1
|
Young GH, Lin JT, Cheng YF, Ho CF, Kuok QY, Hsu RC, Liao WR, Chen CC, Chen HM. Modulation of adenine phosphoribosyltransferase-mediated salvage pathway to accelerate diabetic wound healing. FASEB J 2021; 35:e21296. [PMID: 33675115 DOI: 10.1096/fj.202001736rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 01/13/2023]
Abstract
Adenine phosphoribosyltransferase (APRT) is the key enzyme involved in purine salvage by the incorporation of adenine and phosphoribosyl pyrophosphate to provide adenylate nucleotides. To evaluate the role of APRT in the repair processes of cutaneous wounds in healthy skin and in diabetic patients, a diabetic mouse model (db/db) and age-matched wild-type mice were used. Moreover, the topical application of adenine was assessed. In vitro studies, analytical, histological, and immunohistochemical methods were used. Diabetic mice treated with adenine exhibited elevated ATP levels in organismic skin and accelerated wound healing. In vitro studies showed that APRT utilized adenine to rescue cellular ATP levels and proliferation from hydrogen peroxide-induced oxidative damage. HPLC-ESI-MS/MS-based analysis of total adenylate nucleotides in NIH-3T3 fibroblasts demonstrated that adenine addition enlarged the cellular adenylate pool, reduced the adenylate energy charge, and provided additional AMP for the further generation of ATP. These data indicate an upregulation of APRT in skin wounds, highlighting its role during the healing of diabetic wounds through regulation of the nucleotide pool after injury. Furthermore, topical adenine supplementation resulted in an enlargement of the adenylate pool needed for the generation of ATP, an important molecule for wound repair.
Collapse
Affiliation(s)
| | | | | | | | | | - Ru-Chun Hsu
- Energenesis Biomedical Co. Ltd, Taipei, Taiwan
| | | | | | - Han-Min Chen
- Energenesis Biomedical Co. Ltd, Taipei, Taiwan.,Department of Life Science, Institute of Applied Science and Engineering, Catholic Fu-Jen University, New Taipei City, Taiwan
| |
Collapse
|
2
|
Abstract
The focus of this review is the human de novo purine biosynthetic pathway. The pathway enzymes are enumerated, as well as the reactions they catalyze and their physical properties. Early literature evidence suggested that they might assemble into a multi-enzyme complex called a metabolon. The finding that fluorescently-tagged chimeras of the pathway enzymes form discrete puncta, now called purinosomes, is further elaborated in this review to include: a discussion of their assembly; the role of ancillary proteins; their locus at the microtubule/mitochondria interface; the elucidation that at endogenous levels, purinosomes function to channel intermediates from phosphoribosyl pyrophosphate to AMP and GMP; and the evidence for the purinosomes to exist as a protein condensate. The review concludes with a consideration of probable signaling pathways that might promote the assembly and disassembly of the purinosome, in particular the identification of candidate kinases given the extensive phosphorylation of the enzymes. These collective findings substantiate our current view of the de novo purine biosynthetic metabolon whose properties will be representative of how other metabolic pathways might be organized for their function.
Collapse
Affiliation(s)
- Vidhi Pareek
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Anthony M Pedley
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Stephen J Benkovic
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
3
|
Liu C, Knudsen GM, Pedley AM, He J, Johnson JL, Yaron TM, Cantley LC, Benkovic SJ. Mapping Post-Translational Modifications of de Novo Purine Biosynthetic Enzymes: Implications for Pathway Regulation. J Proteome Res 2019; 18:2078-2087. [PMID: 30964683 DOI: 10.1021/acs.jproteome.8b00969] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Purines represent a class of essential metabolites produced by the cell to maintain cellular homeostasis and facilitate cell proliferation. In times of high purine demand, the de novo purine biosynthetic pathway is activated; however, the mechanisms that facilitate this process are largely unknown. One plausible mechanism is through intracellular signaling, which results in enzymes within the pathway becoming post-translationally modified to enhance their individual enzyme activities and the overall pathway metabolic flux. Here, we employ a proteomic strategy to investigate the extent to which de novo purine biosynthetic pathway enzymes are post-translationally modified in 293T cells. We identified 7 post-translational modifications on 135 residues across the 6 human pathway enzymes. We further asked whether there were differences in the post-translational modification state of each pathway enzyme isolated from cells cultured in the presence or absence of purines. Of the 174 assigned modifications, 67% of them were only detected in one experimental growth condition in which a significant number of serine and threonine phosphorylations were noted. A survey of the most-probable kinases responsible for these phosphorylation events uncovered a likely AKT phosphorylation site at residue Thr397 of PPAT, which was only detected in cells under purine-supplemented growth conditions. These data suggest that this modification might alter enzyme activity or modulate its interaction(s) with downstream pathway enzymes. Together, these findings propose a role for post-translational modifications in pathway regulation and activation to meet intracellular purine demand.
Collapse
Affiliation(s)
- Chunliang Liu
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Giselle M Knudsen
- Department of Pharmaceutical Chemistry , University of California San Francisco Mass Spectrometry Facility , San Francisco , California 94158 , United States
| | - Anthony M Pedley
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Jingxuan He
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | | | | | - Lewis C Cantley
- Department of Medicine , Beth Israel Deaconess Medical Center , Boston , Massachusetts 02115 , United States.,Department of Systems Biology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Stephen J Benkovic
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| |
Collapse
|
4
|
Benedict B, van Harn T, Dekker M, Hermsen S, Kucukosmanoglu A, Pieters W, Delzenne-Goette E, Dorsman JC, Petermann E, Foijer F, te Riele H. Loss of p53 suppresses replication-stress-induced DNA breakage in G1/S checkpoint deficient cells. eLife 2018; 7:e37868. [PMID: 30322449 PMCID: PMC6221544 DOI: 10.7554/elife.37868] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/28/2018] [Indexed: 12/12/2022] Open
Abstract
In cancer cells, loss of G1/S control is often accompanied by p53 pathway inactivation, the latter usually rationalized as a necessity for suppressing cell cycle arrest and apoptosis. However, we found an unanticipated effect of p53 loss in mouse and human G1-checkpoint-deficient cells: reduction of DNA damage. We show that abrogation of the G1/S-checkpoint allowed cells to enter S-phase under growth-restricting conditions at the expense of severe replication stress manifesting as decelerated DNA replication, reduced origin firing and accumulation of DNA double-strand breaks. In this system, loss of p53 allowed mitogen-independent proliferation, not by suppressing apoptosis, but rather by restoring origin firing and reducing DNA breakage. Loss of G1/S control also caused DNA damage and activation of p53 in an in vivo retinoblastoma model. Moreover, in a teratoma model, loss of p53 reduced DNA breakage. Thus, loss of p53 may promote growth of incipient cancer cells by reducing replication-stress-induced DNA damage.
Collapse
Affiliation(s)
- Bente Benedict
- Division of Tumor Biology and ImmunologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Tanja van Harn
- Division of Tumor Biology and ImmunologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Marleen Dekker
- Division of Tumor Biology and ImmunologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Simone Hermsen
- Division of Tumor Biology and ImmunologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Asli Kucukosmanoglu
- Division of Tumor Biology and ImmunologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Wietske Pieters
- Division of Tumor Biology and ImmunologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Elly Delzenne-Goette
- Division of Tumor Biology and ImmunologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Josephine C Dorsman
- Department of Clinical GeneticsVU University Medical CenterAmsterdamThe Netherlands
| | - Eva Petermann
- School of Cancer SciencesUniversity of BirminghamBirminghamUnited Kingdom
| | - Floris Foijer
- Division of Tumor Biology and ImmunologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- European Research Institute for the Biology of AgeingUniversity Medical Center GroningenAmsterdamThe Netherlands
| | - Hein te Riele
- Division of Tumor Biology and ImmunologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| |
Collapse
|
5
|
Masilamani TJ, Loiselle JJ, Sutherland LC. Assessment of reference genes for real-time quantitative PCR gene expression normalization during C2C12 and H9c2 skeletal muscle differentiation. Mol Biotechnol 2014; 56:329-39. [PMID: 24146429 DOI: 10.1007/s12033-013-9712-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Skeletal muscle differentiation occurs during muscle development and regeneration. To initiate and maintain the differentiated state, a multitude of gene expression changes occur. Accurate assessment of these differentiation-related gene expression changes requires good quality template, but more specifically, appropriate internal controls for normalization. Two cell line-based models used for in vitro analyses of muscle differentiation incorporate mouse C2C12 and rat H9c2 cells. In this study, we set out to identify the most appropriate controls for mRNA expression normalization during C2C12 and H9c2 differentiation. We assessed the expression profiles of Actb, Gapdh, Hprt, Rps12 and Tbp during C2C12 differentiation and of Gapdh and Rps12 during H9c2 differentiation. Using NormFinder, we validated the stability of the genes individually and of the geometric mean generated from different gene combinations. We verified our results using Myogenin. Our study demonstrates that using the geometric mean of a combination of specific reference genes for normalization provides a platform for more precise test gene expression assessment during myoblast differentiation than using the absolute expression value of an individual gene and reinforces the necessity of reference gene validation.
Collapse
Affiliation(s)
- Twinkle J Masilamani
- Biomolecular Sciences Program, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON, P3E 2C6, Canada,
| | | | | |
Collapse
|
6
|
Fang Y, French J, Zhao H, Benkovic S. G-protein-coupled receptor regulation of de novo purine biosynthesis: a novel druggable mechanism. Biotechnol Genet Eng Rev 2014; 29:31-48. [PMID: 24568251 DOI: 10.1080/02648725.2013.801237] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Spatial organization of metabolic enzymes may represent a general cellular mechanism to regulate metabolic flux. One recent example of this type of cellular phenomenon is the purinosome, a newly discovered multi-enzyme metabolic assembly that includes all of the enzymes within the de novo purine biosynthetic pathway. Our understanding of the components and regulation of purinosomes has significantly grown in recent years. This paper reviews the purine de novo biosynthesis pathway and its regulation, and presents the evidence supporting the purinosome assembly and disassembly processes under the control of G-protein-coupled receptor (GPCR) signaling. This paper also discusses the implications of purinosome and GPCR regulation in drug discovery.
Collapse
Affiliation(s)
- Ye Fang
- a Biochemical Technologies, Science and Technology Division , Corning Incorporated , Corning , New York , USA
| | | | | | | |
Collapse
|
7
|
Finch PW, Mark Cross LJ, McAuley DF, Farrell CL. Palifermin for the protection and regeneration of epithelial tissues following injury: new findings in basic research and pre-clinical models. J Cell Mol Med 2014; 17:1065-87. [PMID: 24151975 PMCID: PMC4118166 DOI: 10.1111/jcmm.12091] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/06/2013] [Accepted: 05/15/2013] [Indexed: 02/06/2023] Open
Abstract
Keratinocyte growth factor (KGF) is a paracrine-acting epithelial mitogen produced by cells of mesenchymal origin, that plays an important role in protecting and repairing epithelial tissues. Pre-clinical data initially demonstrated that a recombinant truncated KGF (palifermin) could reduce gastrointestinal injury and mortality resulting from a variety of toxic exposures. Furthermore, the use of palifermin in patients with hematological malignancies reduced the incidence and duration of severe oral mucositis experienced after intensive chemoradiotherapy. Based upon these findings, as well as the observation that KGF receptors are expressed in many, if not all, epithelial tissues, pre-clinical studies have been conducted to determine the efficacy of palifermin in protecting different epithelial tissues from toxic injury in an attempt to model various clinical situations in which it might prove to be of benefit in limiting tissue damage. In this article, we review these studies to provide the pre-clinical background for clinical trials that are described in the accompanying article and the rationale for additional clinical applications of palifermin.
Collapse
|
8
|
Ambrosini G, Pratilas CA, Qin LX, Tadi M, Surriga O, Carvajal RD, Schwartz GK. Identification of unique MEK-dependent genes in GNAQ mutant uveal melanoma involved in cell growth, tumor cell invasion, and MEK resistance. Clin Cancer Res 2012; 18:3552-61. [PMID: 22550165 DOI: 10.1158/1078-0432.ccr-11-3086] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Metastatic uveal melanoma represents the most common intraocular malignancy with very poor prognosis and no effective treatments. Oncogenic mutations in the G-protein α-subunit q and 11 have been described in about 85% of uveal melanomas and confer constitutive activation. Multiple signaling pathways are induced as a consequence of GNAQ/11 activation, which include the MEK/ERK kinase cascade. We analyzed the transcriptional profile of cell lines treated with a mitogen-activated protein (MAP)/extracellular signal-regulated (ERK) kinase (MEK) inhibitor to identify gene targets of activated GNAQ and to evaluate the biologic importance of these genes in uveal melanoma. EXPERIMENTAL DESIGN We conducted microarray analysis of uveal melanoma cell lines with GNAQ mutations treated with the MEK inhibitor selumetinib. For comparison, we used cells carrying BRAF(V600E) and cells without either mutation. Changes in the expression of selected genes were then confirmed by quantitative real-time PCR and immunoblotting. RESULTS We found that GNAQ mutant cells have a MEK-dependent transcriptional output and identified a unique set of genes that are downregulated by MEK inhibition, including the RNA helicase DDX21 and the cyclin-dependent kinase regulator CDK5R1 whereas Jun was induced. We provide evidence that these genes are involved in cell proliferation, tumor cell invasion, and drug resistance, respectively. Furthermore, we show that selumetinib treatment regulates the expression of these genes in tumor tissues of patients with metastatic GNAQ/11 mutant uveal melanoma. CONCLUSIONS Our findings define a subset of transcriptionally regulated genes by selumetinib in GNAQ mutant cells and provide new insights into understanding the biologic effect of MEK inhibition in this disease.
Collapse
Affiliation(s)
- Grazia Ambrosini
- Laboratory of New Drug Development and Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York 10065, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Mulenga A, Erikson K. A snapshot of the Ixodes scapularis degradome. Gene 2011; 482:78-93. [PMID: 21596113 DOI: 10.1016/j.gene.2011.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 03/04/2011] [Accepted: 04/15/2011] [Indexed: 01/19/2023]
Abstract
Parasitic encoded proteases are essential to regulating interactions between parasites and their hosts and thus they represent attractive anti-parasitic druggable and/or vaccine target. We have utilized annotations of Ixodes scapularis proteases in gene bank and version 9.3 MEROPS database to compile an index of at least 233 putatively active and 150 putatively inactive protease enzymes that are encoded by the I. scapularis genome. The 233 putatively active protease homologs hereafter referred to as the degradome (the full repertoire of proteases encoded by the I. scapularis genome) represent ~1.14% of the 20485 putative I. scapularis protein content. Consistent with observations in other animals, the content of the I. scapularis degradome is ~6.0% (14/233) aspartic, ~19% (44/233) cysteine, ~40% (93/233) metallo, ~28.3% (66/233) serine and ~6.4% (15/233) threonine proteases. When scanned against other tick sequences, ~11% (25/233) of I. scapularis putatively active proteases are conserved in other tick species with ≥ 60% amino acid identity levels. The I. scapularis genome does not apparently encode for putatively inactive aspartic proteases. Of the 150 putative inactive protease homologs none are from the aspartic protease class, ~8% (12/150) are cysteine, ~58.7% (88/150) metallo, 30% (45/150) serine and ~3.3% (5/150) are threonine proteases. The I. scapularis tick genome appears to have evolutionarily lost proteolytic activity of at least 6 protease families, C56 and C64 (cysteine), M20 and M23 (metallo), S24 and S28 (serine) as revealed by a lack of the putatively active proteases in these families. The overall protease content is comparable to other organisms. However, the paucity of the S1 chymotrypsin/trypsin-like serine protease family in the I. scapularis genome where it is ~12.7% (28/233) of the degradome as opposed to ~22-48% content in other blood feeding arthropods, Pediculus humanus humanus, Anopheles gambiae, Aedes Aegypti and Culex pipiens quinquefasciatus is notable. The data is presented as a one-stop index of proteases encoded by the I. scapularis genome.
Collapse
Affiliation(s)
- Albert Mulenga
- Texas A & M University AgriLife Research, Department of Entomology, College Station, TX 77843, USA.
| | | |
Collapse
|
10
|
Lim S, Choong LY, Kuan CP, Yunhao C, Lim YP. Regulation of macrophage inhibitory factor (MIF) by epidermal growth factor receptor (EGFR) in the MCF10AT model of breast cancer progression. J Proteome Res 2009; 8:4062-76. [PMID: 19530702 DOI: 10.1021/pr900430n] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Genetic aberration of EGFR is one of the major molecular characteristics of breast cancer. However, the molecular changes associated with EGFR signaling during different stages of breast cancer development have not been studied. In this study, complementary two-dimensional-DIGE and iTRAQ technologies were used to profile the expression level of proteins in 4 isogenic cell lines in the MCF10AT model of breast cancer progression following a time course of EGF stimulation. A total of 80 proteins (67 from iTRAQ, 15 from DIGE, 2 common in both) were identified to be up- or down-regulated by EGF treatment. Following EGF stimulation, the expression level of MIF, a cytokine that has been implicated in many human cancers, was decreased in MCF10A1 normal breast mammary epithelial cells, increased in MCF10AT1k preneoplastic and MCF10CA1h low grade breast cancer cells, but showed no obvious difference in the MCF10CA1a high grade cancer cells. The increase in MIF expression level following EGF treatment could also be observed in A431 cervical cancer cells. EGF-induced increases of MIF expression levels in CA1h breast cancer cells were abrogated when MEK, but not PIK3CA, was knocked down. In addition, silencing of MIF diminished the proliferation of EGF-stimulated CA1h cells when compared to control cells. Taken together, our data suggested an EGFR --> MEK --> MIF proliferative pathway that has never been reported previously and that this pathway "evolves" during disease progression as modeled by the MCF10AT system. Revelation of the novel relationship between MIF and EGF may contribute to an integrated understanding of the roles of these oncogenic factors during breast cancer development.
Collapse
Affiliation(s)
- Simin Lim
- Cancer Science Institute of Singapore, National University of Singapore, Department of Biological Sciences, Singapore
| | | | | | | | | |
Collapse
|
11
|
de Vries DR, Ter Linde JJM, van Herwaarden MA, Schwartz MP, Shephard P, Geng MM, Smout AJPM, Samsom M. In GERD patients, mucosal repair associated genes are upregulated in non-inflamed oesophageal epithelium. J Cell Mol Med 2009; 13:936-47. [PMID: 19413890 PMCID: PMC3823409 DOI: 10.1111/j.1582-4934.2008.00626.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 12/09/2008] [Indexed: 12/13/2022] Open
Abstract
Previous studies addressing the effects of acid reflux and PPI therapy on gene expression in oesophageal epithelium concentrated on inflamed tissue. We aimed to determine changes in gene expression in non-inflamed oesophageal epithelium of GERD patients. Therefore, we included 20 GERD patients with pathological total 24-hr acid exposure of 6-12% and SAP > or = 95%. Ten patients discontinued PPI treatment (PPI-), 10 took pantoprazole 40 mg bid (PPI+). Ten age/sex-matched healthy controls were recruited. Biopsies were taken from non-inflamed mucosa 6 cm and 16 cm proximal to the squamocolumnar junction (SCJ). Gene expression profiling of biopsies from 6 cm was performed on Human Genome U133 Plus 2.0 arrays (Affymetrix). Genes exhibiting a fold change >1.4 (t-test P-value < 1(E)- 4) were considered differentially expressed. Results were confirmed by real-time RT-PCR. In PPI- patients, 92 microarray probesets were deregulated. The majority of the corresponding genes were associated with cell-cell contacts, cytoskeletal reorganization and cellular motility, suggesting facilitation of a migratory phenotype. Genes encoding proteins with anti-apoptotic or anti-proliferative functions or stress-protective functions were also deregulated. No probesets were deregulated in PPI+ patients. QPCR analysis of 20 selected genes confirmed most of the deregulations in PPI- patients, and showed several deregulated genes in PPI+ patients as well. In the biopsies taken at 16 cm QPCR revealed no deregulations of the selected genes. We conclude that upon acid exposure, oesophageal epithelial cells activate a process globally known as epithelial restitution: up-regulation of anti-apoptotic, anti-oxidant and migration associated genes. Possibly this process helps maintaining barrier function.
Collapse
Affiliation(s)
- D R de Vries
- Department of Gastroenterology and Hepatology, University Medical Center, Utrecht, the Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Wang W, Fridman A, Blackledge W, Connelly S, Wilson IA, Pilz RB, Boss GR. The phosphatidylinositol 3-kinase/akt cassette regulates purine nucleotide synthesis. J Biol Chem 2008; 284:3521-8. [PMID: 19068483 DOI: 10.1074/jbc.m806707200] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway is highly conserved throughout evolution and regulates cell size and survival and cell cycle progression. It regulates the latter by stimulating procession through G(1) and the G(1)/S phase transition. Entry into S phase requires an abundant supply of purine nucleotides, but the effect of the PI3K/Akt pathway on purine synthesis has not been studied. We now show that the PI3K/Akt cassette regulates both de novo and salvage purine nucleotide synthesis in insulin-responsive mouse mesenchymal cells. We found that serum and insulin stimulated de novo purine synthesis in serum-starved cells largely through PI3K/Akt signaling, and pharmacologic and genetic inhibition of PI3K/Akt reduced de novo synthesis by 75% in logarithmically growing cells. PI3K/Akt regulated early steps of de novo synthesis by modulating phosphoribosylpyrophosphate production by the non-oxidative pentose phosphate pathway and late steps by modulating activity of the bifunctional enzyme aminoimidazole-carboxamide ribonucleotide transformylase IMP cyclohydrolase, an enzyme not previously known to be regulated. The effects of PI3K/Akt on purine nucleotide salvage were likely through regulating phosphoribosylpyrophosphate availability. These studies define a new mechanism whereby the PI3K/Akt cassette functions as a master regulator of cellular metabolism and a key player in oncogenesis.
Collapse
Affiliation(s)
- Wei Wang
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Braun S, Mauch C, Boukamp P, Werner S. Novel roles of NM23 proteins in skin homeostasis, repair and disease. Oncogene 2006; 26:532-42. [PMID: 16862176 DOI: 10.1038/sj.onc.1209822] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Keratinocyte growth factor (KGF) is an important regulator of epidermal homeostasis and repair. Therefore, the identification of KGF target genes in keratinocytes should contribute to our understanding of the molecular mechanisms underlying these processes. In a search for KGF-regulated genes, we identified the gene encoding the nucleoside diphosphate kinase NM23-H1. Apart from a housekeeping function, NM23 proteins are involved in the regulation of many cellular processes as well as in tumor metastasis, but their functions in epidermal homeostasis and repair are largely unknown. Here, we show a high expression of NM23-H1 and NM23-H2 in the KGF-responsive keratinocytes of the hyperproliferative epidermis of mouse skin wounds and of patients suffering from the skin disease psoriasis. To determine if this overexpression is functionally important, we generated HaCaT keratinocyte cell lines overexpressing NM23-H1 and/or -H2. Whereas the enhanced levels of NM23 did not affect cell proliferation in monoculture, NM23-H2 and double transfectants but not NM23-H1 transfectants formed a strongly hyperthickened epithelium in three-dimensional organotypic cultures. The abnormal epithelial morphology resulted from enhanced proliferation, reduced apoptosis and alterations in the differentiation pattern. These findings suggest that epidermal homeostasis depends on a tight regulation of the levels of NM23 isoforms.
Collapse
Affiliation(s)
- S Braun
- Institute of Cell Biology, ETH Zurich, Hönggerberg, Zurich, Switzerland
| | | | | | | |
Collapse
|
14
|
Finch PW, Rubin JS. Keratinocyte growth factor/fibroblast growth factor 7, a homeostatic factor with therapeutic potential for epithelial protection and repair. Adv Cancer Res 2004; 91:69-136. [PMID: 15327889 DOI: 10.1016/s0065-230x(04)91003-2] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Keratinocyte growth factor (KGF) is a paracrine-acting, epithelial mitogen produced by cells of mesenchymal origin. It is a member of the fibroblast growth factor (FGF) family, and acts exclusively through a subset of FGF receptor isoforms (FGFR2b) expressed predominantly by epithelial cells. The upregulation of KGF after epithelial injury suggested it had an important role in tissue repair. This hypothesis was reinforced by evidence that intestinal damage was worse and healing impaired in KGF null mice. Preclinical data from several animal models demonstrated that recombinant human KGF could enhance the regenerative capacity of epithelial tissues and protect them from a variety of toxic exposures. These beneficial effects are attributed to multiple mechanisms that collectively act to strengthen the integrity of the epithelial barrier, and include the stimulation of cell proliferation, migration, differentiation, survival, DNA repair, and induction of enzymes involved in the detoxification of reactive oxygen species. KGF is currently being evaluated in clinical trials to test its ability to ameliorate severe oral mucositis (OM) that results from cancer chemoradiotherapy. In a phase 3 trial involving patients who were treated with myeloablative chemoradiotherapy before autologous peripheral blood progenitor cell transplantation for hematologic malignancies, KGF significantly reduced both the incidence and duration of severe OM. Similar investigations are underway in patients being treated for solid tumors. On the basis of its success in ameliorating chemoradiotherapy-induced OM in humans and tissue damage in a variety of animal models, additional clinical applications of KGF are worthy of investigation.
Collapse
Affiliation(s)
- Paul W Finch
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
15
|
auf demKeller U, Krampert M, Kümin A, Braun S, Werner S. Keratinocyte growth factor: effects on keratinocytes and mechanisms of action. Eur J Cell Biol 2004; 83:607-12. [PMID: 15679105 DOI: 10.1078/0171-9335-00389] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Keratinocyte growth factor (KGF) is a potent and specific mitogen for different types of epithelial cells, and it can protect these cells from various insults. Due to these properties, it is of particular importance for the repair of injured epithelial tissues, and it is currently therapeutically explored for the treatment of radiation- and chemotherapy-induced mucosal epithelial damage in cancer patients. In this review we summarize the current knowledge on the role of KGF in tissue repair and cytoprotection, and we report on its mechanisms of action in keratinocytes.
Collapse
Affiliation(s)
- Ulrich auf demKeller
- Institute of Cell Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
16
|
Dini G, Funghini S, Witort E, Magnelli L, Fanti E, Rifkin DB, Del Rosso M. Overexpression of the 18 kDa and 22/24 kDa FGF-2 isoforms results in differential drug resistance and amplification potential. J Cell Physiol 2002; 193:64-72. [PMID: 12209881 DOI: 10.1002/jcp.10152] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We investigated the role of low molecular weight (LMW) and high molecular weight (HMW) isoforms of basic fibroblast growth factor 2 (FGF-2) in the expression of transformation-related phenotypic alterations, drug sensitivity modulation, and gene amplification potential. For this purpose, we used NIH 3T3 and A31 cells transfected with different cDNA FGF-2 constructs allowing expression of the different proteins. Both cell lines showed marked phenotypic alterations when expressing the LMW FGF-2 or the four HMW FGF-2 isoforms: they acquired a transformed morphology, grew at higher saturation densities in 10% serum, and exhibited anchorage-independent growth and increased invasive potential. However, HMW FGF-2-expressing cells also grew in 1% serum and their invasive potential was lower than in cells expressing all FGF-2 forms or LMW FGF-2 alone. We have grown the different cell lines under a selective pressure of N-(phosphonacetyl)-l-aspartate (PALA), a drug which specifically inhibits the aspartate transcarbamylase activity of the multifunctional carbamyl-P-synthetase/aspartate transcarbamylase/dihydro-orotase genes (CAD) enzyme (and thus inhibits de novo pyrimidine biosynthesis) and selects for cells with amplified copies of the CAD gene. Our results demonstrate that aberrant expression of the LMW FGF-2 and/or HMW FGF-2 isoforms differently modulates drug resistance and gene amplification properties in the NIH 3T3 and A31 cell lines by differential amplification of the CAD gene. Coexpression of all isoforms appears to be necessary to obtain cumulative effects and nuclear-targeted HMW FGF-2 has a pivotal role in such a cooperation.
Collapse
Affiliation(s)
- Germana Dini
- Department of Experimental Pathology and Oncology of Florence University, Florence, Italy.
| | | | | | | | | | | | | |
Collapse
|
17
|
Wen HY, Xia Y, Young ME, Taegtmeyer H, Kellems RE. The adenylosuccinate synthetase-1 gene is activated in the hypertrophied heart. J Cell Mol Med 2002; 6:235-43. [PMID: 12169208 PMCID: PMC6740216 DOI: 10.1111/j.1582-4934.2002.tb00190.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Adenylosuccinate synthetase 1 (ADSS1) functions as an important component in adenine nucleotide biosynthesis and is abundant in the heart. Here we report that the Adss1 gene is up-regulated in two in vivo rodent models of surgically induced cardiac hypertrophy. In addition, we examined an in vitro hypertrophy system of rat neonatal cardiomyocytes treated with angiotensin II to study Adss1 gene regulation. We show that this stimulus triggers a signaling cascade that results in the activation of the Adss1 gene. The induction of Adss1 gene expression was blocked by cyclosporin A in vitro, suggesting that calcineurin, a calmodulin activated phosphatase, is involved in this signaling pathway. Consistent with this view we provide evidence that the induction of Adss1 by angiotension II requires the presence of an NFAT binding site located 556 base pairs upstream of the Adss1 transcription start site. We propose that ADSS1 plays a role in the development of cardiac hypertrophy through its function in adenine nucleotide biosynthesis.
Collapse
Affiliation(s)
- H Y Wen
- Department of Biochemistry and Molecular Biology, University of Texas, Medical School at Houston, Suite 6.200, 6431 Fannin Street, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
18
|
Schlattner U, Möckli N, Speer O, Werner S, Wallimann T. Creatine kinase and creatine transporter in normal, wounded, and diseased skin. J Invest Dermatol 2002; 118:416-23. [PMID: 11874479 DOI: 10.1046/j.0022-202x.2001.01697.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Skin comprises many cell types that are characterized by high biosynthetic activity and increased energy turnover. The creatine kinase system, consisting of creatine kinase isoenzymes and creatine transporter, is known to be important to support the high energy demands in such cells. We analyzed the presence and the localization of these proteins in murine and human skin under healthy and pathologic conditions, using immunoblotting and confocal immunohistochemistry with our recently developed specific antibodies. In murine skin, we found high amounts of brain-type cytosolic creatine kinase coexpressed with lower amounts of ubiquitous mitochondrial creatine kinase, both mainly localized in suprabasal layers of the epidermis, different cell types of hair follicles, sebaceous glands, and the subcutaneous panniculus carnosus muscle. With exception of sebaceous glands, these cells were also expressing creatine transporter. Muscle-type cytosolic creatine kinase and sarcomeric mitochondrial creatine kinase were restricted to panniculus carnosus. Immediately after wounding of murine skin, brain-type cytosolic creatine kinase and a creatine transporter-subspecies were transiently upregulated about 3-fold as seen in immunoblots, whereas the amount of ubiquitous mitochondrial creatine kinase increased during days 10-15 after wounding. Healthy and psoriatic human skin showed a similar coexpression pattern of brain-type cytosolic creatine kinase, ubiquitous mitochondrial creatine kinase, and creatine transporter in this pilot study, with creatine transporter species being upregulated in psoriasis.
Collapse
Affiliation(s)
- Uwe Schlattner
- Institute of Cell Biology, Swiss Federal Institute of Technology, Hönggerberg HPM, Zürich, Switzerland.
| | | | | | | | | |
Collapse
|
19
|
Beer HD, Gassmann MG, Munz B, Steiling H, Engelhardt F, Bleuel K, Werner S. Expression and function of keratinocyte growth factor and activin in skin morphogenesis and cutaneous wound repair. J Investig Dermatol Symp Proc 2000; 5:34-9. [PMID: 11147673 DOI: 10.1046/j.1087-0024.2000.00009.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Reepithelialization and granulation tissue formation during cutaneous wound repair are mediated by a wide variety of growth and differentiation factors. Recent studies from our laboratory provided evidence for an important role of keratinocyte growth factor (KGF) in the repair of the injured epithelium and for a novel function of the transforming growth factor-beta superfamily member activin in granulation tissue formation. KGF is weakly expressed in human skin, but is strongly upregulated in dermal fibroblasts after skin injury. Its binding to a transmembrane receptor on keratinocytes induces proliferation and migration of these cells. Furthermore, KGF has been shown to protect epithelial cells from the toxic effects of reactive oxygen species. We have identified a series of KGF-regulated genes that are likely to play a role in these processes. In addition to KGF, activin seems to be a novel player in wound healing. Activin expression is hardly detectable in nonwounded skin, but this factor is highly expressed in redifferentiating keratinocytes of the hyperproliferative wound epithelium as well as in cells of the granulation tissue. To gain insight into the role of activin in wound repair, we generated transgenic mice that overexpress activin in basal keratinocytes of the epidermis. These mice were characterized by a hyperthickened epidermis and by dermal fibrosis. Most importantly, overexpression of activin strongly enhanced the process of granulation tissue formation, demonstrating a novel and important role of activin in cutaneous wound repair.
Collapse
Affiliation(s)
- H D Beer
- Institute of Cell Biology, Swiss Federal Institute of Technology, Zürich
| | | | | | | | | | | | | |
Collapse
|
20
|
Gassmann MG, Werner S. Caveolin-1 and -2 expression is differentially regulated in cultured keratinocytes and within the regenerating epidermis of cutaneous wounds. Exp Cell Res 2000; 258:23-32. [PMID: 10912784 DOI: 10.1006/excr.2000.4904] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Keratinocyte growth factor (KGF) and its receptor are involved in various types of epithelial repair processes. To gain insight into the molecular mechanisms of KGF action in the healing skin wound, we searched for genes which are regulated by this factor in cultured keratinocytes. Using the PCR-select technology we constructed a subtractive cDNA library. One of the KGF-regulated genes that we identified was shown to encode caveolin-1, a major component of caveolar membranes. Caveolin-1 is involved in a wide variety of cellular processes, particularly in the regulation of various signal transduction pathways. Caveolin-1 mRNA levels increased in cultured keratinocytes after KGF treatment. By in situ hybridization and immunohistochemistry we found a strong expression of caveolin-1 in the KGF-responsive basal keratinocytes of the epidermis and the hyperproliferative epithelium of the wound as well as in endothelial cells and in other cells of the granulation tissue. In 13-day wounds expression of caveolin-1 mRNA was restricted to the regenerated dermis. In addition to caveolin-1, the mRNA expression of caveolin-2, a second member of the caveolin family, was also induced in keratinocytes after stimulation with KGF but also with other growth factors and cytokines. In contrast to caveolin-1, caveolin-2 protein was expressed in all layers of the normal epidermis and in the suprabasal layers of the hyperproliferative wound epithelium. These results demonstrate a differential expression of caveolin-1 and -2 in proliferating versus differentiating keratinocytes.
Collapse
Affiliation(s)
- M G Gassmann
- Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | | |
Collapse
|