1
|
Cruz-Pulido YE, Mounce BC. Good cop, bad cop: Polyamines play both sides in host immunity and viral replication. Semin Cell Dev Biol 2023; 146:70-79. [PMID: 36604249 PMCID: PMC10101871 DOI: 10.1016/j.semcdb.2022.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 01/05/2023]
Abstract
Viruses rely on host cells for energy and synthesis machinery required for genome replication and particle assembly. Due to the dependence of viruses on host cells, viruses have evolved multiple mechanisms by which they can induce metabolic changes in the host cell to suit their specific requirements. The host immune response also involves metabolic changes to be able to react to viral insult. Polyamines are small ubiquitously expressed polycations, and their metabolism is critical for viral replication and an adequate host immune response. This is due to the variety of functions that polyamines have, ranging from condensing DNA to enhancing the translation of polyproline-containing proteins through the hypusination of eIF5A. Here, we review the diverse mechanisms by which viruses exploit polyamines, as well as the mechanisms by which immune cells utilize polyamines for their functions. Furthermore, we highlight potential avenues for further study of the host-virus interface.
Collapse
Affiliation(s)
- Yazmin E Cruz-Pulido
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Bryan C Mounce
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA; Infectious Disease and Immunology Research Institute, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA.
| |
Collapse
|
2
|
Fonseca BD, Smith EM, Yelle N, Alain T, Bushell M, Pause A. The ever-evolving role of mTOR in translation. Semin Cell Dev Biol 2014; 36:102-12. [PMID: 25263010 DOI: 10.1016/j.semcdb.2014.09.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 09/12/2014] [Accepted: 09/15/2014] [Indexed: 02/06/2023]
Abstract
Control of translation allows for the production of stoichiometric levels of each protein in the cell. Attaining such a level of fine-tuned regulation of protein production requires the coordinated temporal and spatial control of numerous cellular signalling cascades impinging on the various components of the translational machinery. Foremost among these is the mTOR signalling pathway. The mTOR pathway regulates both the initiation and elongation steps of protein synthesis through the phosphorylation of numerous translation factors, while simultaneously ensuring adequate folding of nascent polypeptides through co-translational degradation of misfolded proteins. Perhaps most remarkably, mTOR is also a key regulator of the synthesis of ribosomal proteins and translation factors themselves. Two seminal studies have recently shown in translatome analysis that the mTOR pathway preferentially regulates the translation of mRNAs encoding ribosomal proteins and translation factors. Therefore, the role of the mTOR pathway in the control of protein synthesis extends far beyond immediate translational control. By controlling ribosome production (and ultimately ribosome availability), mTOR is a master long-term controller of protein synthesis. Herein, we review the literature spanning the early discoveries of mTOR on translation to the latest advances in our understanding of how the mTOR pathway controls the synthesis of ribosomal proteins.
Collapse
Affiliation(s)
- Bruno D Fonseca
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada.
| | - Ewan M Smith
- MRC Toxicology Unit, Hodgkin Building, Lancaster Road, Leicester LE1 9HN, UK
| | - Nicolas Yelle
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
| | - Tommy Alain
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
| | - Martin Bushell
- MRC Toxicology Unit, Hodgkin Building, Lancaster Road, Leicester LE1 9HN, UK
| | - Arnim Pause
- Goodman Cancer Research Centre, Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada.
| |
Collapse
|
3
|
Hansen TVO, Borup R, Marstrand T, Rehfeld JF, Nielsen FC. Cholecystokinin-2 receptor mediated gene expression in neuronal PC12 cells. J Neurochem 2007; 104:1450-65. [DOI: 10.1111/j.1471-4159.2007.05076.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
4
|
Shantz LM, Levin VA. Regulation of ornithine decarboxylase during oncogenic transformation: mechanisms and therapeutic potential. Amino Acids 2007; 33:213-23. [PMID: 17443268 DOI: 10.1007/s00726-007-0531-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2006] [Accepted: 02/01/2007] [Indexed: 01/10/2023]
Abstract
The activity of ornithine decarboxylase (ODC(1)), the first enzyme in polyamine biosynthesis, is induced during carcinogenesis by a variety of oncogenic stimuli. Intracellular levels of ODC and the polyamines are tightly controlled during normal cell growth, and regulation occurs at the levels of transcription, translation and protein degradation. Several known proto-oncogenic pathways appear to control ODC transcription and translation, and dysregulation of pathways downstream of ras and myc result in the constitutive elevation of ODC activity that occurs with oncogenesis. Inhibition of ODC activity reverts the transformation of cells in vitro and reduces tumor growth in several animal models, suggesting high levels of ODC are necessary for the maintenance of the transformed phenotype. The ODC irreversible inactivator DFMO has proven to be not only a valuable tool in the study of ODC in cancer, but also shows promise as a chemopreventive and chemotherapeutic agent in certain types of malignancies.
Collapse
Affiliation(s)
- L M Shantz
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | | |
Collapse
|
5
|
Beevers CS, Li F, Liu L, Huang S. Curcumin inhibits the mammalian target of rapamycin-mediated signaling pathways in cancer cells. Int J Cancer 2006; 119:757-64. [PMID: 16550606 DOI: 10.1002/ijc.21932] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Curcumin (diferuloylmethane), a polyphenol natural product of the plant Curcuma longa, is undergoing early clinical trials as a novel anticancer agent. However, the anticancer mechanism of curcumin remains to be elucidated. Here we show that curcumin inhibited growth of rhabdomyosarcoma cells (Rh1 and Rh30) (IC50 = 2-5 microM) and arrested cells in G1 phase of the cell cycle. Curcumin also induced apoptosis and inhibited the basal or type I insulin-like growth factor-induced motility of the cells. At physiological concentrations (2.5 microM), curcumin rapidly inhibited phosphorylation of the mammalian target of rapamycin (mTOR) and its downstream effector molecules, p70 S6 kinase 1 (S6K1) and eukaryotic initiation factor 4E (eIF4E) binding protein 1 (4E-BP1), in a panel of cell lines (Rh1, Rh30, DU145, MCF-7 and Hela). Curcumin also inhibited phosphorylation of Akt in the cells, but only at high concentrations (>40 microM). The data suggest that curcumin may execute its anticancer activity primarily by blocking mTOR-mediated signaling pathways in the tumor cells.
Collapse
Affiliation(s)
- Christopher S Beevers
- Department of Biochemistry and Molecular Biology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | | | | | | |
Collapse
|
6
|
Abstract
Cholecystokinin and gastrin receptors (CCK1R and CCK2R) are G protein-coupled receptors that have been the subject of intensive research in the last 10 years with corresponding advances in the understanding of their functioning and physiology. In this review, we first describe general properties of the receptors, such as the different signaling pathways used to exert short- and long-term effects and the structural data that explain their binding properties, activation, and regulation. We then focus on peripheral cholecystokinin receptors by describing their tissue distribution and physiological actions. Finally, pathophysiological peripheral actions of cholecystokinin receptors and their relevance in clinical disorders are reviewed.
Collapse
Affiliation(s)
- Marlène Dufresne
- Institut National de la Santé et de la Recherche Médicale U. 531, Institut Louis Bugnard, Centre Hospitalier Universitaire Rangueil, France
| | | | | |
Collapse
|
7
|
N/A, 李 茹, 陈 蔚. N/A. Shijie Huaren Xiaohua Zazhi 2006; 14:979-984. [DOI: 10.11569/wcjd.v14.i10.979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
8
|
Shantz LM. Transcriptional and translational control of ornithine decarboxylase during Ras transformation. Biochem J 2004; 377:257-64. [PMID: 14519103 PMCID: PMC1223852 DOI: 10.1042/bj20030778] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2003] [Revised: 09/29/2003] [Accepted: 09/30/2003] [Indexed: 11/17/2022]
Abstract
ODC (ornithine decarboxylase) activity is induced following ras activation. However, the Ras effector pathways responsible are unknown. These experiments used NIH-3T3 cells expressing partial-loss-of-function Ras mutants to activate selectively pathways downstream of Ras and examined the contribution of each pathway to ODC induction. Overexpression of Ras12V, a constitutively active mutant, resulted in ODC activities up to 20-fold higher than controls. Stable transfections of Ras partial-loss-of-function mutants and constitutively active forms of MEK (MAPK kinase) and Akt indicated that activation of more than one Ras effector pathway is necessary for the complete induction of ODC activity. The increase in ODC activity in Ras12V-transformed cells is not owing to a substantial change in ODC protein half-life, which increased by <2-fold. Northern-blot analysis and reporter assays suggested that the mechanism of ODC induction involves both a modest increase in the transcription of ODC mRNA and a much more considerable increase in the translation of mRNA into protein. ODC transcription was controlled through a pathway dependent on Raf/MEK/ERK (where ERK stands for extracellular-signal-regulated kinase) activation, whereas activation of the phosphoinositide 3-kinase and the Raf/MEK/ERK pathways were necessary for translational regulation of ODC. The increase in ODC synthesis was accompanied by changes in phosphorylation of eukaryotic initiation factor 4E and its binding protein 4E-BP1. Results show that the phosphoinositide 3-kinase pathway regulates phosphorylation of both proteins, whereas the Raf/MEK/ERK pathway affects only the eukaryotic initiation factor 4E phosphorylation.
Collapse
Affiliation(s)
- Lisa M Shantz
- Department of Cellular and Molecular Physiology, The Milton S. Hershey Medical Center, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| |
Collapse
|
9
|
Abstract
Over the past few years, the target of rapamycin (TOR) pathway has been implicated in the control of translation, both in yeast and in higher eukaryotes. In this review, we provide an overview of translation in eukaryotes, and discuss the mechanisms and advantages of the regulation of translation. We then describe how the TOR pathway can modulate translation in yeast and in mammals, through the modulation of the phosphorylation of key translation components, and the regulation of the abundance of ribosomes and translation factors.
Collapse
Affiliation(s)
- A C Gingras
- Department of Biochemistry, McGill Cancer Centre, McGill University, 3655 Promenade Sir-William-Osler, Montréal, Québec, H3G 1Y6, Canada
| | | | | |
Collapse
|
10
|
Galés C, Sanchez D, Poirot M, Pyronnet S, Buscail L, Cussac D, Pradayrol L, Fourmy D, Silvente-Poirot S. High tumorigenic potential of a constitutively active mutant of the cholecystokinin 2 receptor. Oncogene 2003; 22:6081-9. [PMID: 12955087 DOI: 10.1038/sj.onc.1206823] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The cholecystokinin 2 receptor (CCK2R) increases proliferation of normal and neoplastic gastrointestinal cells and activates various mitogenic signaling pathways when stimulated by gastrin. To study the incidence of permanent activation of this receptor in tumorigenicity, a constitutively active mutant was generated by replacing residue Glu151 in the conserved E/DRY motif by Ala. Expression of the E151A-CCK2R mutant in NIH-3T3 cells causes ligand-independent activation of phospholipase C and ornithine decarboxylase, two enzymes critical for mitogenesis. Strikingly, the constitutive activity of this mutant was associated with dramatic alteration of NIH-3T3 cell morphology, enhanced cell proliferation and invasion. Moreover, injection of cells expressing E151A-CCK2R in nude mice resulted in the development of large and rapidly growing tumors. By contrast, none of these effects was observed with cells expressing the wild-type CCK2R, indicating that the tumorigenic properties of the E151A-CCK2R mutant is the result of its constitutive activation. To date, this is the first report that provides evidence for the high tumorigenic effect of a constitutively active CCK2R mutant, thus raising a potential role of the CCK2R in human cancer.
Collapse
Affiliation(s)
- Céline Galés
- INSERM U531, Institut Louis Bugnard, CHU Rangueil, 31403 Toulouse Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
González-Yanes C, Sánchez-Margalet V. Pancreastatin, a chromogranin A-derived peptide, activates protein synthesis signaling cascade in rat adipocytes. Biochem Biophys Res Commun 2002; 299:525-31. [PMID: 12459169 DOI: 10.1016/s0006-291x(02)02682-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pancreastatin (PST), a chromogranin A-derived peptide, has been found to modulate glucose, lipid, and protein metabolism in rat adipocytes. PST has an overall counterregulatory effect on insulin action by activating a specific receptor-effector system (Galpha(q/11) protein-PLC-beta-PKC(classical)). However, PST stimulates both basal and insulin-mediated protein synthesis in rat adipocytes. In order to further investigate the mechanisms underlying the effect of PST stimulating protein synthesis, we sought to study the regulation of different components of the core translational machinery by the signaling triggered by PST. Thus, we studied ribosomal p70 S6 kinase, phosphorylation of the cap-binding protein (initiation factor) eIF4E, and phosphorylation of the eIF4E-binding protein 4E-BP1 (PHAS-I). We have found that PST stimulates the S6 kinase activity, as assessed by kinase assay using specific immunoprecipitates and substrate. This effect was checked by Western blot with specific antibodies against the phosphorylated S6 kinase. Thus, PST dose-dependently stimulates Thr421/Ser424 phosphorylation of S6 kinase. Moreover, PST promotes phosphorylation of regulatory sites in 4E-BP1 (PHAS-I) (Thr37, Thr46). The initiation factor eIF4E itself, whose activity is also increased upon phosphorylation, is phosphorylated in Ser209 by PST stimulation. Finally, we have found that these effects of PST on S6 kinase and the translation machinery can be blocked by preventing the activation of PKC. These results indicate that PST stimulates protein synthesis machinery by activating PKC and provides some evidence of the molecular mechanisms involved, i.e., the activation of S6K and the phosphorylation of 4E-BP1 (PHAS-I) and the initiation factor eIF4E.
Collapse
Affiliation(s)
- Carmen González-Yanes
- Department of Medical Biochemistry and Molecular Biology, Medical School, Investigation Unit, Virgen Macarena University Hospital, Av. Sánchez Pizjuan, 4. Seville 41009, Spain
| | | |
Collapse
|
12
|
Williams JA, Sans MD, Tashiro M, Schäfer C, Bragado MJ, Dabrowski A. Cholecystokinin activates a variety of intracellular signal transduction mechanisms in rodent pancreatic acinar cells. PHARMACOLOGY & TOXICOLOGY 2002; 91:297-303. [PMID: 12688372 DOI: 10.1034/j.1600-0773.2002.910606.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cholecystokinin (CCK) acting through its G protein-coupled receptor is now known to activate a variety of intracellular signaling mechanisms and thereby regulate a complex array of cellular functions in pancreatic acinar cells. The best studied mechanism is the coupling through heterotrimeric G proteins of the Gq family to activate a phospholipase C leading to an increase in inositol trisphosphate and release of intracellular Ca2+. This pathway along with protein kinase C activation in response to the increase in diacylglycerol stimulates the secretion of digestive enzymes by the process of exocytosis. CCK also activates signaling pathways in acini more related to other processes. The three mitogen activated protein kinase cascades leading to ERKs, JNKs and p38 MAPK are all activated by CCK. CCK activates the ERK cascade by PKC activation of Raf which in turn activates MEK and ERKs. JNKs are activated by a distinct mechanism which requires higher concentrations of CCK. Both ERKs and JNKs are presumed to regulate gene expression. CCK activation of p38 MAPK also plays a role in regulating the actin cytoskeleton through phosphorylation of the small heat shock protein HSP27. The PI3K-PKB-mTOR pathway is activated by CCK and plays a major role in regulating protein synthesis at the translational level. This includes both activation of p70 S6K leading to phosphorylation of ribosomal protein S6 and the phosphorylation of the binding protein for initiation factor 4E leading to formation of the mRNA cap binding complex. Other signaling pathways activated by CCK receptors include NF-kappaB and a variety of tyrosine kinases. Further work is needed to understand how CCK receptors activate most of the above pathways and to better understand the biological events regulated by these diverse signaling pathways.
Collapse
Affiliation(s)
- John A Williams
- Department of Physiology, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Raychowdhury R, Fleming JV, McLaughlin JT, Bulitta CJ, Wang TC. Identification and characterization of a third gastrin response element (GAS-RE3) in the human histidine decarboxylase gene promoter. Biochem Biophys Res Commun 2002; 297:1089-95. [PMID: 12372397 DOI: 10.1016/s0006-291x(02)02345-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In human gastric cancer cells the human histidine decarboxylase gene is regulated by gastrin through two overlapping cis-acting elements known as gastrin response elements 1&2 (GAS-RE1, GAS-RE2) [J. Biol. Chem. 274 (1999) 20961]. Here, we report the identification and characterization of a third element GAS-RE3 that was localized to a region +28 to +48 downstream of the transcriptional start site (+1). Gastrin stimulation induced a rapid increase in binding to the element of a novel nuclear factor named gastrin response element-binding protein 3 (GAS-REBP3). Block mutations in the GAS-RE3 sequence (+38GTGCG(+42) to +38TAAGT(+42)) led to reduced promoter activity and decreased binding in EMSA. UV cross-linking studies and Southwestern blot analysis with wildtype and mutant GAS-RE3 showed that GAS-REBP3 was a approximately 110kDa protein. Thus, gastrin-mediated regulation of HDC gene expression appears to be mediated by a complex cis-acting element, which binds at least three distinct nuclear factors.
Collapse
Affiliation(s)
- Raktima Raychowdhury
- Harvard Medical School and Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
14
|
Abstract
Gastrin, produced by G cells in the gastric antrum, has been identified as the circulating hormone responsible for stimulation of acid secretion from the parietal cell. Gastrin also acts as a potent cell-growth factor that has been implicated in a variety of normal and abnormal biological processes including maintenance of the gastric mucosa, proliferation of enterochromaffin-like cells, and neoplastic transformation. Here, we review the models used to study the effects of gastrin on cell proliferation in vivo and in vitro with respect to mechanisms by which this hormone might influence normal and cancerous cell growth. Specifically, human and animal models of hypergastrinemia and hypogastrinemia have been described in vivo, and several cells that express cholecystokinin (CCK)B/gastrin receptors have been used for analysis of intracellular signaling pathways initiated by biologically active amidated gastrins. The binding of gastrin or CCK to their common cognate receptor triggers the activation of multiple signal transduction pathways that relay the mitogenic signal to the nucleus and promote cell proliferation. A rapid increase in the synthesis of lipid-derived second messengers with subsequent activation of protein phosphorylation cascades, including mitogen-activated protein kinase, is an important early response to these signaling peptides. Gastrin and CCK also induce rapid Rho-dependent actin remodeling and coordinate tyrosine phosphorylation of cellular proteins including the non-receptor tyrosine kinases p125fak and Src and the adaptor proteins p130cas and paxillin. This article reviews recent advances in defining the role of gastrin and CCK in the control of cell proliferation in normal and cancer cells and in dissecting the signal transduction pathways that mediate the proliferative responses induced by these hormonal GI peptides in a variety of normal and cancer cell model systems.
Collapse
Affiliation(s)
- E Rozengurt
- Department of Medicine, School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California, Los Angeles, California 90095, USA.
| | | |
Collapse
|
15
|
Williams JA. Intracellular signaling mechanisms activated by cholecystokinin-regulating synthesis and secretion of digestive enzymes in pancreatic acinar cells. Annu Rev Physiol 2001; 63:77-97. [PMID: 11181949 DOI: 10.1146/annurev.physiol.63.1.77] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The intracellular signaling mechanisms by which cholecystokinin (CCK) and other secretagogues regulate pancreatic acinar function are more complex than originally realized. CCK couples through heterotrimeric G proteins of the Gq family to lead to an increase in intracellular free Ca2+, which shows spatial and temporal patterns of signaling. The actions of Ca2+ are mediated in part by activation of a number of Ca2+-activated protein kinases and the protein phosphatase calcineurin. By the process of exocytosis the intracellular messengers Ca2+, diacylglycerol, and cAMP activate the release of the zymogen granule content in a manner that is poorly understood. This fusion event most likely involves SNARE and Rab proteins present on zymogen granules and cellular membrane domains. More likely related to nonsecretory aspects of cell function, CCK also activates three MAPK cascades leading to activation of ERKs, JNKs, and p38 MAPK. Although the function of these pathways is not well understood, ERKs are probably related to cell growth, and through phosphorylation of hsp27, p38 can affect the actin cytoskeleton. The PI3K (phosphatidylinositol 3-kinase)-mTOR (mammalian target of rapamycin) pathway is important for regulation of acinar cell protein synthesis because it leads to both activation of p70S6K and regulation of the availability of eIF4E in response to CCK. CCK also activates a number of tyrosyl phosphorylation events including that of p125FAK and other proteins associated with focal adhesions.
Collapse
Affiliation(s)
- J A Williams
- Department of Physiology, University of Michigan, Ann Arbor, Michigan 48109-0622, USA.
| |
Collapse
|
16
|
Affiliation(s)
- A C Gingras
- Department of Biochemistry, McGill University, Montréal, Québec H3G 1Y6, Canada
| | | | | |
Collapse
|
17
|
Gingras AC, Raught B, Sonenberg N. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 2000; 68:913-63. [PMID: 10872469 DOI: 10.1146/annurev.biochem.68.1.913] [Citation(s) in RCA: 1642] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Eukaryotic translation initiation factor 4F (eIF4F) is a protein complex that mediates recruitment of ribosomes to mRNA. This event is the rate-limiting step for translation under most circumstances and a primary target for translational control. Functions of the constituent proteins of eIF4F include recognition of the mRNA 5' cap structure (eIF4E), delivery of an RNA helicase to the 5' region (eIF4A), bridging of the mRNA and the ribosome (eIF4G), and circularization of the mRNA via interaction with poly(A)-binding protein (eIF4G). eIF4 activity is regulated by transcription, phosphorylation, inhibitory proteins, and proteolytic cleavage. Extracellular stimuli evoke changes in phosphorylation that influence eIF4F activity, especially through the phosphoinositide 3-kinase (PI3K) and Ras signaling pathways. Viral infection and cellular stresses also affect eIF4F function. The recent determination of the structure of eIF4E at atomic resolution has provided insight about how translation is initiated and regulated. Evidence suggests that eIF4F is also implicated in malignancy and apoptosis.
Collapse
Affiliation(s)
- A C Gingras
- Department of Biochemistry McGill University, Montréal, Québec, Canada.
| | | | | |
Collapse
|
18
|
Fleming JV, Wang TC. Amino- and carboxy-terminal PEST domains mediate gastrin stabilization of rat L-histidine decarboxylase isoforms. Mol Cell Biol 2000; 20:4932-47. [PMID: 10848618 PMCID: PMC85944 DOI: 10.1128/mcb.20.13.4932-4947.2000] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Control of enzymatic function by peptide hormones can occur at a number of different levels and can involve diverse pathways that regulate cleavage, intracellular trafficking, and protein degradation. Gastrin is a peptide hormone that binds to the cholecystokinin B-gastrin receptor and regulates the activity of L-histidine decarboxylase (HDC), the enzyme that produces histamine. Here we show that gastrin can increase the steady-state levels of at least six HDC isoforms without affecting HDC mRNA levels. Pulse-chase experiments indicated that HDC isoforms are rapidly degraded and that gastrin-dependent increases are due to enhanced isoform stability. Deletion analysis identified two PEST domains (PEST1 and PEST2) and an intracellular targeting domain (ER2) which regulate HDC protein expression levels. Experiments with PEST domain fusion proteins demonstrated that PEST1 and PEST2 are strong and portable degradation-promoting elements which are positively regulated by both gastrin stimulation and proteasome inhibition. A chimeric protein containing the PEST domain of ornithine decarboxylase was similarly affected, indicating that gastrin can regulate the stability of other PEST domain-containing proteins and does so independently of antizyme/antizyme inhibitor regulation. At the same time, endoplasmic reticulum localization of a fluorescent chimera containing the ER2 domain of HDC was unaltered by gastrin stimulation. We conclude that gastrin stabilization of HDC isoforms is dependent upon two transferable and sequentially unrelated PEST domains that regulate degradation. These experiments revealed a novel regulatory mechanism by which a peptide hormone such as gastrin can disrupt the degradation function of multiple PEST-domain-containing proteins.
Collapse
Affiliation(s)
- J V Fleming
- Department of Medicine, Harvard Medical School, and Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | | |
Collapse
|
19
|
Herbert TP, Kilhams GR, Batty IH, Proud CG. Distinct signalling pathways mediate insulin and phorbol ester-stimulated eukaryotic initiation factor 4F assembly and protein synthesis in HEK 293 cells. J Biol Chem 2000; 275:11249-56. [PMID: 10753934 DOI: 10.1074/jbc.275.15.11249] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stimulation of serum-starved human embryonic kidney (HEK) 293 cells with either the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), or insulin resulted in increases in the phosphorylation of 4E-BP1 and p70 S6 kinase, eIF4F assembly, and protein synthesis. All these effects were blocked by rapamycin, a specific inhibitor of mTOR. Phosphatidylinositol 3-kinase and protein kinase B were activated by insulin but not by TPA. Therefore TPA can induce eIF4F assembly, protein synthesis, and the phosphorylation of p70 S6 kinase and 4E-BP1 independently of both phosphatidylinositol 3-kinase and protein kinase B. Using two structurally unrelated inhibitors of MEK (PD098059 and U0126), we provide evidence that Erk activation is important in TPA stimulation of eIF4F assembly and the phosphorylation of p70 S6 kinase and 4E-BP1 and that basal MEK activity is important for basal, insulin, and TPA-stimulated protein synthesis. Transient transfection of constitutively active mitogen-activated protein kinase interacting kinase 1 (the eIF4E kinase) indicated that inhibition of protein synthesis and eIF4F assembly by PD098059 is not through inhibition of eIF4E phosphorylation but of other signals emanating from MEK. This report also provides evidence that increased eIF4E phosphorylation alone does not affect the assembly of the eIF4F complex or general protein synthesis.
Collapse
Affiliation(s)
- T P Herbert
- Department of Anatomy, The Medical Sciences Institute, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom.
| | | | | | | |
Collapse
|
20
|
Abstract
The eukaryotic mRNA 5' cap structure facilitates translation. However, cap-dependent translation is impaired at mitosis, suggesting a cap-independent mechanism for mRNAs translated during mitosis. Translation of ornithine decarboxylase (ODC), the rate-limiting enzyme in the biosynthesis of polyamines, peaks twice during the cell cycle, at the G1/S transition and at G2/M. Here, we describe a cap-independent internal ribosome entry site (IRES) in the ODC mRNA that functions exclusively at G2/M. This ensures elevated levels of polyamines, which are implicated in mitotic spindle formation and chromatin condensation. c-myc mRNA also contains an IRES that functions during mitosis. Thus, IRES-dependent translation is likely to be a general mechanism to synthesize short-lived proteins even at mitosis, when cap-dependent translation is interdicted.
Collapse
Affiliation(s)
- S Pyronnet
- Department of Biochemistry and McGill Cancer Center, McGill University, Montréal, Qúebec, Canada
| | | | | |
Collapse
|
21
|
Rybkin II, Cross ME, McReynolds EM, Lin RZ, Ballou LM. alpha(1A) adrenergic receptor induces eukaryotic initiation factor 4E-binding protein 1 phosphorylation via a Ca(2+)-dependent pathway independent of phosphatidylinositol 3-kinase/Akt. J Biol Chem 2000; 275:5460-5. [PMID: 10681523 DOI: 10.1074/jbc.275.8.5460] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphorylation of the translation repressor eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) is thought to be partly responsible for increased protein synthesis induced by growth factors. This study investigated the effect of a G(q)-coupled receptor on protein synthesis and the phosphorylation state and function of 4E-BP1 in Rat-1 fibroblasts expressing the human alpha(1A) adrenergic receptor. Treatment of cells with phenylephrine (PE), a specific alpha(1) adrenergic receptor agonist, increased protein synthesis and induced the phosphorylation of 4E-BP1 and its release from translation initiation factor 4E. Although the PE-induced phosphorylation of 4E-BP1 was blocked by the phosphatidylinositol 3-kinase inhibitor LY294002, neither phosphatidylinositol 3-kinase nor Akt, its downstream effector, is activated in cells treated with PE (Ballou, L. M., Cross, M. E., Huang, S., McReynolds, E. M., Zhang, B. X., and Lin, R. Z., J. Biol. Chem. 275, 4803-4809). The effect of PE on 4E-BP1 phosphorylation was also abolished in cells depleted of intracellular Ca(2+) and in cells pretreated with calmodulin antagonists. By contrast, phosphorylation of 4E-BP1 still occurred in cells in which the Ca(2+)- and diacylglycerol-dependent isoforms of protein kinase C were down-regulated by prolonged exposure to a phorbol ester. We conclude that activation of the alpha(1A) adrenergic receptor in Rat-1 fibroblasts leads to phosphorylation of 4E-BP1 via a pathway that is Ca(2+)- and calmodulin-dependent. Phosphatidylinositol 3-kinase, Akt, and phorbol ester-sensitive protein kinase C isoforms do not appear to be required in this signaling pathway.
Collapse
Affiliation(s)
- I I Rybkin
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78284, USA
| | | | | | | | | |
Collapse
|
22
|
Desbois C, Huërou-Luron IL, Dufresne M, Estival A, Clerc P, Romé V, Clemente F, Guilloteau P, Fourmy D. The CCKB/gastrin receptor is coupled to the regulation of enzyme secretion, protein synthesis and p70 S6 kinase activity in acinar cells from ElasCCKB transgenic mice. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 266:1003-10. [PMID: 10583395 DOI: 10.1046/j.1432-1327.1999.00939.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In order to determine which physiological functions can be regulated by the pancreatic CCKB/gastrin receptor, studies were carried out on pancreatic acini from mice expressing transgenic CCKB/gastrin receptors in the exocrine pancreas (ElasCCKB mice). Acini were stimulated by sulfated gastrin in the presence of SR 27897 (1.8 microM), blocking endogenous CCKA receptors. After 30 min incubation with gastrin, the secretion of chymotrypsinogen and amylase showed superimposable monophasic dose-response curves. Enzyme secretion was detectable and maximal at 100 pM and 1 nM of gastrin, respectively. No increase in chymotrypsinogen and amylase mRNAs was detected for doses of gastrin which specifically occupy the CCKB/gastrin receptor. In contrast, gastrin stimulated total protein synthesis in isolated acini from ElasCCKB mice. [35S]Methionine incorporation into total proteins was increased dose-dependently to a maximum for 30 pM gastrin and inhibited with higher doses (> 300 pM). Gastrin stimulated p70 S6 kinase activity for concentrations ranging from 10 pM to 1 nM. Gastrin-stimulated p70 S6 kinase activity and protein synthesis were blocked by rapamycin and wortmannin. Therefore, in ElasCCKB mice acinar cells, the CCKB/gastrin receptor mediates enzyme release and protein synthesis. However, a more efficient coupling of the CCKB/gastrin receptor to protein synthesis than to enzyme secretion was demonstrated. CCKB/gastrin receptor-stimulated protein synthesis likely results from an enhancement of mRNA translation and involves phosphatidyl inositol 3-kinase and p70 S6 kinase.
Collapse
Affiliation(s)
- C Desbois
- Laboratoire du fJeune Ruminant INRA, Rennes, France
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Affiliation(s)
- R E Rhoads
- Department of Biochemistry, Louisiana State University Medical Center, Shreveport, Louisiana 71130-3932, USA.
| |
Collapse
|
24
|
Abstract
The intracellular mechanisms regulating pancreatic acinar cell function are more complex than previously realized. This is probably due in part to the need to match the biosynthetic and secretory functions of the cells. Much information is available on how secretagogue receptors acutely couple through heterotrimeric G proteins to increase intracellular messengers, particularly cytoplasmic free Ca(2+), although details are still being worked out. Less is known about how Ca(2+) signals to induce fusion of zymogen granules with the apical plasma membrane. Investigation has focused on the proteins of the zymogen granule membrane, and several novel proteins have recently been identified. In addition, understanding of the three MAP kinase cascades, the mTOR-p70S6 kinase pathway, and the focal adhesion kinase pathway in acinar cells is increasing. The functions of these pathways in acini have been linked to mitogenesis, protein synthesis, and regulation of the cytoskeleton.
Collapse
Affiliation(s)
- J A Williams
- Departments of Physiology and Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA.
| |
Collapse
|
25
|
Raychowdhury R, Zhang Z, Höcker M, Wang TC. Activation of human histidine decarboxylase gene promoter activity by gastrin is mediated by two distinct nuclear factors. J Biol Chem 1999; 274:20961-9. [PMID: 10409643 DOI: 10.1074/jbc.274.30.20961] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human histidine decarboxylase gene is regulated by gastrin through a cis-acting element known as the gastrin response element (GAS-RE) that was initially localized to a site (+2 to +24) downstream of the transcriptional start site. Electrophoretic mobility shift assays using sequentially deleted DNA probes and nuclear extracts from AGS-B gastric cancer cells showed that the GAS-RE is actually composed of two overlapping binding sites (GAS-RE1, +1 to +19; and GAS-RE2, +11 to +27) that bind distinct nuclear factors. Reporter gene assays demonstrated that each element alone could confer gastrin responsiveness, but the presence of both elements was required for complete gastrin response. Stimulation of AGS-B cells with gastrin for 10-20 min resulted in a >2-fold increase in factor binding. The binding was inhibited by pretreatment of AGS-B cells with cycloheximide and the MEK1 inhibitor PD98059, indicating a requirement for protein synthesis and also indicating that activation occurs through the MEK/mitogen-activated protein kinase pathway. UV cross-linking and Southwestern blot analysis showed that GAS-RE1 bound a 52-kDa protein, whereas GAS-RE2 bound a 35-kDa protein. Hence, activation of histidine decarboxylase gene promoter activity by gastrin is most likely mediated by two separate nuclear factors.
Collapse
Affiliation(s)
- R Raychowdhury
- Gastrointestinal Unit and the Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
26
|
Asslan R, Pradines A, Pratx C, Allal C, Favre G, Le Gaillard F. Epidermal growth factor stimulates 3-hydroxy-3-methylglutaryl-coenzyme A reductase expression via the ErbB-2 pathway in human breast adenocarcinoma cells. Biochem Biophys Res Commun 1999; 260:699-706. [PMID: 10403829 DOI: 10.1006/bbrc.1999.0945] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
HMG-CoA reductase is the key enzyme for the biosynthesis of isoprenoid compounds essential for cell growth and differentiation. Its tyrosine kinase-dependent modulation has recently been suggested and described in the ErbB-2 overexpressing cell line SKBR-3 [Asslan et al. (1998) Biochem. J. 330, 241-246]. Epidermal growth factor (EGF) increased the HMG-CoA reductase activity, protein, and mRNA levels only in ErbB-2-expressing cells (SKBR-3 and MCF-7) but not in MDA-MB-468 cells that do not express ErbB-2 even though their EGF receptor was efficiently phosphorylated. Tyrphostin AG 879, a specific inhibitor of ErbB-2 tyrosine kinase activity, decreased HMG-CoA reductase activity only in cells that expressed ErbB-2. A functional EGF receptor appeared to be necessary since its inhibition by the specific tyrphostin AG 1478 abolished the EGF effects. Phosphatidylinositol 3-kinase (PI 3-kinase) might be a crucial enzyme in the signaling pathway since the specific inhibitor, LY 294002, was shown to inhibit HMG-CoA reductase activity and to completely abolish the stimulation by EGF in SKBR-3 cells.
Collapse
Affiliation(s)
- R Asslan
- Laboratoire d'Oncologie Cellulaire et Moléculaire, UPRES-EA-2048, Faculté des Sciences Pharmaceutiques and Institut Claudius Regaud, 20-24 rue du Pont Saint Pierre, Toulouse Cedex, 31052, France
| | | | | | | | | | | |
Collapse
|
27
|
Khaleghpour K, Pyronnet S, Gingras AC, Sonenberg N. Translational homeostasis: eukaryotic translation initiation factor 4E control of 4E-binding protein 1 and p70 S6 kinase activities. Mol Cell Biol 1999; 19:4302-10. [PMID: 10330171 PMCID: PMC104390 DOI: 10.1128/mcb.19.6.4302] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Eukaryotic translation initiation factor 4E (eIF4E) is the mRNA 5' cap binding protein, which plays an important role in the control of translation. The activity of eIF4E is regulated by a family of repressor proteins, the 4E-binding proteins (4E-BPs), whose binding to eIF4E is determined by their phosphorylation state. When hyperphosphorylated, 4E-BPs do not bind to eIF4E. Phosphorylation of the 4E-BPs is effected by the phosphatidylinositol (PI) 3-kinase signal transduction pathway and is inhibited by rapamycin through its binding to FRAP/mTOR (FK506 binding protein-rapamycin-associated protein or mammalian target of rapamycin). Phosphorylation of 4E-BPs can also be induced by protein synthesis inhibitors. These observations led to the proposal that FRAP/mTOR functions as a "sensor" of the translational apparatus (E. J. Brown and S. L. Schreiber, Cell 86:517-520, 1996). To test this model, we have employed the tetracycline-inducible system to increase eIF4E expression. Removal of tetracycline induced eIF4E expression up to fivefold over endogenous levels. Strikingly, upon induction of eIF4E, 4E-BP1 became dephosphorylated and the extent of dephosphorylation was proportional to the expression level of eIF4E. Dephosphorylation of p70(S6k) also occurred upon eIF4E induction. In contrast, the phosphorylation of Akt, an upstream effector of both p70(S6k) and 4E-BP phosphorylation, was not affected by eIF4E induction. We conclude that eIF4E engenders a negative feedback loop that targets a component of the PI 3-kinase signalling pathway which lies downstream of PI 3-kinase.
Collapse
Affiliation(s)
- K Khaleghpour
- Department of Biochemistry and McGill Cancer Center, McGill University, Montreal, Quebec, Canada H3G 1Y6
| | | | | | | |
Collapse
|
28
|
Abstract
A key regulatory step in translation is initiation, or the recruitment of the translational machinery to the 5' end of mRNA. The 5' terminus of most mRNAs is demarcated by a m7GpppN cap (where m is a methyl group, and N is any nucleotide). The m7 cap is essential for the translation of most mRNAs, as it directs the translational machinery to the 5' end of the mRNA via its interaction with the cap binding protein, the eukaryotic translation initiation factor 4E (eIF4E). eIF4E is the limiting initiation factor in most cells. Thus, eIF4E activity plays a principal role in determining global translation rates. Consistent with this role, eIF4E is required for cell cycle progression, exhibits anti-apoptotic activity, and, when overexpressed, transforms cells. This review focuses upon the various mechanisms utilized in the regulation of eIF4E activity. (1) eIF4E is regulated transcriptionally; it is one of the few identified transcriptional targets of c-myc. (2) eIF4E is phosphorylated following activation of the MNK1 kinase, a substrate of the ERK and p38 MAPKs. The recent determination of the three-dimensional structure of eIF4E bound to a m7 cap analog has provided insight into the mechanisms involved in the regulation of the eIF4E-cap and eIF4E-mRNA interactions. As suggested by the crystal structure, phosphorylation of eIF4E may enhance its affinity for mRNA. (3) eIF4E is also regulated through binding to a family of translational repressor proteins. Interaction with the 4E-BPs prevents the incorporation of eIF4E into an active translation initiation complex, and thus, inhibits cap-dependent translation. This inhibitory interaction is relieved following phosphorylation of the 4E-BPs by a PI3K-dependent pathway, involving signalling by the anti-apoptotic kinase Akt/PKB, as well as FRAP/mTOR.
Collapse
Affiliation(s)
- B Raught
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
29
|
Abstract
There is now a growing body of evidence which suggests links between the regulation of protein synthesis and the disruption of cell behaviour that typifies cancer. This directed issue of the International Journal of Biochemistry and Cell Biology presents several review articles of relevance to this field. The topics covered include the significance of the regulation and overexpression of polypeptide chain initiation factors for cell transformation and malignancy, the role of mRNA structure in the control of synthesis of key growth regulatory proteins, the actions of the eIF2 alpha-specific protein kinase PKR in the control cell growth and apoptosis, and the involvement of the elongation factor eEF1 in oncogenesis. The purpose of this article is to give an overview of the field and to indicate where we may expect developments to occur in the next few years.
Collapse
Affiliation(s)
- M J Clemens
- Department of Biochemistry, St George's Hospital Medical School, London, UK.
| | | |
Collapse
|
30
|
Abstract
In addition to its fundamental role in stimulating gastric acid secretion, the peptide hormone gastrin induces growth-promoting effects on diversity of target cells. Various mechanisms, including endocrine, paracrine, and autocrine, have been proposed for gastrin's growth-promoting actions. The mitogenic effects of gastrin are mediated by specific cell surface receptors activated after gastrin binding. The functionally defined receptors for gastrin include cholecystokinin A (CCKA) receptor, which is discriminating for sulfated CCK8; cholecystokinin B (CCKB)/gastrin receptor, which binds gastrin17 sulfated, and nonsulfated CCK8 with nearly equal affinities; cholecystokinin C (CCKC), which is a low-affinity gastrin binding protein; and novel, high-affinity receptors selective for amidated gastrin, processing intermediates of gastrin, or both. The signaling pathways mediating gastrin's stimulation of the CCKB/gastrin receptor have been progressively outlined, and the pathways mediating other receptors have been slowly emerging. Engagement of the gastrin receptor initiates various biochemical and molecular events, including recruitment and activation of tyrosine kinases, activation of the phospholipase C signaling pathway leading to phosphoinositide breakdown, intracellular calcium mobilization and protein kinase C stimulation, activation of the mitogen-activated protein kinase pathway, and induction of early response genes. Current emphasis is on understanding the functional significance of processing intermediate forms of gastrin, and the receptor subtypes and pathways that promote the trophic/mitogenic effects of the different molecular forms of gastrin.
Collapse
Affiliation(s)
- R R Yassin
- Department of Medicine, MCP Hahnemann University, Philadelphia, PA 19102-1192, USA
| |
Collapse
|