J. New approaches for pediatric rhabdomyosarcoma drug discovery: targeting combinatorial signaling. Expert Opin Drug Discov 2011; 6:1103-25. [PMID: 22646865 DOI: 10.1517/17460441.2011.611498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Rhabdomyosarcomas (RMS) are rare heterogeneous pediatric tumors that are treated by surgery, chemotherapy and irradiation. New therapeutic approaches are needed, especially in the advanced stages to target the pro-oncogenic signals. Exploring the molecular interactions of the regulatory signals and their roles in the developmental aspects of different subtypes of RMS is essential to identify potential targets and develop new therapeutic drugs. AREAS COVERED Insights into different drug discovery approaches are discussed with specific emphasis on gene expression profiling, fusion protein, role of small interfering RNA (siRNA)- and microRNA (miRNA)-based discovery approaches, targeting cancer stem cells, and in vitro and in vivo model systems. Targeting some overexpressed signals along with the possibilities of combination therapy of validated drug targets is discussed. Additionally, methods to overcome the limitations of discovery-based research are briefly discussed. EXPERT OPINION Due to drug resistance, ineffective therapy in advanced stages and relapse, there is a demand to explore new drug targets and discovery approaches. Implementing miRNA-based profiling would reveal the extent of miR-based regulation, various biomarkers and potential targets in RMS. A suitable combination of innovative techniques and the use of model systems might assist the identification and validation of novel targets and drug discovery methods. Combining specific drugs along with type-specific target inhibition of overexpressed mRNAs through siRNA approaches would enable the development of personalized therapy.
Collapse
Affiliation(s)
- Venkatesh Rengaswamy
- University Hospital Freiburg, Center for Pediatrics and Adolescent Medicine, Clinic IV: Pediatric Hematology and Oncology, Mathildenstr. 1, 79106 Freiburg , Germany +49 761 270 43000 ; +49 761 270 45180 ;
| | | | | |
Collapse
|
45
|
Marshall AD, van der Ent MA, Grosveld GC. PAX3-FOXO1 and FGFR4 in alveolar rhabdomyosarcoma. Mol Carcinog 2011; 51:807-15. [PMID: 21882254 DOI: 10.1002/mc.20848] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 06/16/2011] [Accepted: 07/27/2011] [Indexed: 01/16/2023]
Abstract
We and others have identified FGFR4 as a direct transcriptional target of the alveolar rhabdomyosarcoma (ARMS) specific fusion protein, PAX3-FOXO1. We hypothesized fibroblast growth factor receptor 4 (FGFR4) may act as an effector of PAX3-FOXO1, contributing to PAX3-FOXO1 tumorigenic phenotypes. However, we demonstrate that enhanced expression of FGFR4 does not contribute to inhibited differentiation, enhanced proliferation, or transformation downstream of PAX3-FOXO1 in primary mouse myoblasts. Therefore we were unable to identify any contribution of up regulation of wild type FGFR4 to PAX3-FOXO1 driven tumorigenesis. Conversely, a constitutively active mutant of FGFR4 can enhance primary myoblast proliferation and transformation, indicating activating mutations of FGFR4 could contribute to the development and progression of ARMS. We sequenced the FGFR4 mRNA from five ARMS cell lines and identified no somatic mutations, nor any association with any human single nucleotide polymorphism within the FGFR4 coding region.
Collapse
Affiliation(s)
- Amy D Marshall
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | |
Collapse
|
46
|
Callan AC, Milne E. Involvement of the IGF system in fetal growth and childhood cancer: an overview of potential mechanisms. Cancer Causes Control 2011; 20:1783-98. [PMID: 19533389 DOI: 10.1007/s10552-009-9378-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2009] [Accepted: 06/03/2009] [Indexed: 12/14/2022]
Abstract
Fetal growth is determined by a complex interplay of genetic, nutritional, environmental, and hormonal factors. Greater than expected fetal growth has been positively associated with the risk of the development of some cancers in childhood, particularly acute lymphoblastic leukemia, and the biological mechanisms underlying such associations are thought to involve insulin-like growth factors (IGFs). Circulating IGF levels are highly correlated with fetal growth, and IGFs are believed to play an important role in carcinogenesis; however, these two bodies of evidence have not been well integrated and, as a result, the potential underlying biological mechanisms linking the IGF system with the development of specific childhood cancers have not been elucidated. This review aims to draw together and summarize the literature linking the IGF system, rapidity of fetal growth, and risk of some specific childhood cancers; suggest explanations for some of the inconsistencies observed in previous studies of these associations; and propose an integrated framework for the putative involvement of the IGF system in the development of at least some childhood cancers. If the challenges involved in studying the complex IGF system can be overcome, this field presents an exciting opportunity to elucidate etiological pathways to childhood malignancies.
Collapse
Affiliation(s)
- Anna Carita Callan
- Telethon Institute for Child Health Research, Centre for Child Health Research, The University of Western Australia, PO Box 855, West Perth, WA 6872, Australia.
| | | |
Collapse
|
47
|
Rossi S, Poliani PL, Cominelli M, Bozzato A, Vescovi R, Monti E, Fanzani A. Caveolin 1 is a marker of poor differentiation in Rhabdomyosarcoma. Eur J Cancer 2011; 47:761-72. [DOI: 10.1016/j.ejca.2010.10.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 10/18/2010] [Accepted: 10/21/2010] [Indexed: 12/28/2022]
|
48
|
Rossi S, Stoppani E, Puri PL, Fanzani A. Differentiation of human rhabdomyosarcoma RD cells is regulated by reciprocal, functional interactions between myostatin, p38 and extracellular regulated kinase signalling pathways. Eur J Cancer 2011; 47:1095-105. [PMID: 21273059 DOI: 10.1016/j.ejca.2010.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 12/03/2010] [Accepted: 12/14/2010] [Indexed: 01/02/2023]
Abstract
Rhabdomyosarcoma (RMS) includes heterogeneous tumours of mesenchymal derivation which are genetically committed to the myogenic lineage, but fail to complete terminal differentiation. Previous works have reported on deregulated myostatin, p38 and extracellular regulated kinase (ERK) signalling in RMS cell lines; however, the functional link between these pathways and their relative contribution to RMS pathogenesis and/or maintenance of the transformed phenotype in vitro are unclear. Herein we show that the constitutive expression of a dominant-negative form of activin receptor type IIb (dnACTRIIb), which inhibits myostatin signalling, decreased proliferation and promoted differentiation of the human RMS RD cell line. DnACTRIIb-dependent differentiation of RD cells correlated with a reduced SMAD2/3 (small mother against decapentaplegic) and ERK signalling and the activation of p38 pathway. Conversely, the expression of a constitutively activated ALK5 (activin receptor-like kinase) (caALK5) form, activating SMAD3 and ERK pathways, led to further impairment of RD differentiation. Pharmacological blockade of ERK pathway in RD cells was sufficient to replicate the biological phenotype observed in dnACTRIIb-expressing RD cells, and also recovered the differentiation of caALK5-expressing RD cells. Conversely, deliberate activation of p38 signalling mimics the effect of dnActRIIb and overcame the differentiation block in RD cells. These data indicate the existence of a network formed by myostatin/SMAD2/3, ERK and p38 pathways that, when deregulated, might contribute to the pathogenesis of RMS. The components of this network might, therefore, be a valuable target for interventions towards correcting the malignant phenotype of RMS.
Collapse
Affiliation(s)
- Stefania Rossi
- Department of Biomedical Sciences and Biotechnologies and Interuniversity Institute of Myology (IIM), University of Brescia, viale Europa 11, 25123 Brescia, Italy
| | | | | | | |
Collapse
|
49
|
Schäfer BW, Niggli F. Multidisciplinary management of childhood sarcoma: time to expand. Expert Rev Anticancer Ther 2010; 10:1163-6. [DOI: 10.1586/era.10.95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Fernandez K, Serinagaoglu Y, Hammond S, Martin LT, Martin PT. Mice lacking dystrophin or alpha sarcoglycan spontaneously develop embryonal rhabdomyosarcoma with cancer-associated p53 mutations and alternatively spliced or mutant Mdm2 transcripts. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 176:416-34. [PMID: 20019182 DOI: 10.2353/ajpath.2010.090405] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Altered expression of proteins in the dystrophin-associated glycoprotein complex results in muscular dystrophy and has more recently been implicated in a number of forms of cancer. Here we show that loss of either of two members of this complex, dystrophin in mdx mice or alpha sarcoglycan in Sgca(-/-) mice, results in the spontaneous development of muscle-derived embryonal rhabdomyosarcoma (RMS) after 1 year of age. Many mdx and Sgca(-/-) tumors showed increased expression of insulin-like growth factor 2, retinoblastoma protein, and phosphorylated Akt and decreased expression of phosphatase and tensin homolog gene, much as is found in a human RMS. Further, all mdx and Sgca(-/-) RMS analyzed had increased expression of p53 and murine double minute (mdm)2 protein and contained missense p53 mutations previously identified in human cancers. The mdx RMS also contained missense mutations in Mdm2 or alternatively spliced Mdm2 transcripts that lacked an exon encoding a portion of the p53-binding domain. No Pax3:Fkhr or Pax7:Fkhr translocation mRNA products were evident in any tumor. Expression of natively glycosylated alpha dystroglycan and alpha sarcoglycan was reduced in mdx RMS, whereas dystrophin expression was absent in almost all human RMS, both for embryonal and alveolar RMS subtypes. These studies show that absence of members of the dystrophin-associated glycoprotein complex constitutes a permissive environment for spontaneous development of embryonal RMS associated with mutation of p53 and mutation or altered splicing of Mdm2.
Collapse
Affiliation(s)
- Karen Fernandez
- Division of Hematology/Oncology, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | | | | | | | | |
Collapse
|