1
|
Morino-Koga S, Yokomizo T. Deciphering hematopoietic stem cell development: key signaling pathways and mechanisms. Front Cell Dev Biol 2024; 12:1510198. [PMID: 39717844 PMCID: PMC11663937 DOI: 10.3389/fcell.2024.1510198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/22/2024] [Indexed: 12/25/2024] Open
Abstract
Most blood cells derive from hematopoietic stem cells (HSCs), originating from endothelial cells. The induction of HSCs from endothelial cells occurs during mid-gestation, and research has revealed multiple steps in this induction process. Hemogenic endothelial cells emerge within the endothelium, transition to hematopoietic cells (pre-HSCs), and subsequently mature into functional HSCs. Reports indicate transcription factors and external signals are involved in these processes. In this review, we discuss the timing and role of these transcription factors and summarize the external signals that have demonstrated efficacy in an in vitro culture. A precise understanding of the signals at each step is expected to advance the development of methods for inducing HSCs from pluripotent stem cells.
Collapse
Affiliation(s)
- Saori Morino-Koga
- Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Tomomasa Yokomizo
- Microscopic and Developmental Anatomy, Tokyo Women’s Medical University, Tokyo, Japan
| |
Collapse
|
2
|
Krenn PW, Montanez E, Costell M, Fässler R. Integrins, anchors and signal transducers of hematopoietic stem cells during development and in adulthood. Curr Top Dev Biol 2022; 149:203-261. [PMID: 35606057 DOI: 10.1016/bs.ctdb.2022.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hematopoietic stem cells (HSCs), the apex of the hierarchically organized blood cell production system, are generated in the yolk sac, aorta-gonad-mesonephros region and placenta of the developing embryo. To maintain life-long hematopoiesis, HSCs emigrate from their site of origin and seed in distinct microenvironments, called niches, of fetal liver and bone marrow where they receive supportive signals for self-renewal, expansion and production of hematopoietic progenitor cells (HPCs), which in turn orchestrate the production of the hematopoietic effector cells. The interactions of hematopoietic stem and progenitor cells (HSPCs) with niche components are to a large part mediated by the integrin superfamily of adhesion molecules. Here, we summarize the current knowledge regarding the functional properties of integrins and their activators, Talin-1 and Kindlin-3, for HSPC generation, function and fate decisions during development and in adulthood. In addition, we discuss integrin-mediated mechanosensing for HSC-niche interactions, ex vivo protocols aimed at expanding HSCs for therapeutic use, and recent approaches targeting the integrin-mediated adhesion in leukemia-inducing HSCs in their protecting, malignant niches.
Collapse
Affiliation(s)
- Peter W Krenn
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany; Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, Salzburg, Austria.
| | - Eloi Montanez
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona and Bellvitge Biomedical Research Institute, L'Hospitalet del Llobregat, Barcelona, Spain
| | - Mercedes Costell
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, Burjassot, Spain; Institut Universitari de Biotecnologia i Biomedicina, Universitat de València, Burjassot, Spain
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
3
|
Ueda T, Kanai A, Komuro A, Amano H, Ota K, Honda M, Kawazu M, Okada H. KDM4B promotes acute myeloid leukemia associated with AML1-ETO by regulating chromatin accessibility. FASEB Bioadv 2021; 3:1020-1033. [PMID: 34938963 PMCID: PMC8664044 DOI: 10.1096/fba.2021-00030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 11/11/2022] Open
Abstract
Epigenetic alterations of chromatin structure affect chromatin accessibility and collaborate with genetic alterations in the development of cancer. Lysine demethylase 4B (KDM4B) has been identified as a JmjC domain-containing epigenetic modifier that possesses histone demethylase activity. Although recent studies have demonstrated that KDM4B positively regulates the pathogenesis of multiple types of solid tumors, the tissue specificity and context dependency have not been fully elucidated. In this study, we investigated gene expression profiles established from clinical samples and found that KDM4B is elevated specifically in acute myeloid leukemia (AML) associated with chromosomal translocation 8;21 [t(8;21)], which results in a fusion of the AML1 and the eight-twenty-one (ETO) genes to generate a leukemia oncogene, AML1-ETO fusion transcription factor. Short hairpin RNA-mediated KDM4B silencing significantly reduced cell proliferation in t(8;21)-positive AML cell lines. Meanwhile, KDM4B silencing suppressed the expression of AML1-ETO-inducible genes, and consistently perturbed chromatin accessibility of AML1-ETO-binding sites involving altered active enhancer marks and functional cis-regulatory elements. Notably, transduction of murine KDM4B orthologue mutants followed by KDM4B silencing demonstrated a requirement of methylated-histone binding modules for a proliferative surge. To address the role of KDM4B in leukemia development, we further generated and analyzed Kdm4b conditional knockout mice. As a result, Kdm4b deficiency attenuated clonogenic potential mediated by AML1-ETO and delayed leukemia progression in vivo. Thus, our results highlight a tumor-promoting role of KDM4B in AML associated with t(8;21).
Collapse
Affiliation(s)
- Takeshi Ueda
- Department of BiochemistryKindai University Faculty of MedicineOsakasayamaJapan
- Graduate School of Medical SciencesKindai University Faculty of MedicineOsakasayamaJapan
| | - Akinori Kanai
- Department of Molecular OncologyResearch Institute for Radiation Biology and MedicineHiroshima UniversityHiroshimaJapan
| | - Akiyoshi Komuro
- Department of BiochemistryKindai University Faculty of MedicineOsakasayamaJapan
| | - Hisayuki Amano
- Department of BiochemistryKindai University Faculty of MedicineOsakasayamaJapan
| | - Kazushige Ota
- Department of BiochemistryKindai University Faculty of MedicineOsakasayamaJapan
| | - Masahiko Honda
- Department of BiochemistryKindai University Faculty of MedicineOsakasayamaJapan
| | - Masahito Kawazu
- Division of Cellular SignalingNational Cancer Center Research InstituteTokyoJapan
| | - Hitoshi Okada
- Department of BiochemistryKindai University Faculty of MedicineOsakasayamaJapan
- Graduate School of Medical SciencesKindai University Faculty of MedicineOsakasayamaJapan
- Anti‐Aging CenterKindai UniversityHigashi‐OsakaJapan
| |
Collapse
|
4
|
Jeon H, Asano K, Wakimoto A, Kulathunga K, Tran MTN, Nakamura M, Yokomizo T, Hamada M, Takahashi S. Generation of reconstituted hemato-lymphoid murine embryos by placental transplantation into embryos lacking HSCs. Sci Rep 2021; 11:4374. [PMID: 33623082 PMCID: PMC7902833 DOI: 10.1038/s41598-021-83652-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/28/2021] [Indexed: 11/28/2022] Open
Abstract
In order to increase the contribution of donor HSC cells, irradiation and DNA alkylating agents have been commonly used as experimental methods to eliminate HSCs for adult mice. But a technique of HSC deletion for mouse embryo for increase contribution of donor cells has not been published. Here, we established for the first time a procedure for placental HSC transplantation into E11.5 Runx1-deficient mice mated with G1-HRD-Runx1 transgenic mice (Runx1-/-::Tg mice) that have no HSCs in the fetal liver. Following the transplantation of fetal liver cells from mice (allogeneic) or rats (xenogeneic), high donor cell chimerism was observed in Runx1-/-::Tg embryos. Furthermore, chimerism analysis and colony assay data showed that donor fetal liver hematopoietic cells contributed to both white blood cells and red blood cells. Moreover, secondary transplantation into adult recipient mice indicated that the HSCs in rescued Runx1-/-::Tg embryos had normal abilities. These results suggest that mice lacking fetal liver HSCs are a powerful tool for hematopoiesis reconstruction during the embryonic stage and can potentially be used in basic research on HSCs or xenograft models.
Collapse
Affiliation(s)
- Hyojung Jeon
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.,Laboratory of Stem Cell Therapy, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Keigo Asano
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Arata Wakimoto
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Kaushalya Kulathunga
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.,Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.,Department of Physiology, Faculty of Medicine, Sabaragamuwa University of Sri Lanka, P.O. Box 01, Hidellana, Ratnapura, Sri Lanka
| | - Mai Thi Nhu Tran
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Megumi Nakamura
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Tomomasa Yokomizo
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Michito Hamada
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan. .,Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan. .,Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan. .,International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
5
|
Transcription Factor RBPJ as a Molecular Switch in Regulating the Notch Response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1287:9-30. [PMID: 33034023 DOI: 10.1007/978-3-030-55031-8_2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Notch signal transduction cascade requires cell-to-cell contact and results in the proteolytic processing of the Notch receptor and subsequent assembly of a transcriptional coactivator complex containing the Notch intracellular domain (NICD) and transcription factor RBPJ. In the absence of a Notch signal, RBPJ remains at Notch target genes and dampens transcriptional output. Like in other signaling pathways, RBPJ is able to switch from activation to repression by associating with corepressor complexes containing several chromatin-modifying enzymes. Here, we focus on the recent advances concerning RBPJ-corepressor functions, especially in regard to chromatin regulation. We put this into the context of one of the best-studied model systems for Notch, blood cell development. Alterations in the RBPJ-corepressor functions can contribute to the development of leukemia, especially in the case of acute myeloid leukemia (AML). The versatile role of transcription factor RBPJ in regulating pivotal target genes like c-MYC and HES1 may contribute to the better understanding of the development of leukemia.
Collapse
|
6
|
Abstract
Specification of multipotent blood precursor cells in postnatal mice to become committed T-cell precursors involves a gene regulatory network of several interacting but functionally distinct modules. Many links of this network have been defined by perturbation tests and by functional genomics. However, using the network model to predict real-life kinetics of the commitment process is still difficult, partly due to the tenacity of repressive chromatin states, and to the ability of transcription factors to affect each other's binding site choices through competitive recruitment to alternative sites ("coregulator theft"). To predict kinetics, future models will need to incorporate mechanistic information about chromatin state change dynamics and more sophisticated understanding of the proteomics and cooperative DNA site choices of transcription factor complexes.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
7
|
Sarper SE, Kurosaka H, Inubushi T, Ono Minagi H, Kuremoto KI, Sakai T, Taniuchi I, Yamashiro T. Runx1-Stat3-Tgfb3 signaling network regulating the anterior palatal development. Sci Rep 2018; 8:11208. [PMID: 30046048 PMCID: PMC6060112 DOI: 10.1038/s41598-018-29681-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 06/15/2018] [Indexed: 02/07/2023] Open
Abstract
Runx1 deficiency results in an anteriorly specific cleft palate at the boundary between the primary and secondary palates and in the first rugae area of the secondary palate in mice. However, the cellular and molecular pathogenesis underlying such regional specificity remain unknown. In this study, Runx1 epithelial-specific deletion led to the failed disintegration of the contacting palatal epithelium and markedly downregulated Tgfb3 expression in the primary palate and nasal septum. In culture, TGFB3 protein rescued the clefting of the mutant. Furthermore, Stat3 phosphorylation was disturbed in the corresponding cleft regions in Runx1 mutants. The Stat3 function was manifested by palatal fusion defects in culture following Stat3 inhibitor treatment with significant downregulation of Tgfb3. Tgfb3 is therefore a critical target of Runx1 signaling, and this signaling axis could be mediated by Stat3 activation. Interestingly, the expression of Socs3, an inhibitor of Stat3, was specific in the primary palate and upregulated by Runx1 deficiency. Thus, the involvement of Socs3 in Runx1-Tgfb3 signaling might explain, at least in part, the anteriorly specific downregulation of Tgfb3 expression and Stat3 activity in Runx1 mutants. This is the first study to show that the novel Runx1-Stat3-Tgfb3 axis is essential in anterior palatogenesis.
Collapse
Affiliation(s)
- Safiye E Sarper
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Hiroshi Kurosaka
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Toshihiro Inubushi
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Hitomi Ono Minagi
- Department of Oral-facial Disorders, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Koh-Ichi Kuremoto
- Department of Advanced Prosthodontics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takayoshi Sakai
- Department of Oral-facial Disorders, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Research Center for Allergy and Immunology, Yokohama, Japan
| | - Takashi Yamashiro
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan.
| |
Collapse
|
8
|
Hayashi Y, Harada Y, Huang G, Harada H. Myeloid neoplasms with germ line RUNX1 mutation. Int J Hematol 2017; 106:183-188. [PMID: 28534116 DOI: 10.1007/s12185-017-2258-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 05/16/2017] [Indexed: 01/23/2023]
Abstract
Familial platelet disorder with propensity to myeloid malignancies (FPD/AML) is an autosomal dominant disorder characterized by quantitative and/or qualitative platelet defects with a tendency to develop a variety of hematological malignancies. Heterozygous germ line mutations in the RUNX1 gene are responsible genetic events for FPD/AML. Notably, about half of individuals in the family with germ line mutations in RUNX1 develop overt hematological malignancies. The latency is also relatively long as an average age at diagnosis is more than 30 years. Similar to what is observed in sporadic hematological malignancies, acquired additional genetic events cooperate with inherited RUNX1 mutations to progress the overt malignant phase. Reflecting recent increased awareness of hematological malignancies with germ line mutations, FPD/AML was added in the revised WHO 2016 classification. In this review, we provide an update on FPD/AML with recent clinical and experimental findings.
Collapse
Affiliation(s)
- Yoshihiro Hayashi
- Laboratory of Oncology, School of Life Science, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.,Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Yuka Harada
- Department of Clinical Laboratory Medicine, Faculty of Health Science Technology, Bunkyo Gakuin University, Tokyo, 113-0023, Japan
| | - Gang Huang
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Hironori Harada
- Laboratory of Oncology, School of Life Science, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| |
Collapse
|
9
|
Buchrieser J, James W, Moore MD. Human Induced Pluripotent Stem Cell-Derived Macrophages Share Ontogeny with MYB-Independent Tissue-Resident Macrophages. Stem Cell Reports 2017; 8:334-345. [PMID: 28111278 PMCID: PMC5312255 DOI: 10.1016/j.stemcr.2016.12.020] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 12/24/2022] Open
Abstract
Tissue-resident macrophages, such as microglia, Kupffer cells, and Langerhans cells, derive from Myb-independent yolk sac (YS) progenitors generated before the emergence of hematopoietic stem cells (HSCs). Myb-independent YS-derived resident macrophages self-renew locally, independently of circulating monocytes and HSCs. In contrast, adult blood monocytes, as well as infiltrating, gut, and dermal macrophages, derive from Myb-dependent HSCs. These findings are derived from the mouse, using gene knockouts and lineage tracing, but their applicability to human development has not been formally demonstrated. Here, we use human induced pluripotent stem cells (iPSCs) as a tool to model human hematopoietic development. By using a CRISPR-Cas9 knockout strategy, we show that human iPSC-derived monocytes/macrophages develop in an MYB-independent, RUNX1-, and SPI1 (PU.1)-dependent fashion. This result makes human iPSC-derived macrophages developmentally related to and a good model for MYB-independent tissue-resident macrophages, such as alveolar and kidney macrophages, microglia, Kupffer cells, and Langerhans cells. Human iPSC-derived macrophages are MYB independent but RUNX1 and SPI1 dependent Transcription factor dependence genetically uncovers ontogeny of hiPSC macrophages
Collapse
Affiliation(s)
- Julian Buchrieser
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | - William James
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Michael D Moore
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
10
|
Runx Family Genes in Tissue Stem Cell Dynamics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:117-138. [PMID: 28299655 DOI: 10.1007/978-981-10-3233-2_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Runx family genes play important roles in development and cancer, largely via their regulation of tissue stem cell behavior. Their involvement in two organs, blood and skin, is well documented. This review summarizes currently known Runx functions in the stem cells of these tissues. The fundamental core mechanism(s) mediated by Runx proteins has been sought; however, it appears that there does not exist one single common machinery that governs both tissue stem cells. Instead, Runx family genes employ multiple spatiotemporal mechanisms in regulating individual tissue stem cell populations. Such specific Runx requirements have been unveiled by a series of cell type-, developmental stage- or age-specific gene targeting studies in mice. Observations from these experiments revealed that the regulation of stem cells by Runx family genes turned out to be far more complex than previously thought. For instance, although it has been reported that Runx1 is required for the endothelial-to-hematopoietic cell transition (EHT) but not thereafter, recent studies clearly demonstrated that Runx1 is also needed during the period subsequent to EHT, namely at perinatal stage. In addition, Runx1 ablation in the embryonic skin mesenchyme eventually leads to complete loss of hair follicle stem cells (HFSCs) in the adult epithelium, suggesting that Runx1 facilitates the specification of skin epithelial stem cells in a cell extrinsic manner. Further in-depth investigation into how Runx family genes are involved in stem cell regulation is warranted.
Collapse
|
11
|
Sundaresh A, Williams O. Mechanism of ETV6-RUNX1 Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:201-216. [PMID: 28299659 DOI: 10.1007/978-981-10-3233-2_13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The t(12;21)(p13;q22) translocation is the most frequently occurring single genetic abnormality in pediatric leukemia. This translocation results in the fusion of the ETV6 and RUNX1 genes. Since its discovery in the 1990s, the function of the ETV6-RUNX1 fusion gene has attracted intense interest. In this chapter, we will summarize current knowledge on the clinical significance of ETV6-RUNX1, the experimental models used to unravel its function in leukemogenesis, the identification of co-operating mutations and the mechanisms responsible for their acquisition, the function of the encoded transcription factor and finally, the future therapeutic approaches available to mitigate the associated disease.
Collapse
Affiliation(s)
- Aishwarya Sundaresh
- Cancer section, Developmental Biology and Cancer Programme, UCL Institute of Child Health, London, UK
| | - Owen Williams
- Cancer section, Developmental Biology and Cancer Programme, UCL Institute of Child Health, London, UK.
| |
Collapse
|
12
|
Krauter J, Heil G, Ganser A. The AML1/MTG8 Fusion Transcript in t(8;21) Positive AML and its Implication for the Detection of Minimal Residual Disease. Hematology 2016; 5:369-81. [DOI: 10.1080/10245332.2000.11746532] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Jürgen Krauter
- Department of Hematology/Oncology, Hannover Medical School
| | - Gerhard Heil
- Department of Hematology/Oncology, Hannover Medical School
| | - Arnold Ganser
- Department of Hematology/Oncology, Hannover Medical School
| |
Collapse
|
13
|
Ahmed T, Tsuji-Tamura K, Ogawa M. CXCR4 Signaling Negatively Modulates the Bipotential State of Hemogenic Endothelial Cells Derived from Embryonic Stem Cells by Attenuating the Endothelial Potential. Stem Cells 2016; 34:2814-2824. [PMID: 27340788 DOI: 10.1002/stem.2441] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 06/07/2016] [Accepted: 06/12/2016] [Indexed: 11/06/2022]
Abstract
Hemogenic endothelial cells (HECs) are considered to be the origin of hematopoietic stem cells (HSCs). HECs have been identified in differentiating mouse embryonic stem cells (ESCs) as VE-cadherin+ cells with both hematopoietic and endothelial potential in single cells. Although the bipotential state of HECs is a key to cell fate decision toward HSCs, the molecular basis of the regulation of the bipotential state has not been well understood. Here, we report that the CD41+ fraction of CD45- CD31+ VE-cadherin+ endothelial cells (ECs) from mouse ESCs encompasses an enriched HEC population. The CD41+ ECs expressed Runx1, Tal1, Etv2, and Sox17, and contained progenitors for both ECs and hematopoietic cells (HCs) at a high frequency. Clonal analyses of cell differentiation confirmed that one out of five HC progenitors in the CD41+ ECs possessed the bipotential state that led also to EC colony formation. A phenotypically identical cell population was found in mouse embryos, although the potential was more biased to hematopoietic fate with rare bipotential progenitors. ESC-derived bipotential HECs were further enriched in the CD41+ CXCR4+ subpopulation. Stimulation with CXCL12 during the generation of VE-cadherin+ CXCR4+ cells attenuated the EC colony-forming ability, thereby resulted in a decrease of bipotential progenitors in the CD41+ CXCR4+ subpopulation. Our results suggest that CXCL12/CXCR4 signaling negatively modulates the bipotential state of HECs independently of the hematopoietic fate. Identification of signaling molecules controlling the bipotential state is crucial to modulate the HEC differentiation and to induce HSCs from ESCs. Stem Cells 2016;34:2814-2824.
Collapse
Affiliation(s)
- Tanzir Ahmed
- Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Kiyomi Tsuji-Tamura
- Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Minetaro Ogawa
- Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
14
|
RUNX1 haploinsufficiency results in granulocyte colony-stimulating factor hypersensitivity. Blood Cancer J 2016; 6:e379. [PMID: 26745853 PMCID: PMC4742622 DOI: 10.1038/bcj.2015.105] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 01/01/2023] Open
Abstract
RUNX1/AML1 is among the most commonly mutated genes in human leukemia. Haploinsufficiency of RUNX1 causes familial platelet disorder with predisposition to myeloid malignancies (FPD/MM). However, the molecular mechanism of FPD/MM remains unknown. Here we show that murine Runx1+/− hematopoietic cells are hypersensitive to granulocyte colony-stimulating factor (G-CSF), leading to enhanced expansion and mobilization of stem/progenitor cells and myeloid differentiation block. Upon G-CSF stimulation, Runx1+/− cells exhibited a more pronounced phosphorylation of STAT3 as compared with Runx1+/+ cells, which may be due to reduced expression of Pias3, a key negative regulator of STAT3 signaling, and reduced physical sequestration of STAT3 by RUNX1. Most importantly, blood cells from a FPD patient with RUNX1 mutation exhibited similar G-CSF hypersensitivity. Taken together, Runx1 haploinsufficiency appears to predispose FPD patients to MM by expanding the pool of stem/progenitor cells and blocking myeloid differentiation in response to G-CSF.
Collapse
|
15
|
The RUNX1–PU.1 axis in the control of hematopoiesis. Int J Hematol 2015; 101:319-29. [DOI: 10.1007/s12185-015-1762-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 02/23/2015] [Indexed: 01/16/2023]
|
16
|
Early dynamic fate changes in haemogenic endothelium characterized at the single-cell level. Nat Commun 2014; 4:2924. [PMID: 24326267 DOI: 10.1038/ncomms3924] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 11/12/2013] [Indexed: 12/20/2022] Open
Abstract
Haematopoietic stem cells (HSCs) are the founding cells of the adult haematopoietic system, born during ontogeny from a specialized subset of endothelium, the haemogenic endothelium (HE) via an endothelial-to-haematopoietic transition (EHT). Although recently imaged in real time, the underlying mechanism of EHT is still poorly understood. We have generated a Runx1 +23 enhancer-reporter transgenic mouse (23GFP) for the prospective isolation of HE throughout embryonic development. Here we perform functional analysis of over 1,800 and transcriptional analysis of 268 single 23GFP(+) HE cells to explore the onset of EHT at the single-cell level. We show that initiation of the haematopoietic programme occurs in cells still embedded in the endothelial layer, and is accompanied by a previously unrecognized early loss of endothelial potential before HSCs emerge. Our data therefore provide important insights on the timeline of early haematopoietic commitment.
Collapse
|
17
|
Honda H, Nagamachi A, Inaba T. -7/7q- syndrome in myeloid-lineage hematopoietic malignancies: attempts to understand this complex disease entity. Oncogene 2014; 34:2413-25. [PMID: 24998854 DOI: 10.1038/onc.2014.196] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/27/2014] [Accepted: 06/03/2014] [Indexed: 01/19/2023]
Abstract
The recurrence of chromosomal abnormalities in a specific subtype of cancer strongly suggests that dysregulated gene expression in the corresponding region has a critical role in disease pathogenesis. -7/7q-, defined as the entire loss of chromosome 7 and partial deletion of its long arm, is among the most frequently observed chromosomal aberrations in myeloid-lineage hematopoietic malignancies such as myelodysplastic syndrome and acute myeloid leukemia, particularly in patients treated with cytotoxic agents and/or irradiation. Tremendous efforts have been made to clarify the molecular mechanisms underlying the disease development, and several possible candidate genes have been cloned. However, the study is still underway, and the entire nature of this syndrome is not completely understood. In this review, we focus on the attempts to identify commonly deleted regions in patients with -7/7q-; isolate the candidate genes responsible for disease development, cooperative genes and the factors affecting disease prognosis; and determine effective and potent therapeutic approaches. We also refer to the possibility that the accumulation of multiple gene haploinsufficiency, rather than the loss of a single tumor suppressor gene, may contribute to the development of diseases with large chromosomal deletions such as -7/7q-.
Collapse
Affiliation(s)
- H Honda
- Department of Disease Model, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - A Nagamachi
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - T Inaba
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
18
|
Savoy RM, Ghosh PM. The dual role of filamin A in cancer: can't live with (too much of) it, can't live without it. Endocr Relat Cancer 2013; 20:R341-56. [PMID: 24108109 PMCID: PMC4376317 DOI: 10.1530/erc-13-0364] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Filamin A (FlnA) has been associated with actin as cytoskeleton regulator. Recently its role in the cell has come under scrutiny for FlnA's involvement in cancer development. FlnA was originally revealed as a cancer-promoting protein, involved in invasion and metastasis. However, recent studies have also found that under certain conditions, it prevented tumor formation or progression, confusing the precise function of FlnA in cancer development. Here, we try to decipher the role of FlnA in cancer and the implications for its dual role. We propose that differences in subcellular localization of FlnA dictate its role in cancer development. In the cytoplasm, FlnA functions in various growth signaling pathways, such as vascular endothelial growth factor, in addition to being involved in cell migration and adhesion pathways, such as R-Ras and integrin signaling. Involvement in these pathways and various others has shown a correlation between high cytoplasmic FlnA levels and invasive cancers. However, an active cleaved form of FlnA can localize to the nucleus rather than the cytoplasm and its interaction with transcription factors has been linked to a decrease in invasiveness of cancers. Therefore, overexpression of FlnA has a tumor-promoting effect, only when it is localized to the cytoplasm, whereas if FlnA undergoes proteolysis and the resulting C-terminal fragment localizes to the nucleus, it acts to suppress tumor growth and inhibit metastasis. Development of drugs to target FlnA and cause cleavage and subsequent localization to the nucleus could be a new and potent field of research in treating cancer.
Collapse
Affiliation(s)
- Rosalinda M Savoy
- Department of Urology, University of California Davis School of Medicine, University of California, 4860 Y Street, Suite 3500, Sacramento, California 95817, USA VA Northern California Health Care System, Mather, California, USA
| | | |
Collapse
|
19
|
Frame JM, McGrath KE, Palis J. Erythro-myeloid progenitors: "definitive" hematopoiesis in the conceptus prior to the emergence of hematopoietic stem cells. Blood Cells Mol Dis 2013; 51:220-5. [PMID: 24095199 DOI: 10.1016/j.bcmd.2013.09.006] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 09/09/2013] [Indexed: 12/31/2022]
Abstract
Erythro-myeloid progenitors (EMP) serve as a major source of hematopoiesis in the developing conceptus prior to the formation of a permanent blood system. In this review, we summarize the current knowledge regarding the emergence, fate, and potential of this hematopoietic stem cell (HSC)-independent wave of hematopoietic progenitors, focusing on the murine embryo as a model system. A better understanding of the temporal and spatial control of hematopoietic emergence in the embryo will ultimately improve our ability to derive hematopoietic stem and progenitor cells from embryonic stem cells and induced pluripotent stem cells to serve therapeutic purposes.
Collapse
Affiliation(s)
- Jenna M Frame
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA; Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | | | | |
Collapse
|
20
|
Ilan L, Katzav S. Human Vav1 expression in hematopoietic and cancer cell lines is regulated by c-Myb and by CpG methylation. PLoS One 2012; 7:e29939. [PMID: 22253833 PMCID: PMC3256210 DOI: 10.1371/journal.pone.0029939] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 12/07/2011] [Indexed: 01/09/2023] Open
Abstract
Vav1 is a signal transducer protein that functions as a guanine nucleotide exchange factor for the Rho/Rac GTPases in the hematopoietic system where it is exclusively expressed. Recently, Vav1 was shown to be involved in several human malignancies including neuroblastoma, lung cancer, and pancreatic ductal adenocarcinoma (PDA). Although some factors that affect vav1 expression are known, neither the physiological nor pathological regulation of vav1 expression is completely understood. We demonstrate herein that mutations in putative transcription factor binding sites at the vav1 promoter affect its transcription in cells of different histological origin. Among these sites is a consensus site for c-Myb, a hematopoietic-specific transcription factor that is also found in Vav1-expressing lung cancer cell lines. Depletion of c-Myb using siRNA led to a dramatic reduction in vav1 expression in these cells. Consistent with this, co-transfection of c-Myb activated transcription of a vav1 promoter-luciferase reporter gene construct in lung cancer cells devoid of Vav1 expression. Together, these results indicate that c-Myb is involved in vav1 expression in lung cancer cells. We also explored the methylation status of the vav1 promoter. Bisulfite sequencing revealed that the vav1 promoter was completely unmethylated in human lymphocytes, but methylated to various degrees in tissues that do not normally express vav1. The vav1 promoter does not contain CpG islands in proximity to the transcription start site; however, we demonstrated that methylation of a CpG dinucleotide at a consensus Sp1 binding site in the vav1 promoter interferes with protein binding in vitro. Our data identify two regulatory mechanisms for vav1 expression: binding of c-Myb and CpG methylation of 5′ regulatory sequences. Mutation of other putative transcription factor binding sites suggests that additional factors regulate vav1 expression as well.
Collapse
Affiliation(s)
- Lena Ilan
- Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School, Hebrew University, Jerusalem, Israel
| | - Shulamit Katzav
- Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School, Hebrew University, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
21
|
Runx1 promotes neuronal differentiation in dorsal root ganglion. Mol Cell Neurosci 2012; 49:23-31. [PMID: 21906677 DOI: 10.1016/j.mcn.2011.08.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/02/2011] [Accepted: 08/19/2011] [Indexed: 11/21/2022] Open
Abstract
Transcription factor Runx1 controls the cell type specification of peptidergic and nonpeptidergic nociceptive dorsal root ganglion (DRG) neurons by repressing TrkA and calcitonin gene-related peptide (CGRP) expression and activating Ret expression during late embryonic and early postnatal periods (Chen et al., 2006b; Kramer et al., 2006; Yoshikawa et al., 2007). Because Runx1 is expressed in DRG from early developmental stages, we examined the roles of Runx1 in the proliferation and the neuronal differentiation of DRG cells. We used transgenic Runx1-deficient (Runx1(-/-)::Tg) mice which are rescued from early embryonic lethality by selective expression of Runx1 in hematopoietic cells under the control of GATA-1 promoter. We found that TrkA-expressing (TrkA(+)) DRG neurons were decreased at embryonic day (E) 12.5 in contrast to the previous study showing that TrkA(+) DRG neurons were increased at E17.5 in Runx1(-/-)::Tg mice (Yoshikawa et al., 2007). The number of DRG neurons which express neuronal markers Hu, NeuN and Islet1 was also reduced in Runx1(-/-)::Tg mice at E12.5, suggesting that the neuronal differentiation was suppressed in these mice. The cell cycle analysis using BrdU/IDU revealed that the number of DRG cells in S-phase and G2/M-phase was increased in Runx1(-/-)::Tg mice at E12.5, while the length of S-phase was not changed between Runx1(+/+)::Tg and Runx1(-/-)::Tg mice, suggesting that Runx1 negatively controls the proliferation of DRG progenitor cell subpopulation in early embryonic period. Hes1 is a negative regulator of neuronal differentiation (Ishibashi et al., 1995; Tomita et al., 1996), and we found that the number of Hes1(+) DRG cells was increased in Runx1(-/-)::Tg mice at E12.5. In summary, the present study suggests a novel function that Runx1 activates the neuronal differentiation of DRG cell subpopulation through the repression of Hes1 expression in early embryonic period.
Collapse
|
22
|
Levantini E, Lee S, Radomska HS, Hetherington CJ, Alberich-Jorda M, Amabile G, Zhang P, Gonzalez DA, Zhang J, Basseres DS, Wilson NK, Koschmieder S, Huang G, Zhang DE, Ebralidze AK, Bonifer C, Okuno Y, Gottgens B, Tenen DG. RUNX1 regulates the CD34 gene in haematopoietic stem cells by mediating interactions with a distal regulatory element. EMBO J 2011; 30:4059-70. [PMID: 21873977 DOI: 10.1038/emboj.2011.285] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 07/19/2011] [Indexed: 12/22/2022] Open
Abstract
The transcription factor RUNX1 is essential to establish the haematopoietic gene expression programme; however, the mechanism of how it activates transcription of haematopoietic stem cell (HSC) genes is still elusive. Here, we obtained novel insights into RUNX1 function by studying regulation of the human CD34 gene, which is expressed in HSCs. Using transgenic mice carrying human CD34 PAC constructs, we identified a novel downstream regulatory element (DRE), which is bound by RUNX1 and is necessary for human CD34 expression in long-term (LT)-HSCs. Conditional deletion of Runx1 in mice harbouring human CD34 promoter-DRE constructs abrogates human CD34 expression. We demonstrate by chromosome conformation capture assays in LT-HSCs that the DRE physically interacts with the human CD34 promoter. Targeted mutagenesis of RUNX binding sites leads to perturbation of this interaction and decreased human CD34 expression in LT-HSCs. Overall, our in vivo data provide novel evidence about the role of RUNX1 in mediating interactions between distal and proximal elements of the HSC gene CD34.
Collapse
Affiliation(s)
- Elena Levantini
- Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Center for Life Science, Boston, MA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Chiang PM, Wong PC. Differentiation of an embryonic stem cell to hemogenic endothelium by defined factors: essential role of bone morphogenetic protein 4. Development 2011; 138:2833-43. [PMID: 21613326 DOI: 10.1242/dev.061440] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Current approaches to differentiate embryonic stem (ES) cells to hematopoietic precursors in vitro use either feeder cell, serum, conditioned culture medium or embryoid body, methods that cannot avoid undefined culture conditions, precluding analysis of the fate of individual cells. Here, we have developed a defined, serum-free and low cell-density differentiation program to generate endothelial and hematopoietic cells within 6 days from murine ES cells. Our novel approach identifies a set of factors that are necessary and sufficient to differentiate ES cells into definitive hematopoietic precursors, as documented by the time-lapse video microscopy of the stepwise differentiation processes from single progenitors. Moreover, this defined milieu revealed the essential role of bone morphogenetic protein 4 (BMP4) in determining the hematopoietic/endothelial fate and demonstrated that the hemogenic fate in mesoderm is determined as early as day 4 of our differentiation protocol. Our ability to directly convert ES cells to endothelial and hematopoietic precursors should have important utilities for studies of hematopoietic development and personalized medicine in the future.
Collapse
Affiliation(s)
- Po-Min Chiang
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA
| | | |
Collapse
|
24
|
Three-dimensional imaging of whole midgestation murine embryos shows an intravascular localization for all hematopoietic clusters. Blood 2011; 117:6132-4. [PMID: 21505195 DOI: 10.1182/blood-2011-02-334037] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hematopoietic cell clusters associated with the midgestation mouse aorta, umbilical and vitelline arteries play a pivotal role in the formation of the adult blood system. Both genetic and live-imaging data indicate that definitive hematopoietic progenitor/stem cells (visualized as clusters) are generated from hemogenic endothelium. A 3-dimensional (3-D) whole embryo immunostaining and imaging technique has allowed quantitation and cartographic mapping of intravascular hematopoietic clusters. During this period the vitelline artery is most extensively remodeled, and several reports have suggested that vitelline remodeling leads to extravascular hematopoietic cluster emergence. Whether the earliest definitive progenitors/stem cells are intra or extra vascular could influence the process by which these cells migrate to the next hematopoietic territory, the fetal liver. Hence, by 3-D imaging we more closely examined hematopoietic clusters in the vitelline and associated connected small vessels and show here that hematopoietic clusters (particularly large clusters) are intravascular during the period of vascular remodeling.
Collapse
|
25
|
Swiers G, de Bruijn M, Speck NA. Hematopoietic stem cell emergence in the conceptus and the role of Runx1. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2011; 54:1151-63. [PMID: 20711992 DOI: 10.1387/ijdb.103106gs] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Hematopoietic stem cells (HSCs) are functionally defined as cells that upon transplantation into irradiated or otherwise immunocompromised adult organisms provide long-term reconstitution of the entire hematopoietic system. They emerge in the vertebrate conceptus around midgestation. Genetic studies have identified a number of transcription factors and signaling molecules that act at the onset of hematopoiesis, and have begun to delineate the molecular mechanisms underlying the formation of HSCs. One molecule that has been a particularly useful marker of this developmental event in multiple species is Runx1 (also known as AML1, Pebp2alpha). Runx1 is a sequence-specific DNA-binding protein, that along with its homologues Runx2 and Runx3 and their shared non-DNA binding subunit CBFbeta, constitute a small family of transcription factors called core-binding factors (CBFs). Runx1 is famous for its role in HSC emergence, and notorious for its involvement in leukemia, as chromosomal rearrangements and inactivating mutations in the human RUNX1 gene are some of the most common events in de novo and therapy-related acute myelogenous leukemia, myelodysplastic syndrome and acute lymphocytic leukemia. Here we will review the role of Runx1 in HSC emergence in the mouse conceptus and describe some of the genetic pathways that operate upstream and downstream of this gene. Where relevant, we will include data obtained from other species and embryonic stem (ES) cell differentiation cultures.
Collapse
Affiliation(s)
- Gemma Swiers
- Medical Research Council (MRC) Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
26
|
Hyde RK, Liu PP. RUNX1 repression-independent mechanisms of leukemogenesis by fusion genes CBFB-MYH11 and AML1-ETO (RUNX1-RUNX1T1). J Cell Biochem 2010; 110:1039-45. [PMID: 20589720 DOI: 10.1002/jcb.22596] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The core binding factor (CBF) acute myeloid leukemias (AMLs) are a prognostically distinct subgroup that includes patients with the inv(16) and t(8:21) chromosomal rearrangements. Both of these rearrangements result in the formation of fusion proteins, CBFB-MYH11 and AML1-ETO, respectively, that involve members of the CBF family of transcription factors. It has been proposed that both of these fusion proteins function primarily by dominantly repressing normal CBF transcription. However, recent reports have indicted that additional, CBF-repression independent activities may be equally important during leukemogenesis. This article will focus on these recent advances.
Collapse
Affiliation(s)
- R Katherine Hyde
- Oncogenesis and Development Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | | |
Collapse
|
27
|
Gwin K, Frank E, Bossou A, Medina KL. Hoxa9 regulates Flt3 in lymphohematopoietic progenitors. THE JOURNAL OF IMMUNOLOGY 2010; 185:6572-83. [PMID: 20971928 DOI: 10.4049/jimmunol.0904203] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Early B cell factor (EBF) is a transcription factor essential for specification and commitment to the B cell fate. In this study, we show downregulation of a developmentally regulated cluster of hoxa genes, notably hoxa9, coincides with induction of EBF at the Pro-B cell stage of B cell differentiation. Analysis of the hematopoietic progenitor compartment in Hoxa9(-/-) mice revealed significantly reduced frequencies and expression levels of Flt3, a cytokine receptor important for lymphoid priming and the generation of B cell precursors (BCPs). We show that Hoxa9 directly regulates the flt3 gene. Chromatin immunoprecipitation analysis revealed binding of Hoxa9 to the flt3 promoter in a lymphoid progenitor cell line. Knockdown of Hoxa9 significantly reduced Flt3 transcription and expression. Conversely, forced expression of Hoxa9 increased Flt3 transcription and expression in a Pro-B cell line that expressed low levels of Flt3. Hoxa9 inversely correlated with ebf1 in ex vivo-isolated bone marrow progenitors and BCPs, suggesting that EBF might function to silence a Hoxa9 transcriptional program. Restoration of EBF function in an EBF(-/-) cell line induced B lineage gene expression but did not directly suppress hoxa9 transcription, revealing alternate mechanisms of Hoxa9 regulation in BCPs. These data provide new insight into Hoxa9 function and regulation during lymphoid and B cell development. Furthermore, they suggest that failure to upregulate Flt3 provides a molecular basis for the lymphoid/early B cell deficiencies in Hoxa9(-/-) mice.
Collapse
Affiliation(s)
- Kimberly Gwin
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
28
|
Cell-type-specific activation and repression of PU.1 by a complex of discrete, functionally specialized cis-regulatory elements. Mol Cell Biol 2010; 30:4922-39. [PMID: 20696839 DOI: 10.1128/mcb.00354-10] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The transcription factor PU.1 is critical for multiple hematopoietic lineages, but different leukocyte types require strictly distinct patterns of PU.1 regulation. PU.1 is required early for T-cell lineage development but then must be repressed by a stage-specific mechanism correlated with commitment. Other lineages require steady, low expression or upregulation. Until now, only the promoter plus a distal upstream regulatory element (URE) could be invoked to explain nearly all Sfpi1 (PU.1) activation and repression, including bifunctional effects of Runx1. However, the URE is dispensable for most Sfpi1 downregulation in early T cells, and we show that it retains enhancer activity in immature T-lineage cells even where endogenous Sfpi1 is repressed. We now present evidence for another complex of conserved noncoding elements that mediate discrete, cell-type-specific regulatory features of Sfpi1, including a myeloid cell-specific activating element and a separate, pro-T-cell-specific silencer element. These elements yield opposite, cell-type-specific responses to Runx1. T-cell-specific repression requires Runx1 acting through multiple nonconsensus sites in the silencer core. These newly characterized sites recruit Runx1 binding in early T cells in vivo and define a functionally specific scaffold for dose-dependent, Runx-mediated repression.
Collapse
|
29
|
Nagamachi A, Htun PW, Ma F, Miyazaki K, Yamasaki N, Kanno M, Inaba T, Honda ZI, Okuda T, Oda H, Tsuji K, Honda H. A 5' untranslated region containing the IRES element in the Runx1 gene is required for angiogenesis, hematopoiesis and leukemogenesis in a knock-in mouse model. Dev Biol 2010; 345:226-36. [PMID: 20647008 DOI: 10.1016/j.ydbio.2010.07.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 07/11/2010] [Accepted: 07/13/2010] [Indexed: 12/24/2022]
Abstract
Although internal ribosome entry site (IRES)-mediated translation is considered important for proper cellular function, its precise biological role is not fully understood. Runx1 gene, which encodes a transcription factor implicated in hematopoiesis, angiogenesis, and leukemogenesis, contains IRES sequences in the 5' untranslated region. To clarify the roles of the IRES element in Runx1 function, we generated knock-in mice for either wild-type Runx1 or Runx1/Evi1, a Runx1 fusion protein identified in human leukemia. In both cases, native promoter-dependent transcription was retained, whereas IRES-mediated translation was eliminated. Interestingly, homozygotes expressing wild-type Runx1 deleted for the IRES element (Runx1(Delta IRES/Delta IRES)) died in utero with prominent dilatation of peripheral blood vessels due to impaired pericyte development. In addition, hematopoietic cells in the Runx1(Delta IRES/Delta IRES) fetal liver were significantly decreased, and exhibited an altered differentiation pattern, a reduced proliferative activity, and an impaired reconstitution ability. On the other hand, heterozygotes expressing Runx1/Evi1 deleted for the IRES element (Runx1(+/RE Delta IRES)) were born normally and did not show any hematological abnormalities, in contrast that conventional Runx1/Evi1 heterozygotes die in utero with central nervous system hemorrhage and Runx1/Evi1 chimeric mice develop acute leukemia. The findings reported here demonstrate the essential roles of the IRES element in Runx1 function under physiological and pathological conditions.
Collapse
Affiliation(s)
- Akiko Nagamachi
- Department of Molecular Oncology, Research Institute of Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Compound haploinsufficiencies of Ebf1 and Runx1 genes impede B cell lineage progression. Proc Natl Acad Sci U S A 2010; 107:7869-74. [PMID: 20385820 DOI: 10.1073/pnas.1003525107] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Early B cell factor (EBF)1 is essential for B lineage specification. Previously, we demonstrated the synergistic activation of Cd79a (mb-1) genes by EBF1 and its functional partner, RUNX1. Here, we identified consequences of Ebf1 haploinsufficiency together with haploinsufficiency of Runx1 genes in mice. Although numbers of "committed" pro-B cells were maintained in Ebf1(+/-)Runx1(+/-) (ER(het)) mice, activation of B cell-specific gene transcription was depressed in these cells. Expression of genes encoding Aiolos, kappa0 sterile transcripts, CD2 and CD25 were reduced and delayed in ER(het) pro-B cells, whereas surface expression of BP-1 was increased on late pro-B cells in ER(het) mice. Late pre-B and immature and mature B cells were decreased in the bone marrow of Ebf1(+/-) (E(het)) mice and were nearly absent in ER(het) mice. Although we did not observe significant effects of haploinsuficiencies on IgH or Igkappa rearrangements, a relative lack of Iglambda rearrangements was detected in E(het) and ER(het) pre-B cells. Together, these observations suggest that B cell lineage progression is impaired at multiple stages in the bone marrow of E(het) and ER(het) mice. Furthermore, enforced expression of EBF1 and RUNX1 in terminally differentiated plasmacytoma cells activated multiple early B cell-specific genes synergistically. Collectively, these studies illuminate the effects of reduced Ebf1 dosage and the compounding effects of reduced Runx1 dosage. Our data confirm and extend the importance of EBF1 in regulating target genes and Ig gene rearrangements necessary for B cell lineage specification, developmental progression, and homeostasis.
Collapse
|
31
|
AML1 is overexpressed in patients with myeloproliferative neoplasms and mediates JAK2V617F-independent overexpression of NF-E2. Blood 2010; 116:254-66. [PMID: 20339092 DOI: 10.1182/blood-2009-11-254664] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The transcription factor NF-E2 is overexpressed in the majority of patients with polycythemia vera (PV). Concomitantly, 95% of these patients carry the JAK2(V617F) mutation. Although NF-E2 levels correlate with JAK2(V671F) allele burden in some PV cohorts, the molecular mechanism causing aberrant NF-E2 expression has not been described. Here we show that NF-E2 expression is also increased in patients with essential thrombocythemia and primary myelofibrosis independent of the presence of the JAK2(V617F) mutation. Characterization of the NF-E2 promoter revealed multiple functional binding sites for AML1/RUNX-1. Chromatin immunoprecipitation demonstrated AML1 binding to the NF-E2 promoter in vivo. Moreover, AML1 binding to the NF-E2 promoter was significantly increased in granulocytes from PV patients compared with healthy controls. AML1 mRNA expression was elevated in patients with PV, essential thrombocythemia, and primary myelofibrosis both in the presence and absence of JAK2(V617F). In addition, AML1 and NF-E2 expression were highly correlated. RNAi-mediated suppression of either AML1 or of its binding partner CBF-beta significantly decreased NF-E2 expression. Moreover, expression of the leukemic fusion protein AML/ETO drastically decreased NF-E2 protein levels. Our data identify NF-E2 as a novel AML1 target gene and delineate a role for aberrant AML1 expression in mediating elevated NF-E2 expression in MPN patients.
Collapse
|
32
|
Challen GA, Goodell MA. Runx1 isoforms show differential expression patterns during hematopoietic development but have similar functional effects in adult hematopoietic stem cells. Exp Hematol 2010; 38:403-16. [PMID: 20206228 DOI: 10.1016/j.exphem.2010.02.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 02/25/2010] [Accepted: 02/25/2010] [Indexed: 12/27/2022]
Abstract
OBJECTIVE RUNX1 (also known as acute myeloid leukemia 1) is an essential regulator of hematopoiesis and has multiple isoforms arising from differential splicing and utilization of two promoters. We hypothesized that the rare Runx1c isoform has a distinct role in hematopoietic stem cells (HSCs). MATERIALS AND METHODS We have characterized the expression pattern of Runx1c in mouse embryos and human embryonic stem cell (hESC)-derived embryoid bodies using in situ hybridization and expression levels in mouse and human HSCs by real-time polymerase chain reaction. We then determined the functional effects of Runx1c using enforced retroviral overexpression in mouse HSCs. RESULTS We observed differential expression profiles of RUNX1 isoforms during hematopoietic differentiation of hESCs. The RUNX1a and RUNX1b isoforms were expressed consistently throughout hematopoietic differentiation, whereas the RUNX1c isoform was only expressed at the time of emergence of definitive HSCs. RUNX1c was also expressed in the AGM region of E10.5 to E11.5 mouse embryos, the region where definitive HSCs arise. These observations suggested that the RUNX1c isoform may be important for the specification or function of definitive HSCs. However, using retroviral overexpression to study the effect of RUNX1 isoforms on HSCs in a gain-of-function system, no discernable functional difference could be identified between RUNX1 isoforms in mouse HSCs. Overexpression of both RUNX1b and RUNX1c induced quiescence in mouse HSCs in vitro and in vivo. CONCLUSIONS Although the divergent expression profiles of Runx1 isoforms during development suggest specific roles for these proteins at different stages of HSC maturation, we could not detect an important functional distinction in adult mouse HSCs using our assay systems.
Collapse
Affiliation(s)
- Grant A Challen
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Tex. 77030, USA
| | | |
Collapse
|
33
|
Lichtinger M, Hoogenkamp M, Krysinska H, Ingram R, Bonifer C. Chromatin regulation by RUNX1. Blood Cells Mol Dis 2010; 44:287-90. [PMID: 20194037 DOI: 10.1016/j.bcmd.2010.02.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 02/05/2010] [Indexed: 01/08/2023]
Abstract
The transcription factor RUNX1 is essential for definitive hematopoiesis and is required for the expression of a number of important hematopoietic regulator genes. It was recently shown that RUNX1 acts within a narrow developmental window during which it cannot be replaced by other members of the RUNX transcription factor family. Studies of the molecular basis of this phenomenon revealed that RUNX1 is required for the opening of chromatin of important hematopoietic regulator genes and for the formation, but not the maintenance of stable transcription factor complexes on these genes. However, the chromatin opening activity of RUNX1 is context dependent, indicating that it cooperates with alternate transcription factors at different stages of hematopoietic development. This review summarizes recent results on the regulation of chromatin structure by RUNX1 in developing hematopoietic cells.
Collapse
Affiliation(s)
- Monika Lichtinger
- Section of Experimental Haematology, Leeds Institute of Molecular Medicine, University of Leeds, St James's University Hospital, Leeds LS97TF, UK
| | | | | | | | | |
Collapse
|
34
|
Epigenetic mechanisms regulating normal and malignant haematopoiesis: new therapeutic targets for clinical medicine. Expert Rev Mol Med 2010; 12:e6. [PMID: 20152067 DOI: 10.1017/s1462399410001377] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It is now well established that epigenetic phenomena and aberrant gene regulation play a major role in carcinogenesis. These include aberrant gene silencing by imposing inactive histone marks on promoters, aberrant methylation of DNA at CpG islands, and the active repression of promoters by oncoproteins. In addition, many malignant cells also show aberrant gene activation due to constitutively active signalling. The next frontier in cancer research will be to examine how, at the molecular level, small mutations that alter the regulatory phenotype of a cell give rise after a number of cell divisions to the vast deregulation phenomena seen in malignant cells. This review outlines recent insights into how normal cell differentiation in the haematopoietic system is subverted in leukaemia and it introduces the molecular players involved in this process. It also summarises the results of recent clinical trials trying to reverse aberrant epigenetic regulation by employing agents influencing global epigenetic regulators.
Collapse
|
35
|
Wong WF, Nakazato M, Watanabe T, Kohu K, Ogata T, Yoshida N, Sotomaru Y, Ito M, Araki K, Telfer J, Fukumoto M, Suzuki D, Sato T, Hozumi K, Habu S, Satake M. Over-expression of Runx1 transcription factor impairs the development of thymocytes from the double-negative to double-positive stages. Immunology 2010; 130:243-53. [PMID: 20102410 DOI: 10.1111/j.1365-2567.2009.03230.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Runx1 transcription factor is highly expressed at a CD4/CD8-double-negative (DN) stage of thymocyte development but is down-regulated when cells proceed to the double-positive (DP) stage. In the present study, we examined whether the down-regulation of Runx1 is necessary for thymocyte differentiation from the DN to DP stage. When Runx1 was artificially over-expressed in thymocytes by Lck-driven Cre, the DN3 population was unaffected, as exemplified by proper pre-T-cell receptor expression, whereas the DN4 population was perturbed as shown by the decrease in the CD27(hi) sub-fraction. In parallel, the growth rate of DN4 cells was reduced by half, as measured by bromodeoxyuridine incorporation. These events impaired the transition of DN4 cells to the DP stage, resulting in the drastic reduction of the number of DP thymocytes. The Runx1 gene has two promoters, a proximal and a distal promoter; and, in thymocytes, endogenous Runx1 was mainly transcribed from the distal promoter. Interestingly, only distal, but not proximal, Runx1 over-expression exhibited an inhibitory effect on thymocyte differentiation, suggesting that the distal Runx1 protein may fulfil a unique function. Our collective results indicate that production of the distal Runx1 protein must be adequately down-regulated for thymocytes to transit from the DN to the DP stage, a critical step in the massive expansion of the T-cell lineage.
Collapse
Affiliation(s)
- Won F Wong
- Institute of Development, Aging and Cancer, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Cbfb/Runx1 repression-independent blockage of differentiation and accumulation of Csf2rb-expressing cells by Cbfb-MYH11. Blood 2009; 115:1433-43. [PMID: 20007544 DOI: 10.1182/blood-2009-06-227413] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
It is known that CBFB-MYH11, the fusion gene generated by inversion of chromosome 16 in human acute myeloid leukemia, is causative for oncogenic transformation. However, the mechanism by which CBFB-MYH11 initiates leukemogenesis is not clear. Previously published reports showed that CBFB-MYH11 dominantly inhibits RUNX1 and CBFB, and such inhibition has been suggested as the mechanism for leukemogenesis. Here we show that Cbfb-MYH11 caused Cbfb/Runx1 repression-independent defects in both primitive and definitive hematopoiesis. During primitive hematopoiesis, Cbfb-MYH11 delayed differentiation characterized by sustained expression of Gata2, Il1rl1, and Csf2rb, a phenotype not found in Cbfb and Runx1 knockout mice. Expression of Cbfb-MYH11 in the bone marrow induced the accumulation of abnormal progenitor-like cells expressing Csf2rb in preleukemic mice. The expression of all 3 genes was detected in most human and murine CBFB-MYH11(+) leukemia samples. Interestingly, Cbfb-MYH11(+) preleukemic progenitors and leukemia-initiating cells did not express Csf2rb, although the majority of leukemia cells in our Cbfb-MYH11 knockin mice were Csf2rb(+). Therefore Csf2rb can be used as a negative selection marker to enrich preleukemic progenitor cells and leukemia-initiating cells from Cbfb-MYH11 mice. These results suggest that Cbfb/Runx1 repression-independent activities contribute to leukemogenesis by Cbfb-MYH11.
Collapse
|
37
|
Sakurai H, Inami Y, Tamamura Y, Yoshikai T, Sehara-Fujisawa A, Isobe KI. Bidirectional induction toward paraxial mesodermal derivatives from mouse ES cells in chemically defined medium. Stem Cell Res 2009; 3:157-69. [PMID: 19726261 DOI: 10.1016/j.scr.2009.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 08/07/2009] [Accepted: 08/08/2009] [Indexed: 11/24/2022] Open
Abstract
Embryonic stem cells (ESCs) are a renewable cell source of tissue for regenerative therapies. The addition of bone morphogenetic protein 4 (BMP4) to serum-free ESC cultures can induce primitive streak-like mesodermal cells. In differentiated mouse ESCs, platelet-derived growth factor receptor-alpha (PDGFR-alpha) and E-cadherin (ECD) are useful markers to distinguish between paraxial mesodermal progenitor cells and undifferentiated and endodermal cells, respectively. Here, we demonstrate methods for BMP4-mediated induction of paraxial mesodermal progenitors using PDGFR-alpha and ECD as markers for purification and characterization. Serum-free monolayers of ESCs cultured with BMP4 could efficiently promote paraxial mesodermal differentiation akin to embryonic mesodermal development. BMP4 treatment alone induced paraxial mesodermal progenitors that could differentiate into osteochondrogenic cells in vitro and in vivo. Furthermore, early removal of BMP4 followed by lithium chloride (LiCl) promoted the differentiation to myogenic progenitor cells. These myogenic progenitors were able to differentiate further in vitro into mature skeletal muscle cells. Thus, we successfully induced the efficient bidirectional differentiation of mouse ESCs toward osteochondrogenic and myogenic cell types using chemically defined conditions.
Collapse
Affiliation(s)
- Hidetoshi Sakurai
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Feng J, Iwama A, Satake M, Kohu K. MicroRNA-27 enhances differentiation of myeloblasts into granulocytes by post-transcriptionally downregulating Runx1. Br J Haematol 2009; 145:412-23. [PMID: 19298589 DOI: 10.1111/j.1365-2141.2009.07632.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We investigated the regulation of the transcription factor Runx1 by microRNA (miR)-27 and the resulting effects upon the differentiation of myeloblasts into granulocytes. When 32D.cl3 cell differentiation was induced using granulocyte colony-stimulating factor (CSF3), Runx1 transcription was moderately downregulated, while Runx1 protein levels were completely inhibited, suggesting an involvement of post-transcriptional regulation. Simultaneously, levels of miR-27 and its precursor increased substantially. Reporter assays revealed that miR-27 targets the 3'UTR of the Runx1 transcript. Furthermore, introduction of pre-miR-27 alone into 32D.cl3 cells resulted in downregulation of Runx1 protein, thereby allowing the cell differentiation even in the absence of CSF3. Conversely, transduction of anti-miR-27 caused upregulation of Runx1 protein, thereby antagonizing the CSF3-mediated granulocyte differentiation. Finally, the CSF3-induced transcription factor C/EBPalpha enhanced transcription of a host gene of miR-27, C9orf3, via activation of its promoter. Thus, miR-27 enhances differentiation of myeloblasts into granulocytes via post-transcriptional downregulation of Runx1.
Collapse
Affiliation(s)
- Jue Feng
- Department of Molecular Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | | | | |
Collapse
|
39
|
Ohata S, Nawa M, Kasama T, Yamasaki T, Sawanobori K, Hata S, Nakamura T, Asaoka Y, Watanabe T, Okamoto H, Hara T, Terai S, Sakaida I, Katada T, Nishina H. Hematopoiesis-dependent expression of CD44 in murine hepatic progenitor cells. Biochem Biophys Res Commun 2009; 379:817-23. [DOI: 10.1016/j.bbrc.2008.12.149] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 12/12/2008] [Indexed: 11/16/2022]
|
40
|
Both alleles of PSF1 are required for maintenance of pool size of immature hematopoietic cells and acute bone marrow regeneration. Blood 2009; 113:555-62. [DOI: 10.1182/blood-2008-01-136879] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abstract
Hematopoietic stem cells (HSCs) have a very low rate of cell division in the steady state; however, under conditions of hematopoietic stress, these cells can begin to proliferate at high rates, differentiate into mature hematopoietic cells, and rapidly reconstitute ablated bone marrow (BM). Previously, we isolated a novel evolutionarily conserved DNA replication factor, PSF1 (partner of SLD5-1), from an HSC-specific cDNA library. In the steady state, PSF1 is expressed predominantly in CD34+KSL (c-kit+/Sca-1+/Lineage−) cells and progenitors, whereas high levels of PSF1 expression are induced in KSL cells after BM ablation. In 1-year-old PSF1+/− mice, the pool size of stem cells and progenitors is decreased. Whereas young PSF1+/− mutant mice develop normally, are fertile, and have no obvious differences in hematopoiesis in the steady state compared with wild-type mice, intravenous injection of 5-fluorouracil (5-FU) is lethal in PSF1+/− mice, resulting from a delay in induction of HSC proliferation during ablated BM reconstitution. Overexpression studies revealed that PSF1 regulates molecular stability of other GINS components, including SLD5, PSF2, and PSF3. Our data indicate that PSF1 is required for acute proliferation of HSCs in the BM of mice.
Collapse
|
41
|
Chen MJ, Yokomizo T, Zeigler BM, Dzierzak E, Speck NA. Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature 2009; 457:887-91. [PMID: 19129762 PMCID: PMC2744041 DOI: 10.1038/nature07619] [Citation(s) in RCA: 776] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 11/07/2008] [Indexed: 11/12/2022]
Abstract
HSCs are the founder cells of the adult hematopoietic system, and thus knowledge of the molecular program directing their generation during development is important for regenerative hematopoietic strategies. Runx1 is a pivotal transcription factor required for HSC generation in the vascular regions of the mouse conceptus - the aorta, vitelline and umbilical arteries, yolk sac and placenta 1, 2. It is thought that HSCs emerge from vascular endothelial cells through the formation of intra-arterial clusters 3 and that Runx1 functions during the transition from ‘hemogenic endothelium’ to HSCs 4, 5. Here we show by conditional deletion that Runx1 activity in vascular endothelial cadherin (VEC) positive endothelial cells is indeed essential for intra-arterial cluster, hematopoietic progenitor, and HSC formation. In contrast, Runx1 is not required in cells expressing Vav, one of the first pan-hematopoietic genes expressed in HSCs. Collectively these data show that Runx1 function is essential in endothelial cells for hematopoietic progenitor and HSC formation from the vasculature, but its requirement ends once or before Vav is expressed.
Collapse
Affiliation(s)
- Michael J Chen
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | |
Collapse
|
42
|
Charoenchaikorn K, Yokomizo T, Rice DP, Honjo T, Matsuzaki K, Shintaku Y, Imai Y, Wakamatsu A, Takahashi S, Ito Y, Takano-Yamamoto T, Thesleff I, Yamamoto M, Yamashiro T. Runx1 is involved in the fusion of the primary and the secondary palatal shelves. Dev Biol 2008; 326:392-402. [PMID: 19000669 DOI: 10.1016/j.ydbio.2008.10.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 09/15/2008] [Accepted: 10/13/2008] [Indexed: 11/19/2022]
Abstract
Runx1 is expressed in medial edge epithelial (MEE) cells of the palatal shelf. Conditionally rescued Runx1(-/-) mice showed limited clefting in the anterior junction between the primary and the secondary palatal shelves, but not in the junction between the secondary palates. In wild type mice, the fusing epithelial surface exhibited a rounded cobblestone-like appearance, while such cellular prominence was less evident in the Runx1 mutants. We also found that Fgf18 was expressed in the mesenchyme underlying the MEE and that locally applied FGF18 induced ectopic Runx1 expression in the epithelium of the palatal explants, indicating that Runx1 was induced by mesenchymal Fgf18 signaling. On the other hand, unpaired palatal explant cultures revealed the presence of anterior-posterior (A-P) differences in the MEE fates and fusion mechanism. Interestingly, the location of anterior clefting in Runx1 mutants corresponded to the region with different MEE behavior. These data showed a novel function of Runx1 in morphological changes in the MEE cells in palatal fusion, which is, at least in part, regulated by the mesenchymal Fgf signaling via an epithelial-mesenchymal interaction.
Collapse
Affiliation(s)
- Kesinee Charoenchaikorn
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Suita, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Maki K, Yamagata T, Mitani K. Role of the RUNX1-EVI1 fusion gene in leukemogenesis. Cancer Sci 2008; 99:1878-83. [PMID: 19016745 PMCID: PMC11158239 DOI: 10.1111/j.1349-7006.2008.00956.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 06/19/2008] [Accepted: 06/24/2008] [Indexed: 02/04/2023] Open
Abstract
RUNX1-EVI1 is a chimeric gene generated by t(3;21)(q26;q22) observed in patients with aggressive transformation of myelodysplastic syndrome or chronic myelogenous leukemia. RUNX1-EVI1 has oncogenic potentials through dominant-negative effect over wild-type RUNX1, inhibition of Jun kinase (JNK) pathway, stimulation of cell growth via AP-1, suppression of TGF-beta-mediated growth inhibition and repression of C/EBPalpha. Runx1-EVI1 heterozygous knock-in mice die in uteri due to central nervous system (CNS) hemorrhage and severe defects in definitive hematopoiesis as Runx1-/- mice do, indicating that RUNX1-EVI1 dominantly suppresses functions of wild-type RUNX1 in vivo. Acute myelogenous leukemia is induced in mice transplanted with bone marrow cells expressing RUNX1-EVI1, and a Runx1-EVI1 knock-in chimera mouse developed acute megakaryoblastic leukemia. These results suggest that RUNX1-EVI1 plays indispensable roles in leukemogenesis of t(3;21)-positive leukemia. Major leukemogenic effect of RUNX1-EVI1 is mainly through histone deacetyltransferase recruitment via C-terminal binding protein. Histone deacetyltransferase could be a target in molecular therapy of RUNX1-EVI1-expressing leukemia.
Collapse
Affiliation(s)
- Kazuhiro Maki
- Department of Hematology, Dokkyo Medical University School of Medicine, Shimotsuga-Gun, Tochigi, Japan
| | | | | |
Collapse
|
44
|
Bai S, Zha J, Zhao H, Ross FP, Teitelbaum SL. Tumor necrosis factor receptor-associated factor 6 is an intranuclear transcriptional coactivator in osteoclasts. J Biol Chem 2008; 283:30861-7. [PMID: 18768464 DOI: 10.1074/jbc.m802525200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor receptor-associated factor 6 (TRAF6) associates with the cytoplasmic domain of receptor activator of NF-kappaB (RANK) and is an essential component of the signaling complex mediating osteoclastogenesis. However, the osteoclastic activity of TRAF6 is blunted by its association with four and half LIM domain 2 (FHL2), which functions as an adaptor protein in the cytoplasm and transcriptional regulator in the nucleus. We find that TRAF6 also localizes in the nuclei of osteoclasts but not their bone marrow macrophage precursors and that osteoclast intranuclear abundance is specifically increased by RANK ligand (RANKL). TRAF6 nuclear localization requires FHL2 and is diminished in fhl2(-/-) osteoclasts. Suggesting transcriptional activity, TRAF6 interacts with the transcription factor RUNX1 in the osteoclast nucleus. FHL2 also associates with RUNX1 but does so only in the presence of TRAF6. Importantly, TRAF6 recognizes FHL2 and RUNX1 in osteoclast nuclei, and the three molecules form a DNA-binding complex that recognizes and transactivates the RUNX1 response element in the fhl2 promoter. Finally, TRAF6 and its proximal activator, RANKL, polyubiquitinate FHL2, prompting its proteasomal degradation. These observations suggest a feedback mechanism whereby TRAF6 negatively regulates osteoclast formation by intracytoplasmic sequestration of FHL2 to blunt RANK activation and as a component of a transcription complex promoting FHL2 expression.
Collapse
Affiliation(s)
- Shuting Bai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
45
|
Michaud J, Simpson KM, Escher R, Buchet-Poyau K, Beissbarth T, Carmichael C, Ritchie ME, Schütz F, Cannon P, Liu M, Shen X, Ito Y, Raskind WH, Horwitz MS, Osato M, Turner DR, Speed TP, Kavallaris M, Smyth GK, Scott HS. Integrative analysis of RUNX1 downstream pathways and target genes. BMC Genomics 2008; 9:363. [PMID: 18671852 PMCID: PMC2529319 DOI: 10.1186/1471-2164-9-363] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Accepted: 07/31/2008] [Indexed: 01/19/2023] Open
Abstract
Background The RUNX1 transcription factor gene is frequently mutated in sporadic myeloid and lymphoid leukemia through translocation, point mutation or amplification. It is also responsible for a familial platelet disorder with predisposition to acute myeloid leukemia (FPD-AML). The disruption of the largely unknown biological pathways controlled by RUNX1 is likely to be responsible for the development of leukemia. We have used multiple microarray platforms and bioinformatic techniques to help identify these biological pathways to aid in the understanding of why RUNX1 mutations lead to leukemia. Results Here we report genes regulated either directly or indirectly by RUNX1 based on the study of gene expression profiles generated from 3 different human and mouse platforms. The platforms used were global gene expression profiling of: 1) cell lines with RUNX1 mutations from FPD-AML patients, 2) over-expression of RUNX1 and CBFβ, and 3) Runx1 knockout mouse embryos using either cDNA or Affymetrix microarrays. We observe that our datasets (lists of differentially expressed genes) significantly correlate with published microarray data from sporadic AML patients with mutations in either RUNX1 or its cofactor, CBFβ. A number of biological processes were identified among the differentially expressed genes and functional assays suggest that heterozygous RUNX1 point mutations in patients with FPD-AML impair cell proliferation, microtubule dynamics and possibly genetic stability. In addition, analysis of the regulatory regions of the differentially expressed genes has for the first time systematically identified numerous potential novel RUNX1 target genes. Conclusion This work is the first large-scale study attempting to identify the genetic networks regulated by RUNX1, a master regulator in the development of the hematopoietic system and leukemia. The biological pathways and target genes controlled by RUNX1 will have considerable importance in disease progression in both familial and sporadic leukemia as well as therapeutic implications.
Collapse
Affiliation(s)
- Joëlle Michaud
- Molecular Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3050, Victoria, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Genetic evidence of PEBP2beta-independent activation of Runx1 in the murine embryo. Int J Hematol 2008; 88:134-138. [PMID: 18594778 DOI: 10.1007/s12185-008-0121-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 04/21/2008] [Accepted: 05/06/2008] [Indexed: 10/21/2022]
Abstract
The Runx1/AML1 transcription factor is required for the generation of hematopoietic stem cells and is one of the most frequently targeted genes in human leukemia. Runx1-deficient mice die around embryonic day (E)12.5 due to severe hemorrhage in the central nervous system and the complete absence of definitive hematopoietic cells. Since mice lacking the heterodimeric partner of Runx1, PEBP2beta/CBFbeta, are almost identical in phenotype to Runx1 (-/-) mice, PEBP2beta was believed to be essential for the in vivo function of Runx1. Here we show that transgenic overexpression of Runx1 partially rescues the lethal phenotype of PEBP2beta-deficient mice at E12.5. Some of the rescued mice escaped from the severe hemorrhage at E11.5-12.5, although definitive hematopoiesis was not restored. Thus, PEBP2beta-independent Runx1 activation can occur in vivo. This observation sheds new light on the mechanism(s) that regulate the activity of Runx transcription factors.
Collapse
|
47
|
Abstract
AbstractTargeted disruption of the Runx1/ AML1 gene in mice has demonstrated that it is required for the emergence of definitive hematopoietic cells but that it is not essential for the formation of primitive erythrocytes. These findings led to the conclusion that Runx1 is a stage-specific transcription factor acting only during definitive hematopoiesis. However, the zebrafish and Xenopus homologs of Runx1 have been shown to play roles in primitive hematopoiesis, suggesting that mouse Runx1 might also be involved in the development of primitive lineages. In this study, we show that primitive erythrocytes in Runx1−/− mice display abnormal morphology and reduced expression of Ter119, Erythroid Kruppel-like factor (EKLF, KLF1), and GATA-1. These results suggest that mouse Runx1 plays a role in the development of both primitive and definitive hematopoietic cells.
Collapse
|
48
|
Dzierzak E, Speck NA. Of lineage and legacy: the development of mammalian hematopoietic stem cells. Nat Immunol 2008; 9:129-36. [PMID: 18204427 DOI: 10.1038/ni1560] [Citation(s) in RCA: 489] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The hematopoietic system is one of the first complex tissues to develop in the mammalian conceptus. Of particular interest in the field of developmental hematopoiesis is the origin of adult bone marrow hematopoietic stem cells. Tracing their origin is complicated because blood is a mobile tissue and because hematopoietic cells emerge from many embryonic sites. The origin of the adult mammalian blood system remains a topic of lively discussion and intense research. Interest is also focused on developmental signals that induce the adult hematopoietic stem cell program, as these may prove useful for generating and expanding these clinically important cell populations ex vivo. This review presents a historical overview of and the most recent data on the developmental origins of hematopoiesis.
Collapse
Affiliation(s)
- Elaine Dzierzak
- Department of Cell Biology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands.
| | | |
Collapse
|
49
|
Ito Y. RUNX genes in development and cancer: regulation of viral gene expression and the discovery of RUNX family genes. Adv Cancer Res 2008; 99:33-76. [PMID: 18037406 DOI: 10.1016/s0065-230x(07)99002-8] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mouse embryonal carcinoma (EC) cells, also called teratocarcinoma stem cells, are nonpermissive for polyomavirus growth, whereas differentiated derivatives of the cells are permissive. Mutant viruses capable of growing in EC cells can be isolated. They have genomic alterations within the viral enhancer, which is required for viral gene expression and DNA replication. This viral regulatory region was considered as a potential probe for mouse cell differentiation. The 24-bp-long A element within the enhancer was identified as a minimum element, which also shows a lower activity in EC cells compared with the differentiated cells. Transcription factors PEA1/AP1, PEA2/PEBP2, and PEA3/ETS were identified as A element-binding proteins. All of them are absent in EC cells and induced to be expressed when the cells are differentiated. Although PEBP2 has a weaker transactivation activity compared with other two, it is essential for the enhancer function of the A element. Purification and cDNA cloning revealed that PEBP2 has two subunits, DNA-binding alpha (PEBP2alpha) and non-DNA-binding beta (PEBP2beta). PEBP2alpha was found to be highly homologous to a Drosophila segmentation gene, runt, and a human gene AML1 that was identified as a part of the fusion gene, AML1/ETO (MTG8) generated by t(8;21) chromosome translocation associated with acute myelogenous leukemia (AML). Core-binding factor (CBF), which interacts with a murine retrovirus enhancer, was found to be identical to PEBP2. runt, PEBP2alpha and AML1 are now termed RUNX family, which are involved in cell specification during development. There are three mammalian RUNX genes, RUNX1, RUNX2, and RUNX3. RUNX1 is essential for generation of hematopoietic stem cells and is involved in human leukemia. RUNX2 is essential for skeletal development and has an oncogenic potential. RUNX3 is expressed in wider ranges of tissues and has multiple roles. Among others, RUNX3 is a major tumor suppressor of gastric and many other solid tumors.
Collapse
Affiliation(s)
- Yoshiaki Ito
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| |
Collapse
|
50
|
Worming out the biology of Runx. Dev Biol 2007; 313:492-500. [PMID: 18062959 DOI: 10.1016/j.ydbio.2007.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 10/08/2007] [Accepted: 11/02/2007] [Indexed: 01/09/2023]
Abstract
Runx family transcription factors have risen to prominence over the last few years because of the increasing evidence implicating them as key regulators of the choice between cell proliferation and differentiation during development and carcinogenesis. Runx factors have been found to be involved in diverse developmental processes, ranging from hematopoiesis to neurogenesis, and are increasingly being linked with various human cancers. In this review, we examine the case for Runx factors as key regulators of cell proliferation in various developmental situations, a role that predisposes Runx mutations as causative agents in oncogenesis. We discuss the evidence that Runx factors regulate, and are regulated by, core components of the cell cycle machinery, and focus our attention on the solo Runx gene, rnt-1, in Caenorhabditis elegans, an organism that we feel has much to offer the Runx field.
Collapse
|