1
|
Li XT. The involvement of K + channels in depression and pharmacological effects of antidepressants on these channels. Transl Psychiatry 2024; 14:411. [PMID: 39358318 PMCID: PMC11447029 DOI: 10.1038/s41398-024-03069-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 10/04/2024] Open
Abstract
Depression is a common and complex psychiatric illness with multiple clinical symptoms, even leading to the disability and suicide. Owing to the partial understanding of the pathogenesis of depressive-like disorders, available pharmacotherapeutic strategies are developed mainly based on the "monoamine hypothesis", resulting in a limited effectiveness and a number of adverse effects in the clinical practice. The concept of multiple pathogenic factors be helpful for clarifying the etiology of depression and developing the antidepressants. It is well documented that K+ channels serve crucial roles in modulating the neuronal excitability and neurotransmitter release in the brain, and abnormality of these channels participated in the pathogenic process of diverse central nervous system (CNS) pathologies, such as seizure and Alzheimer's disease (AD). The clinical and preclinical evidence also delineates that the involvement of several types of K+ channels in depressive-like behaviors appear to be evident, suggesting these channels being one of the multiple factors in the etiology of this debilitating disorder. Emerging data manifest that diverse antidepressants impact distinct K+ channels, such as Kv, Kir and K2P, meaning the functioning of these drug via a "multi-target" manner. On the other hand, the scenario of antidepressants impinging K+ channels could render an alternative interpretation for the pharmacological effectiveness and numerous side effects in clinical trials. Furthermore, these channels serve to be considered as a "druggable target" to develop novel therapeutic compound to antagonize this psychiatry.
Collapse
Affiliation(s)
- Xian-Tao Li
- School of Medicine, Jingchu University of Technology, Jingmen, China.
- Research group of Neurological and Metabolic Disease, School of Medicine, Jingchu University of Technology, Jingmen, China.
| |
Collapse
|
2
|
Bruss P, Hartle R, Astacio J, Chauhdri AF. Electrocardiographic Effects of Bupropion Toxicity Suggesting Dysfunction of the Gap Junction or Connexin 43. Cureus 2024; 16:e56288. [PMID: 38623136 PMCID: PMC11018313 DOI: 10.7759/cureus.56288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2024] [Indexed: 04/17/2024] Open
Abstract
This is a case of a 20-year-old pregnant female presenting EKG abnormalities associated with an overdose of bupropion. These ECG abnormalities are prolongation of the QRS, prolongation of the corrected QT interval (QTc), right axis deviation, and a terminal R wave. The propagation of electricity through the myocardium is dependent on many factors. It is dependent on the flow of sodium from the extracellular to intracellular space, flow of potassium from intracellular to extracellular space, and ultimately the propagation of the signal at the gap junction by Connexin 43 (Cx-43). We postulate that the ECG abnormalities in this case are secondary to bupropion's effect on the potassium rectifier channels (Kir) and or Cx-43 at the gap junction.
Collapse
Affiliation(s)
- Patrick Bruss
- Emergency Medicine, ProMedica Monroe Regional Hospital, Monroe, USA
| | - Ryan Hartle
- Emergency Medicine, ProMedica Monroe Regional Hospital, Monroe, USA
| | - Jennifer Astacio
- Emergency Medicine, ProMedica Monroe Regional Hospital, Monroe, USA
| | | |
Collapse
|
3
|
Pitsillou E, Logothetis ANO, Liang JJ, El-Osta A, Hung A, AbuMaziad AS, Karagiannis TC. Identification of Potential Modulators of a Pathogenic G Protein-Gated Inwardly Rectifying K + Channel 4 Mutant: In Silico Investigation in the Context of Drug Discovery for Hypertension. Molecules 2023; 28:7946. [PMID: 38138436 PMCID: PMC10745636 DOI: 10.3390/molecules28247946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Genetic abnormalities have been associated with primary aldosteronism, a major cause of secondary hypertension. This includes mutations in the KCNJ5 gene, which encodes G protein-gated inwardly rectifying K+ channel 4 (GIRK4). For example, the substitution of glycine with glutamic acid gives rise to the pathogenic GIRK4G151E mutation, which alters channel selectivity, making it more permeable to Na+ and Ca2+. While tertiapin and tertiapin-Q are well-known peptide inhibitors of the GIRK4WT channel, clinically, there is a need for the development of selective modulators of mutated channels, including GIRK4G151E. Using in silico methods, including homology modeling, protein-peptide docking, ligand-binding site prediction, and molecular docking, we aimed to explore potential modulators of GIRK4WT and GIRK4G151E. Firstly, protein-peptide docking was performed to characterize the binding site of tertiapin and its derivative to the GIRK4 channels. In accordance with previous studies, the peptide inhibitors preferentially bind to the GIRK4WT channel selectivity filter compared to GIRK4G151E. A ligand-binding site analysis was subsequently performed, resulting in the identification of two potential regions of interest: the central cavity and G-loop gate. Utilizing curated chemical libraries, we screened over 700 small molecules against the central cavity of the GIRK4 channels. Flavonoids, including luteolin-7-O-rutinoside and rutin, and the macrolides rapamycin and troleandomycin bound strongly to the GIRK4 channels. Similarly, xanthophylls, particularly luteoxanthin, bound to the central cavity with a strong preference towards the mutated GIRK4G151E channel compared to GIRK4WT. Overall, our findings suggest potential lead compounds for further investigation, particularly luteoxanthin, that may selectively modulate GIRK4 channels.
Collapse
Affiliation(s)
- Eleni Pitsillou
- Epigenomic Medicine Laboratory at prospED Polytechnic, Carlton, VIC 3053, Australia
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Alexander N. O. Logothetis
- Epigenomic Medicine Laboratory at prospED Polytechnic, Carlton, VIC 3053, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Julia J. Liang
- Epigenomic Medicine Laboratory at prospED Polytechnic, Carlton, VIC 3053, Australia
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Prahran, VIC 3004, Australia
| | - Assam El-Osta
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Prahran, VIC 3004, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
- Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, The Chinese University of Hong Kong, 3/F Lui Che Woo Clinical Sciences Building, 30-32 Ngan Shing Street, Sha Tin, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
- Biomedical Laboratory Science, Department of Technology, Faculty of Health, University College Copenhagen, 1799 Copenhagen, Denmark
| | - Andrew Hung
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Asmaa S. AbuMaziad
- Department of Pediatrics, College of Medicine Tucson, The University of Arizona, Tucson, AZ 85724, USA
| | - Tom C. Karagiannis
- Epigenomic Medicine Laboratory at prospED Polytechnic, Carlton, VIC 3053, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC 3010, Australia
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Prahran, VIC 3004, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
4
|
GIRK Channels as Candidate Targets for the Treatment of Substance Use Disorders. Biomedicines 2022; 10:biomedicines10102552. [PMID: 36289814 PMCID: PMC9599444 DOI: 10.3390/biomedicines10102552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022] Open
Abstract
Substance use disorders (SUDs) are chronic, lifelong disorders that have serious consequences. Repeated substance use alters brain function. G-protein-activated inwardly rectifying potassium (GIRK) channels are expressed widely in the brain, including the reward system, and regulate neuronal excitability. Functional GIRK channels are identified as heterotetramers of GIRK subunits (GIRK1–4). The GIRK1, GIRK2, and GIRK3 subunits are mainly expressed in rodent brain regions, and various addictive substances act on the brain through GIRK channels. Studies with animals (knockout and missense mutation animals) and humans have demonstrated the involvement of GIRK channels in the effects of addictive substances. Additionally, GIRK channel blockers affect behavioral responses to addictive substances. Thus, GIRK channels play a key role in SUDs, and GIRK channel modulators may be candidate medications. Ifenprodil is a GIRK channel blocker that does not have serious side effects. Two clinical trials were conducted to investigate the effects of ifenprodil in patients with alcohol or methamphetamine use disorder. Although the number of participants was relatively low, evidence of its safety and efficacy was found. The present review discusses the potential of GIRK channel modulators as possible medications for addiction. Therapeutic agents that target GIRK channels may be promising for the treatment of SUDs.
Collapse
|
5
|
Myslivecek J. Multitargeting nature of muscarinic orthosteric agonists and antagonists. Front Physiol 2022; 13:974160. [PMID: 36148314 PMCID: PMC9486310 DOI: 10.3389/fphys.2022.974160] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Muscarinic receptors (mAChRs) are typical members of the G protein-coupled receptor (GPCR) family and exist in five subtypes from M1 to M5. Muscarinic receptor subtypes do not sufficiently differ in affinity to orthosteric antagonists or agonists; therefore, the analysis of receptor subtypes is complicated, and misinterpretations can occur. Usually, when researchers mainly specialized in CNS and peripheral functions aim to study mAChR involvement in behavior, learning, spinal locomotor networks, biological rhythms, cardiovascular physiology, bronchoconstriction, gastrointestinal tract functions, schizophrenia, and Parkinson's disease, they use orthosteric ligands and they do not use allosteric ligands. Moreover, they usually rely on manufacturers' claims that could be misleading. This review aimed to call the attention of researchers not deeply focused on mAChR pharmacology to this fact. Importantly, limited selective binding is not only a property of mAChRs but is a general attribute of most neurotransmitter receptors. In this review, we want to give an overview of the most common off-targets for established mAChR ligands. In this context, an important point is a mention the tremendous knowledge gap on off-targets for novel compounds compared to very well-established ligands. Therefore, we will summarize reported affinities and give an outline of strategies to investigate the subtype's function, thereby avoiding ambiguous results. Despite that, the multitargeting nature of drugs acting also on mAChR could be an advantage when treating such diseases as schizophrenia. Antipsychotics are a perfect example of a multitargeting advantage in treatment. A promising strategy is the use of allosteric ligands, although some of these ligands have also been shown to exhibit limited selectivity. Another new direction in the development of muscarinic selective ligands is functionally selective and biased agonists. The possible selective ligands, usually allosteric, will also be listed. To overcome the limited selectivity of orthosteric ligands, the recommended process is to carefully examine the presence of respective subtypes in specific tissues via knockout studies, carefully apply "specific" agonists/antagonists at appropriate concentrations and then calculate the probability of a specific subtype involvement in specific functions. This could help interested researchers aiming to study the central nervous system functions mediated by the muscarinic receptor.
Collapse
Affiliation(s)
- Jaromir Myslivecek
- Institute of Physiology, 1 Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
6
|
Zheng F, Valero-Aracama MJ, Schaefer N, Alzheimer C. Activin A Reduces GIRK Current to Excite Dentate Gyrus Granule Cells. Front Cell Neurosci 2022; 16:920388. [PMID: 35711474 PMCID: PMC9197229 DOI: 10.3389/fncel.2022.920388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Activin A, a member of the TGF-β family, is recognized as a multifunctional protein in the adult brain with a particular impact on neuronal circuits associated with cognitive and affective functions. Activin receptor signaling in mouse hippocampus is strongly enhanced by the exploration of an enriched environment (EE), a behavioral paradigm known to improve performance in learning and memory tasks and to ameliorate depression-like behaviors. To interrogate the relationship between EE, activin signaling, and cellular excitability in the hippocampus, we performed ex vivo whole-cell recordings from dentate gyrus (DG) granule cells (GCs) of wild type mice and transgenic mice expressing a dominant-negative mutant of activin receptor IB (dnActRIB), which disrupts activin signaling in a forebrain-specific fashion. We found that, after overnight EE housing, GC excitability was strongly enhanced in an activin-dependent fashion. Moreover, the effect of EE on GC firing was mimicked by pre-treatment of hippocampal slices from control mice with recombinant activin A for several hours. The excitatory effect of activin A was preserved when canonical SMAD-dependent signaling was pharmacologically suppressed but was blocked by inhibitors of ERK-MAPK and PKA signaling. The involvement of a non-genomic signaling cascade was supported by the fact that the excitatory effect of activin A was already achieved within minutes of application. With respect to the ionic mechanism underlying the increase in intrinsic excitability, voltage-clamp recordings revealed that activin A induced an apparent inward current, which resulted from the suppression of a standing G protein-gated inwardly rectifying K+ (GIRK) current. The link between EE, enhanced activin signaling, and inhibition of GIRK current was strengthened by the following findings: (i) The specific GIRK channel blocker tertiapin Q (TQ) occluded the characteristic electrophysiological effects of activin A in both current- and voltage-clamp recordings. (ii) The outward current evoked by the GIRK channel activator adenosine was significantly reduced by preceding EE exploration as well as by recombinant activin A in control slices. In conclusion, our study identifies GIRK current suppression via non-canonical activin signaling as a mechanism that might at least in part contribute to the beneficial effects of EE on cognitive performance and affective behavior.
Collapse
Affiliation(s)
- Fang Zheng
- Institute of Physiology
and Pathophysiology, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Erlangen, Germany
- *Correspondence: Christian Alzheimer Fang Zheng
| | - Maria Jesus Valero-Aracama
- Institute of Physiology
and Pathophysiology, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Erlangen, Germany
| | - Natascha Schaefer
- Institute for Clinical Neurobiology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Christian Alzheimer
- Institute of Physiology
and Pathophysiology, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Erlangen, Germany
- *Correspondence: Christian Alzheimer Fang Zheng
| |
Collapse
|
7
|
Kir Channel Molecular Physiology, Pharmacology, and Therapeutic Implications. Handb Exp Pharmacol 2021; 267:277-356. [PMID: 34345939 DOI: 10.1007/164_2021_501] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
For the past two decades several scholarly reviews have appeared on the inwardly rectifying potassium (Kir) channels. We would like to highlight two efforts in particular, which have provided comprehensive reviews of the literature up to 2010 (Hibino et al., Physiol Rev 90(1):291-366, 2010; Stanfield et al., Rev Physiol Biochem Pharmacol 145:47-179, 2002). In the past decade, great insights into the 3-D atomic resolution structures of Kir channels have begun to provide the molecular basis for their functional properties. More recently, computational studies are beginning to close the time domain gap between in silico dynamic and patch-clamp functional studies. The pharmacology of these channels has also been expanding and the dynamic structural studies provide hope that we are heading toward successful structure-based drug design for this family of K+ channels. In the present review we focus on placing the physiology and pharmacology of this K+ channel family in the context of atomic resolution structures and in providing a glimpse of the promising future of therapeutic opportunities.
Collapse
|
8
|
Smith KE, Murphy P, Jagger DJ. Divergent membrane properties of mouse cochlear glial cells around hearing onset. J Neurosci Res 2020; 99:679-698. [PMID: 33099767 DOI: 10.1002/jnr.24744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/21/2020] [Accepted: 10/05/2020] [Indexed: 11/11/2022]
Abstract
Spiral ganglion neurons (SGNs) are the primary afferent neurons of the auditory system, and together with their attendant glia, form the auditory nerve. Within the cochlea, satellite glial cells (SGCs) encapsulate the cell body of SGNs, whereas Schwann cells (SCs) wrap their peripherally- and centrally-directed neurites. Despite their likely importance in auditory nerve function and homeostasis, the physiological properties of auditory glial cells have evaded description. Here, we characterized the voltage-activated membrane currents of glial cells from the mouse cochlea. We identified a prominent weak inwardly rectifying current in SGCs within cochlear slice preparations (postnatal day P5-P6), which was also present in presumptive SGCs within dissociated cultures prepared from the cochleae of hearing mice (P14-P15). Pharmacological block by Ba2+ and desipramine suggested that channels belonging to the Kir4 family mediated the weak inwardly rectifying current, and post hoc immunofluorescence implicated the involvement of Kir4.1 subunits. Additional electrophysiological profiles were identified for glial cells within dissociated cultures, suggesting that glial subtypes may have specific membrane properties to support distinct physiological roles. Immunofluorescence using fixed cochlear sections revealed that although Kir4.1 is restricted to SGCs after the onset of hearing, these channels are more widely distributed within the glial population earlier in postnatal development (i.e., within both SGCs and SCs). The decrease in Kir4.1 immunofluorescence during SC maturation was coincident with a reduction of Sox2 expression and advancing neurite myelination. The data suggest a diversification of glial properties occurs in preparation for sound-driven activity in the auditory nerve.
Collapse
Affiliation(s)
- Katie E Smith
- UCL Ear Institute, University College London, London, UK
| | - Phoebe Murphy
- UCL Ear Institute, University College London, London, UK
| | | |
Collapse
|
9
|
Ziegler GC, Röser C, Renner T, Hahn T, Ehlis AC, Weber H, Dempfle A, Walitza S, Jacob C, Romanos M, Fallgatter AJ, Reif A, Lesch KP. KCNJ6 variants modulate reward-related brain processes and impact executive functions in attention-deficit/hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 2020; 183:247-257. [PMID: 31099984 DOI: 10.1002/ajmg.b.32734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 04/04/2019] [Accepted: 05/06/2019] [Indexed: 12/18/2022]
Abstract
KCNJ6, encoding a potassium channel subunit, regulates the excitability of dopaminergic neurons and is expressed in attention-deficit/hyperactivity disorder (ADHD)-relevant brain regions. As a potential ADHD risk gene, KCNJ6, therefore, may contribute to the endophenotypic variation of the disorder. The impact of two SNPs, rs7275707 and rs6517442, both located in the transcriptional control region of KCNJ6, on reporter gene expression was explored in cultured cells. The KCNJ6 variants were then tested for association with ADHD and personality traits in a family-based sample (165 affected children) and an adult case-control sample (450 patients, 426 controls). Furthermore, the genotypic influence on performance in an n-back task and a cued continuous performance test (cCPT) was investigated by electroencephalography recordings. Finally, rs6517442 function was assessed by a reward anticipation paradigm using functional magnetic resonance imaging. Different haplotypes of rs7275707 and rs6517442 significantly influenced KCNJ6 gene expression proving their functional relevance on the molecular level. In the family-based children sample rs7275707 was associated with ADHD (p = .038). Moreover, rs7275707 showed association with the personality trait of Reward Dependence (p = .031). In the ADHD group, both rs7275707 and rs6517442 influenced the Go-centroid location in the cCPT and the N200 amplitude in the n-back task. Furthermore, ventral striatal activation was impacted by rs6517442 during reward anticipation. Our data indicate that functional variants of KCNJ6 influence brain activity during reward-related and executive processes supporting the view of a differential, age-dependent modulatory impact of dopamine-related brain processes in ADHD risk.
Collapse
Affiliation(s)
- Georg C Ziegler
- Division of Molecular Psychiatry, ADHD Clinical Research Unit, Laboratory of Translational Neuroscience, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Christoph Röser
- Division of Molecular Psychiatry, ADHD Clinical Research Unit, Laboratory of Translational Neuroscience, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Tobias Renner
- Department of Child and Adolescent Psychiatry, University of Tübingen, Tübingen, Germany
| | - Tim Hahn
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| | - Ann-Christine Ehlis
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Heike Weber
- Division of Molecular Psychiatry, ADHD Clinical Research Unit, Laboratory of Translational Neuroscience, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Astrid Dempfle
- Institute of Medical Biometry and Statistics, Christian Albrecht-University Kiel, Kiel, Germany
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Christian Jacob
- Division of Molecular Psychiatry, ADHD Clinical Research Unit, Laboratory of Translational Neuroscience, Center of Mental Health, University of Würzburg, Würzburg, Germany.,Department of Psychiatry and Psychotherapy, Medius Hospital of Kirchheim, Kirchheim unter Teck, Germany
| | - Marcel Romanos
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Andreas J Fallgatter
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Andreas Reif
- Division of Molecular Psychiatry, ADHD Clinical Research Unit, Laboratory of Translational Neuroscience, Center of Mental Health, University of Würzburg, Würzburg, Germany.,Department of Psychiatry and Psychotherapy, University of Frankfurt, Frankfurt, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, ADHD Clinical Research Unit, Laboratory of Translational Neuroscience, Center of Mental Health, University of Würzburg, Würzburg, Germany.,Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
10
|
Yano H, Adhikari P, Naing S, Hoffman AF, Baumann MH, Lupica CR, Shi L. Positive Allosteric Modulation of the 5-HT 1A Receptor by Indole-Based Synthetic Cannabinoids Abused by Humans. ACS Chem Neurosci 2020; 11:1400-1405. [PMID: 32324370 DOI: 10.1021/acschemneuro.0c00034] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The nonmedical (i.e., recreational) misuse of synthetic cannabinoids (SCs) is a worldwide public health problem. When compared to cannabis, the misuse of SCs is associated with a higher incidence of serious adverse effects, suggesting the possible involvement of noncannabinoid sites of action. Here, we find that, unlike the phytocannabinoid Δ9-tetrahydrocannabinol, the indole-moiety containing SCs, AM2201 and JWH-018, act as positive allosteric modulators (PAMs) at the 5-HT1A receptor (5-HT1AR). This suggests that some biological effects of SCs might involve allosteric interactions with 5-HT1ARs. To test this hypothesis, we examined effects of AM2201 on 5-HT1AR agonist-activated G protein-coupled inwardly rectifying potassium channel currents in neurons in vitro and on the hypothermic response to 5-HT1AR stimulation in mice lacking the cannabinoid receptor 1. We found that both 5-HT1AR effects were potentiated by AM2201, suggesting that PAM activity at 5-HT1AR may represent a novel noncannabinoid receptor mechanism underlying the complex profile of effects for certain SCs.
Collapse
|
11
|
Kollert S, Döring F, Gergs U, Wischmeyer E. Chloroform is a potent activator of cardiac and neuronal Kir3 channels. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:573-580. [PMID: 31720798 DOI: 10.1007/s00210-019-01751-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/16/2019] [Indexed: 11/24/2022]
Abstract
Chloroform has been used over decades in anesthesia before it was replaced by other volatile anesthetics like halothane or sevoflurane. Some of the reasons were inadmissible side effects of chloroform like bradycardia or neural illness. In the present study, we identified members of the G protein-activated inwardly rectifying potassium channel family (Kir3) expressed in Xenopus oocytes as potential common molecular targets for both the neural and cardiac effects of chloroform. Millimolar concentration currents representing a 1:10000 dilution of commercially available chloroform were used in laboratories that augment neuronal Kir3.1/3.2 currents as well as cardiac Kir3.1/3.4. This effect was selective and only observed in currents from Kir3 subunits but not in currents from Kir2 subunits. Augmentation of atrial Kir3.1/3.4 currents leads to an effective drop of the heart rate and a reduction in contraction force in isolated mouse atria.
Collapse
Affiliation(s)
- Sina Kollert
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia.,Institute of Physiology, AG Molecular Electrophysiology, University of Würzburg and Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Frank Döring
- Institute of Physiology, AG Molecular Electrophysiology, University of Würzburg and Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Ulrich Gergs
- Institute of Pharmacology and Toxicology, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - Erhard Wischmeyer
- Institute of Physiology, AG Molecular Electrophysiology, University of Würzburg and Center of Mental Health, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
12
|
The intriguing effect of ethanol and nicotine on acetylcholine-sensitive potassium current IKAch: Insight from a quantitative model. PLoS One 2019; 14:e0223448. [PMID: 31600261 PMCID: PMC6786802 DOI: 10.1371/journal.pone.0223448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/20/2019] [Indexed: 02/01/2023] Open
Abstract
Recent experimental work has revealed unusual features of the effect of certain drugs on cardiac inwardly rectifying potassium currents, including the constitutively active and acetylcholine-induced components of acetylcholine-sensitive current (IKAch). These unusual features have included alternating susceptibility of the current components to activation and inhibition induced by ethanol or nicotine applied at various concentrations, and significant correlation between the drug effect and the current magnitude measured under drug-free conditions. To explain these complex drug effects, we have developed a new type of quantitative model to offer a possible interpretation of the effect of ethanol and nicotine on the IKAch channels. The model is based on a description of IKAch as a sum of particular currents related to the populations of channels formed by identical assemblies of different α-subunits. Assuming two different channel populations in agreement with the two reported functional IKAch-channels (GIRK1/4 and GIRK4), the model was able to simulate all the above-mentioned characteristic features of drug-channel interactions and also the dispersion of the current measured in different cells. The formulation of our model equations allows the model to be incorporated easily into the existing integrative models of electrical activity of cardiac cells involving quantitative description of IKAch. We suppose that the model could also help make sense of certain observations related to the channels that do not show inward rectification. This new ionic channel model, based on a concept we call population type, may allow for the interpretation of complex interactions of drugs with ionic channels of various types, which cannot be done using the ionic channel models available so far.
Collapse
|
13
|
Sugaya N, Ogai Y, Aikawa Y, Yumoto Y, Takahama M, Tanaka M, Haraguchi A, Umeno M, Ikeda K. A randomized controlled study of the effect of ifenprodil on alcohol use in patients with alcohol dependence. Neuropsychopharmacol Rep 2018; 38:9-17. [PMID: 30106266 PMCID: PMC7292313 DOI: 10.1002/npr2.12001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/10/2017] [Accepted: 11/16/2017] [Indexed: 12/12/2022] Open
Abstract
AIM This prospective, randomized, controlled, rater-blinded study investigated the effect of G protein-activated inwardly rectifying potassium (GIRK) channel inhibitor ifenprodil on alcohol use in patients with alcohol dependence. METHODS The participants were 68 outpatients with alcohol dependence who were assigned to an ifenprodil group (administered 60 mg ifenprodil per day for 3 months) or control group (administered 600 mg ascorbic acid and calcium pantothenate per day for 3 months). The participants completed a questionnaire that included the frequency of alcohol drinking and presence of heavy drinking before the study period (time 1) and 3 months after the start of the study period (time 2). The alcohol use score was calculated using these two items. RESULTS Valid data were obtained from 46 participants (25 in the ifenprodil group and 21 in the control group). The alcohol use score at time 2 in the ifenprodil group was significantly lower than that in the control group after adjusting for the score at time 1 and some covariates. The intention-to-treat analysis of multiply imputed datasets indicated similar results. Group differences in the frequency of alcohol drinking were significant in the multiply imputed datasets but not in 46 participants. The ifenprodil group had a significantly lower rate of heavy drinking at time 2 than the control group. CONCLUSIONS This study found an inhibitory effect of ifenprodil on alcohol use in patients with alcohol dependence. The results support the hypothesis that GIRK channel inhibitors ameliorate alcohol dependence. TRIAL REGISTRY This trial was registered in the UMIN clinical trial registry (UMIN000006347).
Collapse
Affiliation(s)
- Nagisa Sugaya
- Addictive Substance ProjectTokyo Metropolitan Institute of Medical ScienceTokyoJapan
- Unit of Public Health and Preventive MedicineSchool of MedicineYokohama City UniversityYokohamaJapan
| | - Yasukazu Ogai
- Addictive Substance ProjectTokyo Metropolitan Institute of Medical ScienceTokyoJapan
- Faculty of MedicineSocial Psychiatry and Mental HealthUniversity of TsukubaTsukubaJapan
| | - Yuzo Aikawa
- Tokyo Metropolitan Matsuzawa HospitalTokyoJapan
| | | | | | - Miho Tanaka
- Addictive Substance ProjectTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Ayako Haraguchi
- Addictive Substance ProjectTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | | | - Kazutaka Ikeda
- Addictive Substance ProjectTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| |
Collapse
|
14
|
ATP-sensitive potassium-channel inhibitor glibenclamide attenuates HPA axis hyperactivity, depression- and anxiety-related symptoms in a rat model of Alzheimer's disease. Brain Res Bull 2018; 137:265-276. [PMID: 29307659 DOI: 10.1016/j.brainresbull.2018.01.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 12/13/2017] [Accepted: 01/03/2018] [Indexed: 12/17/2022]
Abstract
Affective disorders including depression and anxiety are among the most prevalent behavioral abnormalities in patients with Alzheimer's disease (AD), which affect the quality of life and progression of the disease. Dysregulation of the hypothalamic-pituitary-adrenal-(HPA) axis has been reported in affective disorders and AD. Recent studies revealed that current antidepressant drugs are not completely effective for treating anxiety- and depression-related disorders in people with dementia. ATP-sensitive-potassium-(KATP) channels are well-known to be involved in AD pathophysiology, HPA axis function and the pathogenesis of depression and anxiety-related behaviors. Thus, targeting of KATP channel may be a potential therapeutic strategy in AD. Hence, we investigated the effects of intracerebroventricular injection of Aβ25-35 alone or in combination with glibenclamide, KATP channel inhibitor on depression- and anxiety-related behaviors as well as HPA axis response to stress in rats. To do this, non-Aβ25-35- and Aβ25-35-treated rats were orally treated with glibenclamide, then the behavioral consequences were assessed using sucrose preference, forced swim, light-dark box and plus maze tests. Stress-induced corticosterone levels following forced swim and plus maze tests were also evaluated as indicative of abnormal HPA-axis-function. Aβ25-35 induced HPA axis hyperreactivity and increased depression- and anxiety-related symptoms in rats. Our results showed that blockade of KATP channels with glibenclamide decreased depression- and anxiety-related behaviors by normalizing HPA axis activity in Aβ25-35-treated rats. This study provides additional evidence that Aβ administration can induce depression- and anxiety-like symptoms in rodents, and suggests that KATP channel inhibitors may be a plausible therapeutic strategy for treating affective disorders in AD patients.
Collapse
|
15
|
Lack of relationship between plasma levels of escitalopram and QTc-interval length. Eur Arch Psychiatry Clin Neurosci 2017; 267:815-822. [PMID: 28116499 DOI: 10.1007/s00406-016-0758-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 12/13/2016] [Indexed: 10/20/2022]
Abstract
Despite safety concerns raised by the European Medicines Agency (EMA), evidence supporting QT-lengthening effects of escitalopram is far to be conclusive. We aimed to evaluate the relationship between escitalopram plasma levels (Escit-PL) and corrected QT-interval length (QTc-length) in 91 outpatients recruited from a hospital setting. Fifteen patients had an abnormally prolonged QTc-interval, and 3 had QTc-intervals ≥500 ms. No correlation between Escit-PL and QTc-length was found (r = 0.08; p = 0.45). Linear/logistic regression analyses were also conducted taking into account potential confounders such as age, gender, personal history of heart disease, medication load and concomitant use of antipsychotic/tricyclic antidepressants. Escit-PL did not predict either QTc-length or abnormally prolonged QTc-interval. Only antipsychotics/tricyclics use (adjusted β = 0.26, SE = 9.1; p = 0.01) was an independent predictor of QTc-length (R 2 = 0.096, F = 4.68, df = 2,88; p = 0.01). Only antipsychotics/tricyclics use (OR 3.56 [95% CI 1.01-12.52]; p < 0.05) and medication load (OR 1.32 [95% CI 1.06-1.64]; p < 0.01) were significantly associated with an increased risk of abnormally prolonged QTc-interval (Omnibus test χ 2 = 9.5, df = 2; p < 0.01). Our study did not find a significant relationship between Escit-PL and QTc-length even when recognized modulating factors of the QT-interval were controlled for. Concomitant use of other potentially arrhythmogenic agents may help to explain the apparent link between escitalopram and QT prolongation previously suggested. The advisability of maintaining the EMA warning is once again called into question.
Collapse
|
16
|
Li H, Shin SE, Seo MS, An JR, Ha KS, Han ET, Hong SH, Choi IW, Lee DS, Yim MJ, Lee JM, Jung ID, Firth AL, Han IY, Park WS. Inhibitory effect of the tricyclic antidepressant amitriptyline on voltage-dependent K + channels in rabbit coronary arterial smooth muscle cells. Clin Exp Pharmacol Physiol 2017; 45:205-212. [PMID: 28945283 DOI: 10.1111/1440-1681.12857] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 02/03/2023]
Abstract
Amitriptyline, a tricyclic antidepressant (TCA) drug, is widely used in treatment of psychiatric disorders. However, the side effects of amitriptyline on vascular K+ channels remain to be determined. Therefore, we investigated the effect of the tricyclic antidepressant and serotonin reuptake inhibitor amitriptyline on voltage-dependent K+ (Kv) channels in freshly isolated rabbit coronary arterial smooth muscle cells, using the whole-cell patch clamp technique. The Kv current amplitudes were inhibited by amitriptyline in a concentration-dependent manner, with an apparent IC50 value of 2.2 ± 0.14 μmol/L and a Hill coefficient of 0.87 ± 0.03. Amitriptyline shifted the activation curve to a more positive potential, but had no significant effect on the inactivation curve, suggesting that amitriptyline altered the voltage sensitivity of Kv channels. Pretreatment with Kv1.5 and Kv1.2 channel inhibitors did not alter the inhibitory effect of amitriptyline on Kv channels. Additionally, application of train pulses (1 and 2 Hz) did not affect amitriptyline-induced inhibition of Kv currents, which suggested that the action of amitriptyline on Kv channels was not use (state)-dependent. From these results, we concluded that amitriptyline inhibited the channels in a concentration-dependent, but state-independent manner.
Collapse
Affiliation(s)
- Hongliang Li
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Sung Eun Shin
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Mi Seon Seo
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Jin Ryeol An
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Il-Whan Choi
- Department of Microbiology, College of Medicine, Inje University, Busan, South Korea
| | - Dae-Sung Lee
- Department of Applied Research, National Marine Biodiversity Institute of Korea, Seocheon, South Korea
| | - Mi-Jin Yim
- Department of Applied Research, National Marine Biodiversity Institute of Korea, Seocheon, South Korea
| | - Jeong Min Lee
- Department of Applied Research, National Marine Biodiversity Institute of Korea, Seocheon, South Korea
| | - In Duk Jung
- Department of Immunology, Laboratory of Dendritic Cell Differentiation and Regulation, School of Medicine, Konkuk University, Chungju, South Korea
| | - Amy L Firth
- Department of Pulmonary, Critical Care and Sleep Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Il Yong Han
- Department of Thoracic and Cardiovascular Surgery, Busan Paik Hospital, College of Medicine, Inje University, Busan, South Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| |
Collapse
|
17
|
Dual activation of neuronal G protein-gated inwardly rectifying potassium (GIRK) channels by cholesterol and alcohol. Sci Rep 2017; 7:4592. [PMID: 28676630 PMCID: PMC5496853 DOI: 10.1038/s41598-017-04681-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/18/2017] [Indexed: 12/20/2022] Open
Abstract
Activation of G protein-gated inwardly rectifying potassium (GIRK) channels leads to a hyperpolarization of the neuron’s membrane potential, providing an important component of inhibition in the brain. In addition to the canonical G protein-activation pathway, GIRK channels are activated by small molecules but less is known about the underlying gating mechanisms. One drawback to previous studies has been the inability to control intrinsic and extrinsic factors. Here we used a reconstitution strategy with highly purified mammalian GIRK2 channels incorporated into liposomes and demonstrate that cholesterol or intoxicating concentrations of ethanol, i.e., >20 mM, each activate GIRK2 channels directly, in the absence of G proteins. Notably, both activators require the membrane phospholipid PIP2 but appear to interact independently with different regions of the channel. Elucidating the mechanisms underlying G protein-independent pathways of activating GIRK channels provides a unique strategy for developing new types of neuronal excitability modulators.
Collapse
|
18
|
Nazari SK, Nikoui V, Ostadhadi S, Chegini ZH, Oryan S, Bakhtiarian A. Possible involvement of ATP-sensitive potassium channels in the antidepressant-like effect of baclofen in mouse forced swimming test. Pharmacol Rep 2016; 68:1214-1220. [DOI: 10.1016/j.pharep.2016.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 07/08/2016] [Accepted: 07/21/2016] [Indexed: 01/20/2023]
|
19
|
Rodríguez-Menchaca AA, Aréchiga-Figueroa IA, Sánchez-Chapula JA. The molecular basis of chloroethylclonidine block of inward rectifier (Kir2.1 and Kir4.1) K + channels. Pharmacol Rep 2016; 68:383-9. [DOI: 10.1016/j.pharep.2015.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/28/2015] [Accepted: 10/12/2015] [Indexed: 10/22/2022]
|
20
|
Barber DM, Schönberger M, Burgstaller J, Levitz J, Weaver CD, Isacoff EY, Baier H, Trauner D. Optical control of neuronal activity using a light-operated GIRK channel opener (LOGO). Chem Sci 2015; 7:2347-2352. [PMID: 28090283 PMCID: PMC5234268 DOI: 10.1039/c5sc04084a] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
G-protein coupled inwardly rectifying potassium channels (GIRKs) are ubiquitously expressed throughout the human body and are an integral part of inhibitory signal transduction pathways. Upon binding of Gβγ subunits released from G-protein coupled receptors (GPCRs), GIRK channels open and reduce the activity of excitable cells via hyperpolarization. As such, they play a role in cardiac output, the coordination of movement and cognition. Due to their involvement in a multitude of pathways, the precision control of GIRK channels is an important endeavour. Here, we describe the development of the photoswitchable agonist LOGO (the Light Operated GIRK-channel Opener), which activates GIRK channels in the dark and is rapidly deactivated upon exposure to long wavelength UV irradiation. LOGO is the first K+ channel opener and selectively targets channels that contain the GIRK1 subunit. It can be used to optically silence action potential firing in dissociated hippocampal neurons and LOGO exhibits activity in vivo, controlling the motility of zebrafish larvae in a light dependent fashion. We envisage that LOGO will be a valuable research tool to dissect the function of GIRK channels from other GPCR dependent signalling pathways.
Collapse
Affiliation(s)
- David M Barber
- Department of Chemistry and Center for Integrated Protein Science, Ludwig Maximilians University Munich, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Matthias Schönberger
- Department of Chemistry and Center for Integrated Protein Science, Ludwig Maximilians University Munich, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Jessica Burgstaller
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Joshua Levitz
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
| | - C David Weaver
- Department of Pharmacology and Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Ehud Y Isacoff
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA; Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Herwig Baier
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Dirk Trauner
- Department of Chemistry and Center for Integrated Protein Science, Ludwig Maximilians University Munich, Butenandtstraße 5-13, 81377 Munich, Germany
| |
Collapse
|
21
|
Delgermurun D, Ito S, Ohta T, Yamaguchi S, Otsuguro KI. Endogenous 5-HT outflow from chicken aorta by 5-HT uptake inhibitors and amphetamine derivatives. J Vet Med Sci 2015; 78:71-6. [PMID: 26321443 PMCID: PMC4751119 DOI: 10.1292/jvms.15-0146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Chemoreceptor cells aggregating in clusters in the chicken thoracic aorta
contain 5-hydroxytryptamine (5-HT) and have voltage-dependent ion channels and nicotinic
acetylcholine receptors, which are characteristics typically associated with neurons. The
aim of the present study was to investigate the effects of 5-HT uptake inhibitors,
fluvoxamine, fluoxetine and clomipramine (CLM), and amphetamine derivatives,
p-chloroamphetamine (PCA) and methamphetamine (MET), on endogenous 5-HT
outflow from the isolated chick thoracic aorta in vitro. 5-HT was
measured by using a HPLC system with electrochemical detection. The amphetamine
derivatives and 5-HT uptake inhibitors caused concentration-dependent increases in
endogenous 5-HT outflow. PCA was about ten times more effective in eliciting 5-HT outflow
than MET. The 5-HT uptake inhibitors examined had similar potency for 5-HT outflow. PCA
and CLM increased 5-HT outflow in a temperature-dependent manner. The outflow of 5-HT
induced by PCA or 5-HT uptake inhibitors was independent of extracellular Ca2+
concentration. The 5-HT outflow induced by CLM, but not that by PCA, was dependent on the
extracellular NaCl concentration. These results suggest that the 5-HT uptake system of
5-HT-containing chemoreceptor cells in the chicken thoracic aorta has characteristics
similar to those of 5-HT-containing neurons in the mammalian central nervous system
(CNS).
Collapse
Affiliation(s)
- Dugar Delgermurun
- Laboratory of Pharmacology, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | | | | | | | | |
Collapse
|
22
|
Büyükdeligöz M, Hocaoğlu N, Oransay K, Tunçok Y, Kalkan Ş. The Effects of the Adenosine Receptor Antagonists on the Reverse of Cardiovascular Toxic Effects Induced by Citalopram In-Vivo Rat Model of Poisoning. Balkan Med J 2015; 32:303-8. [PMID: 26185720 DOI: 10.5152/balkanmedj.2015.15932] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/13/2015] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Citalopram is a selective serotonin reuptake inhibitor that requires routine cardiac monitoring to prevent a toxic dose. Prolongation of the QT interval has been observed in acute citalopram poisoning. Our previous experimental study showed that citalopram may be lead to QT prolongation by stimulating adenosine A1 receptors without affecting the release of adenosine. AIMS We examined the effects of adenosine receptor antagonists in reversing the cardiovascular toxic effects induced by citalopram in rats. STUDY DESIGN Animal experimentation. METHODS Rats were divided into three groups randomly (n=7 for each group). Sodium cromoglycate (20 mg/kg) was administered to all rats to inhibit adenosine A3 receptor mast cell activation. Citalopram toxicity was achieved by citalopram infusion (4 mg/kg/min) for 20 minutes. After citalopram infusion, in the control group (Group 1), rats were given an infusion of dextrose solution for 60 minutes. In treatment groups, the selective adenosine A1 antagonist DPCPX (Group 2, 8-cyclopentyl-1,3-dipropylxanthine, 20 μg/kg/min) or the selective A2a antagonist CSC (Group 3, 8-(3-chlorostyryl)caffeine, 24 μg/kg/min) was infused for 60 minutes. Mean arterial pressure (MAP), heart rate (HR), QRS duration and QT interval measurements were followed during the experiment period. Statistical analysis was performed by ANOVA followed by Tukey's multiple comparison tests. RESULTS Citalopram infusion reduced MAP and HR and prolonged the QT interval. It did not cause any significant difference in QRS duration in any group. When compared to the control group, DPCPX after citalopram infusion shortened the prolongation of the QT interval after 40, 50 and 60 minutes (p<0.01). DPCPX infusion shortened the prolongation of the QT interval at 60 minutes compared with the CSC group (p<0.05). CSC infusion shortened the prolongation of the QT at 60 minutes compared with the control group (p<0.05). CONCLUSION DPCPX improved QT interval prolongation in citalopram toxicity. The results of this study show that mechanism of cardiovascular toxicity induced by citalopram may be related adenosine A1 receptor stimulation. Adenosine A1 receptor antagonists may be used for the treatment of citalopram toxicity.
Collapse
Affiliation(s)
- Müjgan Büyükdeligöz
- Department of Medical Pharmacology, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey
| | - Nil Hocaoğlu
- Department of Medical Pharmacology, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey
| | - Kubilay Oransay
- Department of Medical Pharmacology, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey
| | - Yeşim Tunçok
- Department of Medical Pharmacology, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey
| | - Şule Kalkan
- Department of Medical Pharmacology, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey
| |
Collapse
|
23
|
Glaaser IW, Slesinger PA. Structural Insights into GIRK Channel Function. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 123:117-60. [PMID: 26422984 DOI: 10.1016/bs.irn.2015.05.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
G protein-gated inwardly rectifying potassium (GIRK; Kir3) channels, which are members of the large family of inwardly rectifying potassium channels (Kir1-Kir7), regulate excitability in the heart and brain. GIRK channels are activated following stimulation of G protein-coupled receptors that couple to the G(i/o) (pertussis toxin-sensitive) G proteins. GIRK channels, like all other Kir channels, possess an extrinsic mechanism of inward rectification involving intracellular Mg(2+) and polyamines that occlude the conduction pathway at membrane potentials positive to E(K). In the past 17 years, more than 20 high-resolution atomic structures containing GIRK channel cytoplasmic domains and transmembrane domains have been solved. These structures have provided valuable insights into the structural determinants of many of the properties common to all inward rectifiers, such as permeation and rectification, as well as revealing the structural bases for GIRK channel gating. In this chapter, we describe advances in our understanding of GIRK channel function based on recent high-resolution atomic structures of inwardly rectifying K(+) channels discussed in the context of classical structure-function experiments.
Collapse
Affiliation(s)
- Ian W Glaaser
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Paul A Slesinger
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
24
|
Hong DH, Li H, Kim HS, Kim HW, Shin SE, Jung WK, Na SH, Choi IW, Firth AL, Park WS, Kim DJ. The Effects of the Selective Serotonin Reuptake Inhibitor Fluvoxamine on Voltage-Dependent K + Channels in Rabbit Coronary Arterial Smooth Muscle Cells. Biol Pharm Bull 2015; 38:1208-13. [DOI: 10.1248/bpb.b15-00207] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Da Hye Hong
- Department of Physiology, Kangwon National University School of Medicine
| | - Hongliang Li
- Department of Physiology, Kangwon National University School of Medicine
| | - Han Sol Kim
- Department of Physiology, Kangwon National University School of Medicine
| | - Hye Won Kim
- Department of Physiology, Kangwon National University School of Medicine
| | - Sung Eun Shin
- Department of Physiology, Kangwon National University School of Medicine
| | - Won-Kyo Jung
- Department of Biomedical Engineering, Center for Marine-Integrated Biomedical Technology (BK21 Plus) Pukyong National University
| | - Sung Hun Na
- Department of Obstetrics and Gynecology, Kangwon National University Hospital, School of Medicine, Kangwon National University
| | - Il-Whan Choi
- Department of Microbiology, Inje University College of Medicine
| | | | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine
| | - Dae-Joong Kim
- Department of Anatomy and Cell Biology, Kangwon National University School of Medicine
| |
Collapse
|
25
|
Bodhinathan K, Slesinger PA. Alcohol modulation of G-protein-gated inwardly rectifying potassium channels: from binding to therapeutics. Front Physiol 2014; 5:76. [PMID: 24611054 PMCID: PMC3933770 DOI: 10.3389/fphys.2014.00076] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 02/07/2014] [Indexed: 12/27/2022] Open
Abstract
Alcohol (ethanol)-induced behaviors may arise from direct interaction of alcohol with discrete protein cavities within brain proteins. Recent structural and biochemical studies have provided new insights into the mechanism of alcohol-dependent activation of G protein-gated inwardly rectifying potassium (GIRK) channels, which regulate neuronal responses in the brain reward circuit. GIRK channels contain an alcohol binding pocket formed at the interface of two adjacent channel subunits. Here, we discuss the physiochemical properties of the alcohol pocket and the roles of G protein βγ subunits and membrane phospholipid PIP2 in regulating the alcohol response of GIRK channels. Some of the features of alcohol modulation of GIRK channels may be common to other alcohol-sensitive brain proteins. We discuss the possibility of alcohol-selective therapeutics that block alcohol access to the pocket. Understanding alcohol recognition and modulation of brain proteins is essential for development of therapeutics for alcohol abuse and addiction.
Collapse
Affiliation(s)
- Karthik Bodhinathan
- Structural Biology and Peptide Biology Laboratories, The Salk Institute for Biological Studies La Jolla, CA, USA
| | - Paul A Slesinger
- Structural Biology and Peptide Biology Laboratories, The Salk Institute for Biological Studies La Jolla, CA, USA ; Department of Neuroscience, Icahn School of Medicine at Mount Sinai New York, NY, USA
| |
Collapse
|
26
|
[Citalopram, escitalopram and prolonged QT: warning or alarm?]. REVISTA DE PSIQUIATRIA Y SALUD MENTAL 2014; 7:147-50. [PMID: 24556340 DOI: 10.1016/j.rpsm.2013.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 11/25/2013] [Accepted: 12/24/2013] [Indexed: 11/20/2022]
Abstract
The alerts issued by regulatory agencies on the potential cardiac toxicity of citalopram and escitalopram have caused alarm among clinicians. A review of the data concerning this topic shows that the alarm should be limited to patients with a history of syncope or poisoning. As a precautionary measure, an electrocardiogram should be performed on elderly patients.
Collapse
|
27
|
Abstract
Depression is a highly recurrent and debilitating psychiatric disorder associated with multicausal origins. Impairments in the monoaminergic transmission, increased glutamatergic excitotoxicity, neuroinflammation, oxidative stress and deficits in neurotrophic factors are the main hypothesis raised in order to explain the etiological basis of depression. Although the current antidepressant therapy usually alleviates symptoms and prevents recurrence of episodes, the delay in the onset of the therapeutic effect and the refractory or intolerant responses exhibited by a large number of patients are the main drawbacks of the current therapy. For these reasons, several studies have dealt with the investigation of alternative therapeutic approaches or adjunctive strategies which could improve clinical outcomes. One potential adjunctive treatment with conventional antidepressants involves the use of nutraceuticals (a food, a part of a food, a vitamin, a mineral, or a herb that provides health benefits). In this review, we will focus on the main nutrients, phytochemicals and food that have been shown to have beneficial effects against depression.
Collapse
Affiliation(s)
- Luana M Manosso
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil.
| | | | | |
Collapse
|
28
|
Molecular mechanism underlying ethanol activation of G-protein-gated inwardly rectifying potassium channels. Proc Natl Acad Sci U S A 2013; 110:18309-14. [PMID: 24145411 DOI: 10.1073/pnas.1311406110] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Alcohol (ethanol) produces a wide range of pharmacological effects on the nervous system through its actions on ion channels. The molecular mechanism underlying ethanol modulation of ion channels is poorly understood. Here we used a unique method of alcohol-tagging to demonstrate that alcohol activation of a G-protein-gated inwardly rectifying potassium (GIRK or Kir3) channel is mediated by a defined alcohol pocket through changes in affinity for the membrane phospholipid signaling molecule phosphatidylinositol 4,5-bisphosphate. Surprisingly, hydrophobicity and size, but not the canonical hydroxyl, were important determinants of alcohol-dependent activation. Altering levels of G protein Gβγ subunits, conversely, did not affect alcohol-dependent activation, suggesting a fundamental distinction between receptor and alcohol gating of GIRK channels. The chemical properties of the alcohol pocket revealed here might extend to other alcohol-sensitive proteins, revealing a unique protein microdomain for targeting alcohol-selective therapeutics in the treatment of alcoholism and addiction.
Collapse
|
29
|
Imbrici P, Camerino DC, Tricarico D. Major channels involved in neuropsychiatric disorders and therapeutic perspectives. Front Genet 2013; 4:76. [PMID: 23675382 PMCID: PMC3646240 DOI: 10.3389/fgene.2013.00076] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/16/2013] [Indexed: 12/11/2022] Open
Abstract
Voltage-gated ion channels are important mediators of physiological functions in the central nervous system. The cyclic activation of these channels influences neurotransmitter release, neuron excitability, gene transcription, and plasticity, providing distinct brain areas with unique physiological and pharmacological response. A growing body of data has implicated ion channels in the susceptibility or pathogenesis of psychiatric diseases. Indeed, population studies support the association of polymorphisms in calcium and potassium channels with the genetic risk for bipolar disorders (BPDs) or schizophrenia. Moreover, point mutations in calcium, sodium, and potassium channel genes have been identified in some childhood developmental disorders. Finally, antibodies against potassium channel complexes occur in a series of autoimmune psychiatric diseases. Here we report recent studies assessing the role of calcium, sodium, and potassium channels in BPD, schizophrenia, and autism spectrum disorders, and briefly summarize promising pharmacological strategies targeted on ion channels for the therapy of mental illness and related genetic tests.
Collapse
Affiliation(s)
- Paola Imbrici
- Section of Pharmacology, Department of Pharmacy - Drug Science, University of Bari Bari, Italy
| | | | | |
Collapse
|
30
|
Okada M, Watanabe S, Matada T, Asao Y, Hamatani R, Yamawaki H, Hara Y. Inhibitory effects of psychotropic drugs on the acetylcholine receptor-operated potassium current (IK.ACh) in guinea-pig atrial myocytes. J Vet Med Sci 2013; 75:743-7. [PMID: 23343658 DOI: 10.1292/jvms.12-0511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Influences of psychotropic drugs, six antipsychotics and three antidepressants, on acetylcholine receptor-operated potassium current (IK.ACh) were examined by a whole-cell patch clamp method in freshly isolated guinea-pig atrial myocyte. IK.ACh was induced by a superfusion of carbachol (CCh) or by an intracellular application of guanosine 5'-[thio] triphosphate (GTPγS). To elucidate mechanism for anticholinergic action, IC50 ratio, the ratio of IC50 for GTPγS-activated IK.ACh to CCh-induced IK.ACh, was calculated. Antipsychotics and antidepressants inhibited CCh-induced IK.ACh in a concentration-dependent manner. The IC50 values were as follows; chlorpromazine 0.53 μM, clozapine 0.06 μM, fluphenazine 2.69 μM, haloperidol 2.66 μM, sulpiride 42.3 μM, thioridazine 0.07 μM, amitriptyline 0.03 μM, imipramine 0.22 μM and maprotiline 1.81 μM. The drugs, except for sulpiride, inhibited GTPγS-activated IK.ACh with following IC50 values; chlorpromazine 1.71 μM, clozapine 14.9 μM, fluphenazine 3.55 μM, haloperidol 2.73 μM, thioridazine 1.90 μM, amitriptyline 7.55 μM, imipramine 7.09 μM and maprotiline 5.93 μM. The IC50 ratio for fluphenazine and haloperidol was close to unity. The IC50 ratio for chlorpromazine, clozapine, thioridazine, amitriptyline, imipramine and maprotiline was much higher than unity. The present findings suggest that the psychotropics studied suppress IK.ACh. Chlorpromazine, clozapine, thioridazine, amitriptyline, imipramine, maprotiline and sulpiride are preferentially acting on muscarinic receptor. Fluphenazine and haloperidol may act on G protein and/or potassium channel.
Collapse
Affiliation(s)
- Muneyoshi Okada
- Laboratory of Veterinary Pharmacology, Kitasato University, Towada, Aomori 034-8628, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Sugaya N, Kobayashi T, Ikeda K. Role of GIRK Channels in Addictive Substance Effects. ACTA ACUST UNITED AC 2013. [DOI: 10.4303/jdar/235823] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Kalkan S, Oransay K, Bal IB, Ertunc M, Sara Y, Iskit AB. The role of adenosine receptors on amitriptyline-induced electrophysiological changes on rat atrium. Hum Exp Toxicol 2012; 32:62-9. [DOI: 10.1177/0960327112455670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We investigated the role of adenosine receptors in amitriptyline-induced cardiac action potential (AP) changes in isolated rat atria. In the first group, APs were recorded after cumulative addition of amitriptyline (1 μM, 10 μM and 50 μM). In other groups, each atrium was incubated with selective adenosine A1 antagonist (8-cyclopentyl-1,3-dipropylxanthine (DPCPX), 10−4 M) or selective adenosine A2a receptor antagonist (8-(3-chlorostyryl) caffeine, 10−5 M) before amitriptyline administration. Resting membrane potential, AP amplitude (APA), AP duration at 50% and 80% of repolarization (APD50 and APD80, respectively), and the maximum rise and decay slopes of AP were recorded. Amitriptyline (50 μM) prolonged the APD50 and APD80 ( p < 0.001) and the maximum rise slope of AP was reduced by amitriptyline ( p < 0.0001). Amitriptyline reduced maximum decay slope of AP only at 50 μM ( p < 0.01). DPCPX significantly decreased the 50-μM amitriptyline-induced APD50 and APD80 prolongation ( p < 0.001). DPCPX significantly prevented the effects of amitriptyline (1 μM and 50 μM) on maximum rise slope of AP ( p < 0.05). DPCPX significantly prevented the amitriptyline-induced (50 μM) reduction in maximum decay slope of AP ( p < 0.001). The selective adenosine A1 receptor antagonist prevented the electrophysiological effects of amitriptyline on atrial AP. A1 receptor stimulation may be responsible for the cardiovascular toxic effects produced by amitriptyline.
Collapse
Affiliation(s)
- S Kalkan
- Department of Pharmacology, School of Medicine, Dokuz Eylul University, Inciralti, Izmir, Turkey
| | - K Oransay
- Department of Pharmacology, School of Medicine, Dokuz Eylul University, Inciralti, Izmir, Turkey
| | - IB Bal
- Department of Pharmacology, Faculty of Medicine, Hacettepe University, Sıhhıye, Ankara, Turkey
| | - M Ertunc
- Department of Pharmacology, Faculty of Medicine, Hacettepe University, Sıhhıye, Ankara, Turkey
| | - Y Sara
- Department of Pharmacology, Faculty of Medicine, Hacettepe University, Sıhhıye, Ankara, Turkey
| | - AB Iskit
- Department of Pharmacology, Faculty of Medicine, Hacettepe University, Sıhhıye, Ankara, Turkey
| |
Collapse
|
33
|
Takahama K. Multiple pharmacological actions of centrally acting antitussives--Do they target G protein-coupled inwardly rectifying K⁺ (GIRK) channels? J Pharmacol Sci 2012; 120:146-51. [PMID: 23059953 DOI: 10.1254/jphs.12r07cp] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Antitussive drugs have been used for decades and their modes of action are well elucidated. However, recent studies on the mechanism of their antitussive action seem to be opening a new way for discovery or development of novel drugs for intractable brain diseases including psychiatric disorders. Antitussives inhibit the currents caused by activation of G protein-coupled inwardly rectifying K⁺ (GIRK) channels in neurons. In our own studies carried out so far, we found that antitussives possessing an inhibitory action on GIRK channels, similar to the effects of an enriched environment, ameliorate symptoms of intractable brain diseases in various animal models. In this review, the multiple pharmacological actions of the antitussives are described, and their mechanisms are discussed addressing GIRK channels as a possible molecular target.
Collapse
Affiliation(s)
- Kazuo Takahama
- Department of Environmental and Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
34
|
Moretti M, Budni J, Ribeiro CM, Rodrigues ALS. Involvement of different types of potassium channels in the antidepressant-like effect of ascorbic acid in the mouse tail suspension test. Eur J Pharmacol 2012; 687:21-7. [PMID: 22575518 DOI: 10.1016/j.ejphar.2012.04.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 04/19/2012] [Accepted: 04/21/2012] [Indexed: 12/18/2022]
Abstract
Considering that the administration of ascorbic acid elicits an antidepressant-effect in mice by a mechanism which involves an interaction with N-methyl-D-aspartate receptors and the l-arginine-nitric oxide-cGMP pathway and taking into account that the stimulation of this pathway is associated with the activation of potassium (K⁺) channels, this study investigated the involvement of different types of K⁺ channels on the effect of ascorbic acid in the mouse tail suspension test (TST). Intracerebroventricular administration of tetraethylammonium (TEA, a non-specific blocker of K⁺ channels, 25 pg/site), glibenclamide (an ATP-sensitive K⁺ channel blocker, 0.5 pg/site), charybdotoxin (a large- and intermediate conductance calcium-activated K⁺ channel blocker, 25 pg/site) or apamin (a small-conductance calcium-activated K⁺ channel blocker, 10 pg/site) was able to produce a synergistic effect with a sub-effective dose of ascorbic acid (0.1 mg/kg) given orally (p.o.). The antidepressant-like effect of ascorbic acid (1 mg/kg, p.o.) in the TST was prevented by the pre-treatment of mice with cromakalim (a K⁺ channel opener, 10 μg/site, i.c.v.) and minoxidil (10 μg/site, i.c.v.). Moreover, cromakalim abolished the synergistic effect elicited by the combined treatment with sub-effective doses of ascorbic acid and 7-nitroindazole. The administration of the K⁺ channel modulators alone or in combination with ascorbic acid did not affect the locomotion of mice. Together, our results show that the antidepressant-like effect of ascorbic acid in the TST may involve, at least in part, the modulation of neuronal excitability, via inhibition of K⁺ channels.
Collapse
Affiliation(s)
- Morgana Moretti
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, 88040-900 SC, Brazil
| | | | | | | |
Collapse
|
35
|
Budni J, E. Freitas A, W. Binfaré R, S. Rodrigues AL. Role of potassium channels in the antidepressant-like effect of folic acid in the forced swimming test in mice. Pharmacol Biochem Behav 2012; 101:148-54. [DOI: 10.1016/j.pbb.2011.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 12/01/2011] [Accepted: 12/12/2011] [Indexed: 11/29/2022]
|
36
|
Tseng PT, Lee Y, Lin YE, Lin PY. Low-dose escitalopram for 2 days associated with corrected QT interval prolongation in a middle-aged woman: a case report and literature review. Gen Hosp Psychiatry 2012; 34:210.e13-5. [PMID: 22133983 DOI: 10.1016/j.genhosppsych.2011.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 10/10/2011] [Accepted: 10/11/2011] [Indexed: 10/14/2022]
Abstract
Prolongation of the corrected QT interval (QTc) on the electrocardiography is an important clinical condition because it increases the risk of torsade de pointes, a medical emergency that can cause sudden cardiac death. QTc prolongation can be induced by many drugs, including antipsychotics and tricyclic antidepressants (TCAs). Compared with TCAs, use of selective serotonin reuptake inhibitors (SSRIs) was less likely to cause severe cardiac adverse effects. Escitalopram, one of the SSRIs, has shown significant antidepressant efficacy and well tolerability. Here, we present one female patient showing QTc prolongation induced by low-dose (5 mg/day) treatment of escitalopram for 2 days. The QTc returned to normal soon after discontinuation of escitalopram. Clinicians should be cautious about cardiac effects when using a SSRI, even in a low dose.
Collapse
Affiliation(s)
- Ping-Tao Tseng
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | | | | | | |
Collapse
|
37
|
Kleschevnikov AM, Belichenko PV, Salehi A, Wu C. Discoveries in Down syndrome: moving basic science to clinical care. PROGRESS IN BRAIN RESEARCH 2012; 197:199-221. [PMID: 22541294 DOI: 10.1016/b978-0-444-54299-1.00010-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review describes recent discoveries in neurobiology of Down syndrome (DS) achieved with use of mouse genetic models and provides an overview of experimental approaches aimed at development of pharmacological restoration of cognitive function in people with this developmental disorder. Changes in structure and function of synaptic connections within the hippocampal formation of DS model mice, as well as alterations in innervations of the hippocampus by noradrenergic and cholinergic neuromodulatory systems, provided important clues for potential pharmacological treatments of cognitive disabilities in DS. Possible molecular and cellular mechanisms underlying this genetic disorder have been addressed. We discuss novel mechanisms engaging misprocessing of amyloid precursor protein (App) and other proteins, through their affect on axonal transport and endosomal dysfunction, to "Alzheimer-type" neurodegenerative processes that affect cognition later in life. In conclusion, a number of therapeutic strategies have been defined that may restore cognitive function in mouse models of DS. In the juvenile and young animals, these strategists focus on restoration of synaptic plasticity, rate of adult neurogenesis, and functions of the neuromodulatory subcortical systems. Later in life, the major focus is on recuperation of misprocessed App and related proteins. It is hoped that the identification of an increasing number of potential targets for pharmacotherapy of cognitive deficits in DS will add to the momentum for creating and completing clinical trials.
Collapse
Affiliation(s)
- A M Kleschevnikov
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA.
| | | | | | | |
Collapse
|
38
|
Ravinder S, Pillai AG, Chattarji S. Cellular correlates of enhanced anxiety caused by acute treatment with the selective serotonin reuptake inhibitor fluoxetine in rats. Front Behav Neurosci 2011; 5:88. [PMID: 22232580 PMCID: PMC3246766 DOI: 10.3389/fnbeh.2011.00088] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 12/12/2011] [Indexed: 12/14/2022] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are used extensively in the treatment of depression and anxiety disorders. The therapeutic benefits of SSRIs typically require several weeks of continuous treatment. Intriguingly, according to clinical reports, symptoms of anxiety may actually increase during the early stages of treatment although more prolonged treatment alleviates affective symptoms. Consistent with earlier studies that have used animal models to capture this paradoxical effect of SSRIs, we find that rats exhibit enhanced anxiety-like behavior on the elevated plus-maze 1 h after a single injection of the SSRI fluoxetine. Next we investigated the potential neural substrates underlying the acute anxiogenic effects by analyzing the morphological and physiological impact of acute fluoxetine treatment on principal neurons of the basolateral amygdala (BLA), a brain area that plays a pivotal role in fear and anxiety. Although earlier studies have shown that behavioral or genetic perturbations that are anxiogenic for rodents also increase dendritic spine density in the BLA, we find that a single injection of fluoxetine does not cause spinogenesis on proximal apical dendritic segments on BLA principal neurons an hour later. However, at the same time point when a single dose of fluoxetine caused enhanced anxiety, it also enhanced action potential firing in BLA neurons in ex vivo slices. Consistent with this finding, in vitro bath application of fluoxetine caused higher spiking frequency and this increase in excitability was correlated with an increase in the input resistance of these neurons. Our results suggest that enhanced excitability of amygdala neurons may contribute to the increase in anxiety-like behavior observed following acute fluoxetine treatment.
Collapse
Affiliation(s)
- Shilpa Ravinder
- National Centre for Biological Sciences, Tata Institute of Fundamental Research Bangalore, India
| | | | | |
Collapse
|
39
|
Kobayashi T, Washiyama K, Ikeda K. Inhibition of G protein-activated inwardly rectifying K+ channels by different classes of antidepressants. PLoS One 2011; 6:e28208. [PMID: 22164246 PMCID: PMC3229538 DOI: 10.1371/journal.pone.0028208] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 11/03/2011] [Indexed: 11/19/2022] Open
Abstract
Various antidepressants are commonly used for the treatment of depression and several other neuropsychiatric disorders. In addition to their primary effects on serotonergic or noradrenergic neurotransmitter systems, antidepressants have been shown to interact with several receptors and ion channels. However, the molecular mechanisms that underlie the effects of antidepressants have not yet been sufficiently clarified. G protein-activated inwardly rectifying K+ (GIRK, Kir3) channels play an important role in regulating neuronal excitability and heart rate, and GIRK channel modulation has been suggested to have therapeutic potential for several neuropsychiatric disorders and cardiac arrhythmias. In the present study, we investigated the effects of various classes of antidepressants on GIRK channels using the Xenopus oocyte expression assay. In oocytes injected with mRNA for GIRK1/GIRK2 or GIRK1/GIRK4 subunits, extracellular application of sertraline, duloxetine, and amoxapine effectively reduced GIRK currents, whereas nefazodone, venlafaxine, mianserin, and mirtazapine weakly inhibited GIRK currents even at toxic levels. The inhibitory effects were concentration-dependent, with various degrees of potency and effectiveness. Furthermore, the effects of sertraline were voltage-independent and time-independent during each voltage pulse, whereas the effects of duloxetine were voltage-dependent with weaker inhibition with negative membrane potentials and time-dependent with a gradual decrease in each voltage pulse. However, Kir2.1 channels were insensitive to all of the drugs. Moreover, the GIRK currents induced by ethanol were inhibited by sertraline but not by intracellularly applied sertraline. The present results suggest that GIRK channel inhibition may reveal a novel characteristic of the commonly used antidepressants, particularly sertraline, and contributes to some of the therapeutic effects and adverse effects.
Collapse
Affiliation(s)
- Toru Kobayashi
- Department of Project Programs, Center for Bioresource-based Researches, Brain Research Institute, Niigata University, Niigata, Japan.
| | | | | |
Collapse
|
40
|
Takamatsu Y, Yamamoto H, Hagino Y, Markou A, Ikeda K. The Selective Serotonin Reuptake Inhibitor Paroxetine, but not Fluvoxamine, Decreases Methamphetamine Conditioned Place Preference in Mice. Curr Neuropharmacol 2011; 9:68-72. [PMID: 21886565 PMCID: PMC3137204 DOI: 10.2174/157015911795017236] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 04/17/2010] [Accepted: 05/26/2010] [Indexed: 11/30/2022] Open
Abstract
Monoamine transporters are the main targets of methamphetamine (METH). Recently, we showed that fluoxetine, a selective serotonin reuptake inhibitor (SSRI), decreased METH conditioned place preference (CPP), suggesting that serotonin transporter (SERT) inhibition reduces the rewarding effects of METH. To further test this hypothesis, in the present study we investigated the effects of additional SSRIs, paroxetine and fluvoxamine, on METH CPP in C57BL/6J mice. In the CPP test, pretreatment with 20 mg/kg paroxetine abolished the CPP for METH, whereas pretreatment with 100 mg/kg fluvoxamine prior to administration of METH failed to inhibit METH CPP. These results suggest that paroxetine, a medication widely used to treat depression, may be a useful tool for treating METH dependence. Further, these data suggest that molecules other than the SERT [such as G protein-activated inwardly rectifying K+ (GIRK) channels] whose activities are modulated by paroxetine and fluoxetine, but not by fluvoxamine, are involved in reducing METH CPP by paroxetine and fluoxetine.
Collapse
Affiliation(s)
- Y Takamatsu
- Division of Psychobiology, Tokyo Institute of Psychiatry, 2-1-8 Kamikitazawa, Setagaya-ku, Tokyo 156-8585, Japan
| | | | | | | | | |
Collapse
|
41
|
Nishizawa D, Gajya N, Ikeda K. Identification of selective agonists and antagonists to g protein-activated inwardly rectifying potassium channels: candidate medicines for drug dependence and pain. Curr Neuropharmacol 2011; 9:113-7. [PMID: 21886574 PMCID: PMC3137163 DOI: 10.2174/157015911795017227] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 04/17/2010] [Accepted: 05/26/2010] [Indexed: 11/22/2022] Open
Abstract
G protein-activated inwardly rectifying K+ (GIRK) channels have been known to play a key role in the rewarding and analgesic effects of opioids. To identify potent agonists and antagonists to GIRK channels, we examined various compounds for their ability to activate or inhibit GIRK channels. A total of 503 possible compounds with low molecular weight were selected from a list of fluoxetine derivatives at Pfizer Japan Inc. We screened these compounds by a Xenopus oocyte expression system. GIRK1/2 and GIRK1/4 heteromeric channels were expressed on Xenopus laevis oocytes at Stage V or VI. A mouse IRK2 channel, which is another member of inwardly rectifying potassium channels with similarity to GIRK channels, was expressed on the oocytes to examine the selectivity of the identified compounds to GIRK channels. For electrophysiological analyses, a two-electrode voltage clamp method was used. Among the 503 compounds tested, one compound and three compounds were identified as the most effective agonist and antagonists, respectively. All of these compounds induced only negligible current responses in the oocytes expressing the IRK2 channel, suggesting that these compounds were selective to GIRK channels. These effective and GIRK-selective compounds may be useful possible therapeutics for drug dependence and pain.
Collapse
Affiliation(s)
- D Nishizawa
- Division of Psychobiology, Tokyo Institute of Psychiatry, Tokyo
| | | | | |
Collapse
|
42
|
Kobayashi T, Nishizawa D, Ikeda K. Inhibition of g protein-activated inwardly rectifying k channels by phencyclidine. Curr Neuropharmacol 2011; 9:244-6. [PMID: 21886598 PMCID: PMC3137191 DOI: 10.2174/157015911795017407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 04/17/2010] [Accepted: 05/26/2010] [Indexed: 11/25/2022] Open
Abstract
Addictive drugs, such as opioids, ethanol, cocaine, amphetamine, and phencyclidine (PCP), affect many functions of the nervous system and peripheral organs, resulting in severe health problems. G protein-activated inwardly rectifying K+ (GIRK, Kir3) channels play an important role in regulating neuronal excitability through activation of various Gi/o protein-coupled receptors including opioid and CB1 cannabinoid receptors. Furthermore, the channels are directly activated by ethanol and inhibited by cocaine at toxic levels, but not affected by methylphenidate, methamphetamine, and 3,4-methylenedioxymethamphetamine (MDMA) at toxic levels. The primary pharmacological action of PCP is blockade of N-methyl-D-aspartate (NMDA) receptor channels that are associated with its psychotomimetic effects. PCP also interacts with several receptors and channels at relatively high concentrations. However, the molecular mechanisms underlying the various effects of PCP remain to be clarified. Here, we investigated the effects of PCP on GIRK channels using the Xenopus oocyte expression system. PCP weakly but significantly inhibited GIRK channels at micromolar concentrations, but not Kir1.1 and Kir2.1 channels. The PCP concentrations effective in inhibiting GIRK channels overlap clinically relevant brain concentrations in severe intoxication. The results suggest that partial inhibition of GIRK channels by PCP may contribute to some of the toxic effects after overdose.
Collapse
Affiliation(s)
- Toru Kobayashi
- Division of Psychobiology, Tokyo Institute of Psychiatry, 2-1-8 Kamikitazawa, Setagaya-ku, Tokyo 156-8585, Japan
| | | | | |
Collapse
|
43
|
Hesperidin induces antinociceptive effect in mice and its aglicone, hesperetin, binds to μ-opioid receptor and inhibits GIRK1/2 currents. Pharmacol Biochem Behav 2011; 99:333-41. [DOI: 10.1016/j.pbb.2011.05.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 04/07/2011] [Accepted: 05/13/2011] [Indexed: 11/21/2022]
|
44
|
Small-molecule modulators of inward rectifier K+ channels: recent advances and future possibilities. Future Med Chem 2011; 2:757-74. [PMID: 20543968 DOI: 10.4155/fmc.10.179] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Inward rectifier potassium (Kir) channels have been postulated as therapeutic targets for several common disorders including hypertension, cardiac arrhythmias and pain. With few exceptions, however, the small-molecule pharmacology of this family is limited to nonselective cardiovascular and neurologic drugs with off-target activity toward inward rectifiers. Consequently, the actual therapeutic potential and 'drugability' of most Kir channels has not yet been determined experimentally. The purpose of this review is to provide a comprehensive summary of publicly disclosed Kir channel small-molecule modulators and highlight recent targeted drug-discovery efforts toward Kir1.1 and Kir2.1. The review concludes with a brief speculation on how the field of Kir channel pharmacology will develop over the coming years and a discussion of the increasingly important role academic laboratories will play in this progress.
Collapse
|
45
|
Bernhardt V, Hotchkiss MT, Garcia-Reyero N, Escalon BL, Denslow N, Davenport PW. Tracheal occlusion conditioning in conscious rats modulates gene expression profile of medial thalamus. Front Physiol 2011; 2:24. [PMID: 21660287 PMCID: PMC3107442 DOI: 10.3389/fphys.2011.00024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 05/16/2011] [Indexed: 11/13/2022] Open
Abstract
The thalamus may be the critical brain area involved in sensory gating and the relay of respiratory mechanical information to the cerebral cortex for the conscious awareness of breathing. We hypothesized that respiratory mechanical stimuli in the form of tracheal occlusions would modulate the gene expression profile of the thalamus. Specifically, it was reasoned that conditioning to the respiratory loading would induce a state change in the medial thalamus consistent with a change in sensory gating and the activation of molecular pathways associated with learning and memory. In addition, respiratory loading is stressful and thus should elicit changes in gene expressions related to stress, anxiety, and depression. Rats were instrumented with inflatable tracheal cuffs. Following surgical recovery, they underwent 10 days (5 days/week) of transient tracheal occlusion conditioning. On day 10, the animals were sacrificed and the brains removed. The medial thalamus was dissected and microarray analysis of gene expression performed. Tracheal obstruction conditioning modulated a total of 661 genes (p < 0.05, log2 fold change ≥0.58), 250 genes were down-regulated and 411 up-regulated. There was a significant down-regulation of GAD1, GAD2 and HTR1A, HTR2A genes. CCK, PRKCG, mGluR4, and KCJN9 genes were significantly up-regulated. Some of these genes have been associated with anxiety and depression, while others have been shown to play a role in switching between tonic and burst firing modes in the thalamus and thus may be involved in gating of the respiratory stimuli. Furthermore, gene ontology and pathway analysis showed a significant modulation of learning and memory pathways. These results support the hypothesis that the medial thalamus is involved in the respiratory sensory neural pathway due to the state change of its gene expression profile following repeated tracheal occlusions.
Collapse
Affiliation(s)
- Vipa Bernhardt
- Department of Physiological Sciences, University of Florida Gainesville, FL, USA
| | | | | | | | | | | |
Collapse
|
46
|
Wilhelm EA, Jesse CR, Bortolatto CF, Barbosa NBV, Nogueira CW. Evidence of the involvement of K+ channels and PPARgamma receptors in the antidepressant-like activity of diphenyl diselenide in mice. J Pharm Pharmacol 2011; 62:1121-7. [PMID: 20796190 DOI: 10.1111/j.2042-7158.2010.01132.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVES This study investigated the involvement of different types of K(+) channels and PPARgamma receptors in the antidepressant-like effect of diphenyl diselenide in mice. METHODS Mice were pretreated with subeffective doses of K(+) channel inhibitors (tetraethylammonium, glibenclamide, charybdotoxin and apamin), openers (cromakalim, minoxidil), GW 9662 (a PPARgamma antagonist) or vehicle. Thirty minutes later the mice received diphenyl diselenide in either an effective or a subeffective dose, 30 min before a tail-suspension test. KEY FINDINGS Pre-treatment with tetraethylammonium, charybdotoxin or apamin combined with a subeffective dose of diphenyl diselenide was effective in decreasing the immobility time in the mouse tail-suspension test. The reduction in the immobility time elicited by an effective dose of diphenyl diselenide in this test was prevented by the pretreatment of mice with minoxidil and GW 9662. CONCLUSIONS Diphenyl diselenide elicited an antidepressant-like effect and this action was mediated, at least in part, by modulation of K(+) channels and PPARgamma receptors.
Collapse
Affiliation(s)
- Ethel A Wilhelm
- Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Brazil
| | | | | | | | | |
Collapse
|
47
|
Lazary J, Juhasz G, Anderson IM, Jacob CP, Nguyen TT, Lesch KP, Reif A, Deakin JFW, Bagdy G. Epistatic interaction of CREB1 and KCNJ6 on rumination and negative emotionality. Eur Neuropsychopharmacol 2011; 21:63-70. [PMID: 20943350 DOI: 10.1016/j.euroneuro.2010.09.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 09/14/2010] [Accepted: 09/16/2010] [Indexed: 12/01/2022]
Abstract
G protein-activated K+ channel 2 (GIRK2) and cAMP-response element binding protein (CREB1) are involved in synaptic plasticity and their genes have been implicated depression and memory processing. Excessive rumination is a core cognitive feature of depression which is also present in remission. High scores on the Ruminative Response Scale (RRS) questionnaire are predictive of relapse and recurrence. Since rumination involves memory, we tested the hypothesis that variation in the genes encoding GIRK2 (KCNJ6) and CREB1 mechanisms would influence RRS scores. GIRK2 and CREB1 polymorphisms were studied in two independent samples (n=651 and n=1174) from the general population. Strongly significant interaction between the TT genotype of rs2070995 (located in KCNJ6) and the GG genotype of rs2253206 (located in CREB1) on RRS were found in both samples. These results were validated in an independent third sample (n=565; individuals with personality disorders) showing significant main effect of the variants mentioned as well as significant interaction on a categorical diagnosis of Cluster C personality disorder (obsessional-compulsive, avoidant and dependent) in which rumination is a prominent feature. Our results suggest that genetic epistasis in post-receptor signaling pathways in memory systems may have relevance for depression and its treatment.
Collapse
Affiliation(s)
- Judit Lazary
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y. Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev 2010; 90:291-366. [PMID: 20086079 DOI: 10.1152/physrev.00021.2009] [Citation(s) in RCA: 1114] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Inwardly rectifying K(+) (Kir) channels allow K(+) to move more easily into rather than out of the cell. They have diverse physiological functions depending on their type and their location. There are seven Kir channel subfamilies that can be classified into four functional groups: classical Kir channels (Kir2.x) are constitutively active, G protein-gated Kir channels (Kir3.x) are regulated by G protein-coupled receptors, ATP-sensitive K(+) channels (Kir6.x) are tightly linked to cellular metabolism, and K(+) transport channels (Kir1.x, Kir4.x, Kir5.x, and Kir7.x). Inward rectification results from pore block by intracellular substances such as Mg(2+) and polyamines. Kir channel activity can be modulated by ions, phospholipids, and binding proteins. The basic building block of a Kir channel is made up of two transmembrane helices with cytoplasmic NH(2) and COOH termini and an extracellular loop which folds back to form the pore-lining ion selectivity filter. In vivo, functional Kir channels are composed of four such subunits which are either homo- or heterotetramers. Gene targeting and genetic analysis have linked Kir channel dysfunction to diverse pathologies. The crystal structure of different Kir channels is opening the way to understanding the structure-function relationships of this simple but diverse ion channel family.
Collapse
Affiliation(s)
- Hiroshi Hibino
- Department of Pharmacology, Graduate School of Medicine and The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Involvement of potassium channels in the antidepressant-like effect of venlafaxine in mice. Life Sci 2010; 86:372-6. [DOI: 10.1016/j.lfs.2010.01.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 01/13/2010] [Accepted: 01/18/2010] [Indexed: 11/19/2022]
|
50
|
Kawaura K, Ogata Y, Inoue M, Honda S, Soeda F, Shirasaki T, Takahama K. The centrally acting non-narcotic antitussive tipepidine produces antidepressant-like effect in the forced swimming test in rats. Behav Brain Res 2009; 205:315-8. [DOI: 10.1016/j.bbr.2009.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 07/01/2009] [Accepted: 07/06/2009] [Indexed: 11/26/2022]
|