1
|
Kim D, Bhargava R, Wang SC, Lee D, Patel R, Oh S, Bowman RW, Na CH, O'Sullivan RJ, Miller KM. TRIM24 directs replicative stress responses to maintain ALT telomeres via chromatin signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.18.618947. [PMID: 39463989 PMCID: PMC11507842 DOI: 10.1101/2024.10.18.618947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
An inability to replicate the genome can cause replication stress and genome instability. Here, we develop BLOCK-ID, a proteomic method to identify and visualize proteins at stressed replication forks. This approach successfully identified novel mediators of the replication stress response, including the chromatin acetylation reader protein TRIM24. In validating TRIM24 function, we uncovered its crucial role in coordinating Alternative Lengthening of Telomeres (ALT), a cancer-specific telomere extension pathway involving replication stress. Our data reveal that TRIM24 is directed to telomeres via a p300/CBP-dependent acetylation chromatin signaling cascade, where it organizes ALT-associated PML bodies (APBs) to promote telomere DNA synthesis. Strikingly, we demonstrate that when artificially tethered at telomeres, TRIM24 can stimulate new telomere DNA synthesis in a SUMO-dependent manner, independently of p300/CBP or PML-dependent APBs. Thus, this study identifies a TRIM24 chromatin signaling pathway required for ALT telomere maintenance.
Collapse
|
2
|
Dubey S, Mishra N, Shelke R, Varma AK. Mutations at proximal cysteine residues in PML impair ATO binding by destabilizing the RBCC domain. FEBS J 2024; 291:1422-1438. [PMID: 38129745 DOI: 10.1111/febs.17041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/20/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023]
Abstract
Acute promyelocytic leukemia (APL) is characterized by the fusion gene promyelocytic leukemia-retinoic acid receptor-alpha (PML-RARA) and is conventionally treated with arsenic trioxide (ATO). ATO binds directly to the RING finger, B-box, coiled-coil (RBCC) domain of PML and initiates degradation of the fusion oncoprotein PML-RARA. However, the mutational hotspot at C212-S220 disrupts ATO binding, leading to drug resistance in APL. Therefore, structural consequences of these point mutations in PML that remain uncertain require comprehensive analysis. In this study, we investigated the structure-based ensemble properties of the promyelocytic leukemia-RING-B-box-coiled-coil (PML-RBCC) domains and ATO-resistant mutations. Oligomeric studies reveal that PML-RBCC wild-type and mutants C212R, S214L, A216T, L217F, and S220G predominantly form tetramers, whereas mutants C213R, A216V, L218P, and D219H tend to form dimers. The stability of the dimeric mutants was lower, exhibiting a melting temperature (Tm) reduction of 30 °C compared with the tetrameric mutants and wild-type PML protein. Furthermore, the exposed surface of the C213R mutation rendered it more prone to protease digestion than that of the C212R mutation. The spectroscopic analysis highlighted ATO-induced structural alterations in S214L, A216V, and D219H mutants, in contrast to C213R, L217F, and L218P mutations. Moreover, the computational analysis revealed that the ATO-resistant mutations C213R, A216V, L217F, and L218P caused changes in the size, shape, and flexibility of the PML-RBCC wild-type protein. The mutations C213R, A216V, L217F, and L218P destabilize the wild-type protein structure due to the adaptation of distinct conformational changes. In addition, these mutations disrupt several hydrogen bonds, including interactions involving C212, C213, and C215, which are essential for ATO binding. The local and global structural features induced by these mutations provide mechanistic insight into ATO resistance and APL pathogenesis.
Collapse
Affiliation(s)
- Suchita Dubey
- Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Neha Mishra
- Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Rohan Shelke
- Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India
| | - Ashok K Varma
- Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
3
|
Testa U, Pelosi E. Function of PML-RARA in Acute Promyelocytic Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:321-339. [PMID: 39017850 DOI: 10.1007/978-3-031-62731-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The transformation of acute promyelocytic leukemia (APL) from the most fatal to the most curable subtype of acute myeloid leukemia (AML), with long-term survival exceeding 90%, has represented one of the most exciting successes in hematology and in oncology. APL is a paradigm for oncoprotein-targeted cure.APL is caused by a 15/17 chromosomal translocation which generates the PML-RARA fusion protein and can be cured by the chemotherapy-free approach based on the combination of two therapies targeting PML-RARA: retinoic acid (RA) and arsenic. PML-RARA is the key driver of APL and acts by deregulating transcriptional control, particularly RAR targets involved in self-renewal or myeloid differentiation, also disrupting PML nuclear bodies. PML-RARA mainly acts as a modulator of the expression of specific target genes: genes whose regulatory elements recruit PML-RARA are not uniformly repressed but also may be upregulated or remain unchanged. RA and arsenic trioxide directly target PML-RARA-mediated transcriptional deregulation and protein stability, removing the differentiation block at promyelocytic stage and inducing clinical remission of APL patients.
Collapse
MESH Headings
- Humans
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Tretinoin/therapeutic use
- Tretinoin/pharmacology
- Arsenic Trioxide/therapeutic use
- Arsenic Trioxide/pharmacology
- Gene Expression Regulation, Leukemic/drug effects
- Antineoplastic Agents/therapeutic use
- Antineoplastic Agents/pharmacology
- Arsenicals/therapeutic use
- Arsenicals/pharmacology
- Oxides/therapeutic use
- Oxides/pharmacology
- Animals
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy.
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
4
|
Bercier P, Wang QQ, Zang N, Zhang J, Yang C, Maimaitiyiming Y, Abou-Ghali M, Berthier C, Wu C, Niwa-Kawakita M, Dirami T, Geoffroy MC, Ferhi O, Quentin S, Benhenda S, Ogra Y, Gueroui Z, Zhou C, Naranmandura H, de Thé H, Lallemand-Breitenbach V. Structural Basis of PML-RARA Oncoprotein Targeting by Arsenic Unravels a Cysteine Rheostat Controlling PML Body Assembly and Function. Cancer Discov 2023; 13:2548-2565. [PMID: 37655965 PMCID: PMC10714139 DOI: 10.1158/2159-8290.cd-23-0453] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/31/2023] [Accepted: 08/30/2023] [Indexed: 09/02/2023]
Abstract
PML nuclear bodies (NB) are disrupted in PML-RARA-driven acute promyelocytic leukemia (APL). Arsenic trioxide (ATO) cures 70% of patients with APL, driving PML-RARA degradation and NB reformation. In non-APL cells, arsenic binding onto PML also amplifies NB formation. Yet, the actual molecular mechanism(s) involved remain(s) elusive. Here, we establish that PML NBs display some features of liquid-liquid phase separation and that ATO induces a gel-like transition. PML B-box-2 structure reveals an alpha helix driving B2 trimerization and positioning a cysteine trio to form an ideal arsenic-binding pocket. Altering either of the latter impedes ATO-driven NB assembly, PML sumoylation, and PML-RARA degradation, mechanistically explaining clinical ATO resistance. This B2 trimer and the C213 trio create an oxidation-sensitive rheostat that controls PML NB assembly dynamics and downstream signaling in both basal state and during stress response. These findings identify the structural basis for arsenic targeting of PML that could pave the way to novel cancer drugs. SIGNIFICANCE Arsenic curative effects in APL rely on PML targeting. We report a PML B-box-2 structure that drives trimer assembly, positioning a cysteine trio to form an arsenic-binding pocket, which is disrupted in resistant patients. Identification of this ROS-sensitive triad controlling PML dynamics and functions could yield novel drugs. See related commentary by Salomoni, p. 2505. This article is featured in Selected Articles from This Issue, p. 2489.
Collapse
Affiliation(s)
- Pierre Bercier
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
- GenCellDis, Inserm U944, CNRS UMR7212, Université Paris Cité, Paris, France
| | - Qian Qian Wang
- Department of Hematology of First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Public Health, School of Medicine and Department of Toxicology, Zhejiang University, Hangzhou, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ning Zang
- Public Health, School of Medicine and Department of Toxicology, Zhejiang University, Hangzhou, China
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Zhang
- Public Health, School of Medicine and Department of Toxicology, Zhejiang University, Hangzhou, China
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chang Yang
- Department of Hematology of First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Public Health, School of Medicine and Department of Toxicology, Zhejiang University, Hangzhou, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yasen Maimaitiyiming
- Department of Hematology of First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Public Health, School of Medicine and Department of Toxicology, Zhejiang University, Hangzhou, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Majdouline Abou-Ghali
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
- GenCellDis, Inserm U944, CNRS UMR7212, Université Paris Cité, Paris, France
| | - Caroline Berthier
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Chengchen Wu
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
- GenCellDis, Inserm U944, CNRS UMR7212, Université Paris Cité, Paris, France
| | - Michiko Niwa-Kawakita
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
- GenCellDis, Inserm U944, CNRS UMR7212, Université Paris Cité, Paris, France
| | - Thassadite Dirami
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
- GenCellDis, Inserm U944, CNRS UMR7212, Université Paris Cité, Paris, France
| | - Marie-Claude Geoffroy
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
- GenCellDis, Inserm U944, CNRS UMR7212, Université Paris Cité, Paris, France
| | - Omar Ferhi
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
- GenCellDis, Inserm U944, CNRS UMR7212, Université Paris Cité, Paris, France
| | - Samuel Quentin
- GenCellDis, Inserm U944, CNRS UMR7212, Université Paris Cité, Paris, France
| | - Shirine Benhenda
- GenCellDis, Inserm U944, CNRS UMR7212, Université Paris Cité, Paris, France
| | - Yasumitsu Ogra
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Zoher Gueroui
- Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Chun Zhou
- Public Health, School of Medicine and Department of Toxicology, Zhejiang University, Hangzhou, China
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hua Naranmandura
- Department of Hematology of First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Public Health, School of Medicine and Department of Toxicology, Zhejiang University, Hangzhou, China
| | - Hugues de Thé
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
- GenCellDis, Inserm U944, CNRS UMR7212, Université Paris Cité, Paris, France
- Hematology Laboratory, Hôpital St Louis, AP/HP, Paris, France
| | - Valérie Lallemand-Breitenbach
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
- GenCellDis, Inserm U944, CNRS UMR7212, Université Paris Cité, Paris, France
| |
Collapse
|
5
|
Gambelli A, Ferrando A, Boncristiani C, Schoeftner S. Regulation and function of R-loops at repetitive elements. Biochimie 2023; 214:141-155. [PMID: 37619810 DOI: 10.1016/j.biochi.2023.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/13/2023] [Accepted: 08/19/2023] [Indexed: 08/26/2023]
Abstract
R-loops are atypical, three-stranded nucleic acid structures that contain a stretch of RNA:DNA hybrids and an unpaired, single stranded DNA loop. R-loops are physiological relevant and can act as regulators of gene expression, chromatin structure, DNA damage repair and DNA replication. However, unscheduled and persistent R-loops are mutagenic and can mediate replication-transcription conflicts, leading to DNA damage and genome instability if left unchecked. Detailed transcriptome analysis unveiled that 85% of the human genome, including repetitive regions, hold transcriptional activity. This anticipates that R-loops management plays a central role for the regulation and integrity of genomes. This function is expected to have a particular relevance for repetitive sequences that make up to 75% of the human genome. Here, we review the impact of R-loops on the function and stability of repetitive regions such as centromeres, telomeres, rDNA arrays, transposable elements and triplet repeat expansions and discuss their relevance for associated pathological conditions.
Collapse
Affiliation(s)
- Alice Gambelli
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Alessandro Ferrando
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Chiara Boncristiani
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Stefan Schoeftner
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy.
| |
Collapse
|
6
|
Loe TK, Lazzerini Denchi E, Tricola GM, Azeroglu B. ALTercations at telomeres: stress, recombination and extrachromosomal affairs. Biochem Soc Trans 2023; 51:1935-1946. [PMID: 37767563 DOI: 10.1042/bst20230265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
Approximately 15% of human cancers depend on the alternative lengthening of telomeres (ALT) pathway to maintain telomeres and proliferate. Telomeres that are elongated using ALT display unique features raising the exciting prospect of tailored cancer therapies. ALT-mediated telomere elongation shares several features with recombination-based DNA repair. Strikingly, cells that use the ALT pathway display abnormal levels of replication stress at telomeres and accumulate abundant extrachromosomal telomeric DNA. In this review, we examine recent findings that shed light on the ALT mechanisms and the strategies currently available to suppress this telomere elongation mechanism.
Collapse
Affiliation(s)
- Taylor K Loe
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, U.S.A
| | - Eros Lazzerini Denchi
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD 20892, U.S.A
| | - Gianna M Tricola
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD 20892, U.S.A
| | - Benura Azeroglu
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD 20892, U.S.A
| |
Collapse
|
7
|
Abstract
Human and simian immunodeficiency viruses (HIVs and SIVs, respectively) encode several small proteins (Vif, Vpr, Nef, Vpu, and Vpx) that are called accessory because they are not generally required for viral replication in cell culture. However, they play complex and important roles for viral immune evasion and spread in vivo. Here, we discuss the diverse functions and the relevance of the viral protein U (Vpu) that is expressed from a bicistronic RNA during the late stage of the viral replication cycle and found only in HIV-1 and closely related SIVs. It is well established that Vpu counteracts the restriction factor tetherin, mediates degradation of the primary viral CD4 receptors, and inhibits activation of the transcription factor nuclear factor kappa B. Recent studies identified additional activities and provided new insights into the sophisticated mechanisms by which Vpu enhances and prolongs the release of fully infectious viral particles. In addition, it has been shown that Vpu prevents superinfection not only by degrading CD4 but also by modulating DNA repair mechanisms to promote degradation of nuclear viral complementary DNA in cells that are already productively infected.
Collapse
Affiliation(s)
- Meta Volcic
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany;
| | - Lisa Wiesmüller
- Division of Gynecological Oncology, Department of Obstetrics and Gynecology, Ulm University Medical Center, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany;
| |
Collapse
|
8
|
Procario MC, Sexton JZ, Halligan BS, Imperiale MJ. Single-Cell, High-Content Microscopy Analysis of BK Polyomavirus Infection. Microbiol Spectr 2023; 11:e0087323. [PMID: 37154756 PMCID: PMC10269497 DOI: 10.1128/spectrum.00873-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/08/2023] [Indexed: 05/10/2023] Open
Abstract
By adulthood, the majority of the population is persistently infected with BK polyomavirus (BKPyV). Only a subset of the population, generally transplant recipients on immunosuppressive drugs, will experience disease from BKPyV, but those who do have few treatment options and, frequently, poor outcomes, because to date there are no effective antivirals to treat or approved vaccines to prevent BKPyV. Most studies of BKPyV have been performed on bulk populations of cells, and the dynamics of infection at single-cell resolution have not been explored. As a result, much of our knowledge is based upon the assumption that all cells within a greater population are behaving the same way with respect to infection. The present study examines BKPyV infection on a single-cell level using high-content microscopy to measure and analyze the viral protein large T antigen (TAg), promyelocytic leukemia protein (PML), DNA, and nuclear morphological features. We observed significant heterogeneity among infected cells, within and across time points. We found that the levels of TAg within individual cells did not necessarily increase with time and that cells with the same TAg levels varied in other ways. Overall, high-content, single-cell microscopy is a novel approach to studying BKPyV that enables experimental insight into the heterogenous nature of the infection. IMPORTANCE BK polyomavirus (BKPyV) is a human pathogen that infects nearly everyone by adulthood and persists throughout a person's life. Only people with significant immune suppression develop disease from the virus, however. Until recently the only practical means of studying many viral infections was to infect a group of cells in the laboratory and measure the outcomes in that group. However, interpreting these bulk population experiments requires the assumption that infection influences all cells within a group similarly. This assumption has not held for multiple viruses tested so far. Our study establishes a novel single-cell microscopy assay for BKPyV infection. Using this assay, we discovered differences among individual infected cells that have not been apparent in bulk population studies. The knowledge gained in this study and the potential for future use demonstrate the power of this assay as a tool for understanding the biology of BKPyV.
Collapse
Affiliation(s)
- Megan C. Procario
- Department of Microbiology and Immunology, Medical School, University of Michigan, Ann Arbor, Michigan, USA
| | - Jonathan Z. Sexton
- Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, Michigan, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
- Center for Drug Repurposing, University of Michigan, Ann Arbor, Michigan, USA
| | - Benjamin S. Halligan
- Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael J. Imperiale
- Department of Microbiology and Immunology, Medical School, University of Michigan, Ann Arbor, Michigan, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
9
|
Cerutti E, D'Amico M, Cainero I, Pelicci PG, Faretta M, Dellino GI, Diaspro A, Lanzanò L. Alterations induced by the PML-RARα oncogene revealed by image cross correlation spectroscopy. Biophys J 2022; 121:4358-4367. [PMID: 36196056 PMCID: PMC9703036 DOI: 10.1016/j.bpj.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/30/2022] [Accepted: 10/03/2022] [Indexed: 12/14/2022] Open
Abstract
The molecular mechanisms that underlie oncogene-induced genomic damage are still poorly understood. To understand how oncogenes affect chromatin architecture, it is important to visualize fundamental processes such as DNA replication and transcription in intact nuclei and quantify the alterations of their spatiotemporal organization induced by oncogenes. Here, we apply superresolution microscopy in combination with image cross correlation spectroscopy to the U937-PR9 cell line, an in vitro model of acute promyelocytic leukemia that allows us to activate the expression of the PML-RARα oncogene and analyze its effects on the spatiotemporal organization of functional nuclear processes. More specifically, we perform Tau-stimulated emission depletion imaging, a superresolution technique based on the concept of separation of photons by lifetime tuning. Tau-stimulated emission depletion imaging is combined with a robust image analysis protocol that quickly produces a value of colocalization fraction on several hundreds of single cells and allows observation of cell-to-cell variability. Upon activation of the oncogene, we detect a significant increase in the fraction of transcription sites colocalized with PML/PML-RARα. This increase of colocalization can be ascribed to oncogene-induced disruption of physiological PML bodies and the abnormal occurrence of a relatively large number of PML-RARα microspeckles. We also detect a significant cell-to-cell variability of this increase of colocalization, which can be ascribed, at least in part, to a heterogeneous response of the cells to the activation of the oncogene. These results prove that our method efficiently reveals oncogene-induced alterations in the spatial organization of nuclear processes and suggest that the abnormal localization of PML-RARα could interfere with the transcription machinery, potentially leading to DNA damage and genomic instability.
Collapse
Affiliation(s)
- Elena Cerutti
- Department of Physics and Astronomy "Ettore Majorana", University of Catania, Catania, Italy; Nanoscopy and NIC@IIT, CHT Erzelli, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Morgana D'Amico
- Department of Physics and Astronomy "Ettore Majorana", University of Catania, Catania, Italy
| | - Isotta Cainero
- Nanoscopy and NIC@IIT, CHT Erzelli, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Mario Faretta
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Gaetano Ivan Dellino
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| | - Alberto Diaspro
- Nanoscopy and NIC@IIT, CHT Erzelli, Istituto Italiano di Tecnologia, Genoa, Italy; DIFILAB, Department of Physics, University of Genoa, Genoa, Italy
| | - Luca Lanzanò
- Department of Physics and Astronomy "Ettore Majorana", University of Catania, Catania, Italy; Nanoscopy and NIC@IIT, CHT Erzelli, Istituto Italiano di Tecnologia, Genoa, Italy.
| |
Collapse
|
10
|
PARP Inhibitors and Haematological Malignancies-Friend or Foe? Cancers (Basel) 2021; 13:cancers13215328. [PMID: 34771492 PMCID: PMC8582507 DOI: 10.3390/cancers13215328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary PARP inhibitors are a class of orally active drugs that kill a range of cancer types by inducing synthetic lethality. The usefulness of PARP inhibitors for the treatment of haematological malignancies has begun to be explored in a variety of both pre-clinical models and human clinical trials. Despite being largely considered safe and well tolerated, secondary haematological malignancies have arisen in patients following treatment with PARP inhibitors, raising concerns about their use. In this review, we discuss the potential benefits and risks for using PARP inhibitors as treatments for haematological malignancies. Abstract Since their introduction several years ago, poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) have become the standard of care for breast and gynaecological cancers with BRCA gene mutations. Given that PARPi act by exploiting defective DNA repair mechanisms within tumour cells, they should be ideally suited to combatting haematological malignancies where these pathways are notoriously defective, even though BRCA mutations are rare. To date, despite promising results in vitro, few clinical trials in humans for haematological malignancies have been performed, and additional investigation is required. Paradoxically, secondary haematological malignancies have arisen in patients after treatment with PARPi, raising concerns about their potential use as therapies for any blood or bone marrow-related disorders. Here, we provide a comprehensive review of the biological, pre-clinical, and clinical evidence for and against treating individual haematological malignancies with approved and experimental PARPi. We conclude that the promise of effective treatment still exists, but remains limited by the lack of investigation into useful biomarkers unique to these malignancies.
Collapse
|
11
|
Yan HY, Wang HQ, Zhong M, Wu S, Yang L, Li K, Li YH. PML Suppresses Influenza Virus Replication by Promoting FBXW7 Expression. Virol Sin 2021; 36:1154-1164. [PMID: 34046815 DOI: 10.1007/s12250-021-00399-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/29/2021] [Indexed: 12/16/2022] Open
Abstract
Influenza A viruses (IAV) are responsible for seasonal flu epidemics, which can lead to high morbidity and mortality each year. Like other viruses, influenza virus can hijack host cellular machinery for its replication. Host cells have evolved diverse cellular defense to resist the invasion of viruses. As the main components of promyelocytic leukemia protein nuclear bodies (PML-NBs), PML can inhibit the replication of many medically important viruses including IAV. However, the mechanism of PML against IAV is unclear. In the present study, we found PML was induced in response to IAV infection and ectopic expression of PML could inhibit IAV replication, whereas knockdown of endogenous PML expression could enhance IAV replication. Further studies showed that PML increased the expression of FBXW7 by inhibiting its K48-linked ubiquitination and enhanced the interaction between FBXW7 and SHP2, which negatively regulated IAV replication during infection. Moreover, PML stabilized RIG-I to promote the production of type I IFN. Collectively, these data indicated that PML inhibited IAV replication by enhancing FBXW7 expression in the antiviral immunity against influenza virus and extended the mechanism of PML in antiviral immunity.
Collapse
Affiliation(s)
- Hai-Yan Yan
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.,Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Hui-Qiang Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.,Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ming Zhong
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.,Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shuo Wu
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.,Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Lu Yang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.,Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ke Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, 100050, China.
| | - Yu-Huan Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China. .,Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
12
|
Ababou M. Bloom syndrome and the underlying causes of genetic instability. Mol Genet Metab 2021; 133:35-48. [PMID: 33736941 DOI: 10.1016/j.ymgme.2021.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/01/2021] [Accepted: 03/06/2021] [Indexed: 11/27/2022]
Abstract
Autosomal hereditary recessive diseases characterized by genetic instability are often associated with cancer predisposition. Bloom syndrome (BS), a rare genetic disorder, with <300 cases reported worldwide, combines both. Indeed, patients with Bloom's syndrome are 150 to 300 times more likely to develop cancers than normal individuals. The wide spectrum of cancers developed by BS patients suggests that early initial events occur in BS cells which may also be involved in the initiation of carcinogenesis in the general population and these may be common to several cancers. BS is caused by mutations of both copies of the BLM gene, encoding the RecQ BLM helicase. This review discusses the different aspects of BS and the different cellular functions of BLM in genome surveillance and maintenance through its major roles during DNA replication, repair, and transcription. BLM's activities are essential for the stabilization of centromeric, telomeric and ribosomal DNA sequences, and the regulation of innate immunity. One of the key objectives of this work is to establish a link between BLM functions and the main clinical phenotypes observed in BS patients, as well as to shed new light on the correlation between the genetic instability and diseases such as immunodeficiency and cancer. The different potential implications of the BLM helicase in the tumorigenic process and the use of BLM as new potential target in the field of cancer treatment are also debated.
Collapse
Affiliation(s)
- Mouna Ababou
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, University Mohammed V, Rabat, Morocco; Genomic Center of Human Pathologies, Faculty of medicine and Pharmacy, University Mohammed V, Rabat, Morocco.
| |
Collapse
|
13
|
Mathavarajah S, VanIderstine C, Dellaire G, Huber RJ. Cancer and the breakdown of multicellularity: What Dictyostelium discoideum, a social amoeba, can teach us. Bioessays 2021; 43:e2000156. [PMID: 33448043 DOI: 10.1002/bies.202000156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 01/01/2023]
Abstract
Ancient pathways promoting unicellularity and multicellularity are associated with cancer, the former being pro-oncogenic and the latter acting to suppress oncogenesis. However, there are only a limited number of non-vertebrate models for studying these pathways. Here, we review Dictyostelium discoideum and describe how it can be used to understand these gene networks. D. discoideum has a unicellular and multicellular life cycle, making it possible to study orthologs of cancer-associated genes in both phases. During development, differentiated amoebae form a fruiting body composed of a mass of spores that are supported atop a stalk. A portion of the cells sacrifice themselves to become non-reproductive stalk cells. Cheating disrupts the principles of multicellularity, as cheater cells alter their cell fate to preferentially become spores. Importantly, D. discoideum has gene networks and several strategies for maintaining multicellularity. Therefore, D. discoideum can help us better understand how conserved genes and pathways involved in multicellularity also influence cancer development, potentially identifying new therapeutic avenues.
Collapse
Affiliation(s)
- Sabateeshan Mathavarajah
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Carter VanIderstine
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Graham Dellaire
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
14
|
Volcic M, Sparrer KMJ, Koepke L, Hotter D, Sauter D, Stürzel CM, Scherer M, Stamminger T, Hofmann TG, Arhel NJ, Wiesmüller L, Kirchhoff F. Vpu modulates DNA repair to suppress innate sensing and hyper-integration of HIV-1. Nat Microbiol 2020; 5:1247-1261. [PMID: 32690953 PMCID: PMC7616938 DOI: 10.1038/s41564-020-0753-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/11/2020] [Indexed: 12/19/2022]
Abstract
To avoid innate sensing and immune control, human immunodeficiency virus type 1 (HIV-1) has to prevent the accumulation of viral complementary DNA species. Here, we show that the late HIV-1 accessory protein Vpu hijacks DNA repair mechanisms to promote degradation of nuclear viral cDNA in cells that are already productively infected. Vpu achieves this by interacting with RanBP2-RanGAP1*SUMO1-Ubc9 SUMO E3-ligase complexes at the nuclear pore to reprogramme promyelocytic leukaemia protein nuclear bodies and reduce SUMOylation of Bloom syndrome protein, unleashing end degradation of viral cDNA. Concomitantly, Vpu inhibits RAD52-mediated homologous repair of viral cDNA, preventing the generation of dead-end circular forms of single copies of the long terminal repeat and permitting sustained nucleolytic attack. Our results identify Vpu as a key modulator of the DNA repair machinery. We show that Bloom syndrome protein eliminates nuclear HIV-1 cDNA and thereby suppresses immune sensing and proviral hyper-integration. Therapeutic targeting of DNA repair may facilitate the induction of antiviral immunity and suppress proviral integration replenishing latent HIV reservoirs.
Collapse
Affiliation(s)
- Meta Volcic
- Division of Gynecological Oncology, Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | | | - Lennart Koepke
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Dominik Hotter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Christina M Stürzel
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | | | | | - Thomas G Hofmann
- Department of Epigenetics, Deutsches Krebsforschungszentrum, Heidelberg, Germany
- Institute of Toxicology, University of Mainz, Mainz, Germany
| | - Nathalie J Arhel
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS) CNRS FRE3689, Montpellier University, Montpellier, France
| | - Lisa Wiesmüller
- Division of Gynecological Oncology, Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany.
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.
| |
Collapse
|
15
|
PML Regulates the Epidermal Differentiation Complex and Skin Morphogenesis during Mouse Embryogenesis. Genes (Basel) 2020; 11:genes11101130. [PMID: 32992884 PMCID: PMC7600374 DOI: 10.3390/genes11101130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/13/2020] [Accepted: 09/17/2020] [Indexed: 11/17/2022] Open
Abstract
The promyelocytic leukemia (PML) protein is an essential component of nuclear compartments called PML bodies. This protein participates in several cellular processes, including growth control, senescence, apoptosis, and differentiation. Previous studies have suggested that PML regulates gene expression at a subset of loci through a function in chromatin remodeling. Here we have studied global gene expression patterns in mouse embryonic skin derived from Pml depleted and wild type mouse embryos. Differential gene expression analysis at different developmental stages revealed a key role of PML in regulating genes involved in epidermal stratification. In particular, we observed dysregulation of the late cornified envelope gene cluster, which is a sub-region of the epidermal differentiation complex. In agreement with these data, PML body numbers are elevated in basal keratinocytes during embryogenesis, and we observed reduced epidermal thickness and defective hair follicle development in PML depleted mouse embryos.
Collapse
|
16
|
Li Y, Ma X, Wu W, Chen Z, Meng G. PML Nuclear Body Biogenesis, Carcinogenesis, and Targeted Therapy. Trends Cancer 2020; 6:889-906. [PMID: 32527650 DOI: 10.1016/j.trecan.2020.05.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/20/2020] [Accepted: 05/11/2020] [Indexed: 01/16/2023]
Abstract
Targeted therapy has become increasingly important in cancer therapy. For example, targeting the promyelocytic leukemia PML protein in leukemia has proved to be an effective treatment. PML is the core component of super-assembled structures called PML nuclear bodies (NBs). Although this nuclear megaDalton complex was first observed in the 1960s, the mechanism of its assembly remains poorly understood. We review recent breakthroughs in the PML field ranging from a revised assembly mechanism to PML-driven genome organization and carcinogenesis. In addition, we highlight that oncogenic oligomerization might also represent a promising target in the treatment of leukemias and solid tumors.
Collapse
Affiliation(s)
- Yuwen Li
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaodan Ma
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wenyu Wu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhu Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Guoyu Meng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
17
|
Wang M, Wang L, Qian M, Tang X, Liu Z, Lai Y, Ao Y, Huang Y, Meng Y, Shi L, Peng L, Cao X, Wang Z, Qin B, Liu B. PML2-mediated thread-like nuclear bodies mark late senescence in Hutchinson-Gilford progeria syndrome. Aging Cell 2020; 19:e13147. [PMID: 32351002 PMCID: PMC7294779 DOI: 10.1111/acel.13147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/20/2020] [Accepted: 02/23/2020] [Indexed: 01/10/2023] Open
Abstract
Progerin accumulation disrupts nuclear lamina integrity and causes nuclear structure abnormalities, leading to premature aging, that is, Hutchinson–Gilford progeria syndrome (HGPS). The roles of nuclear subcompartments, such as PML nuclear bodies (PML NBs), in HGPS pathogenesis, are unclear. Here, we show that classical dot‐like PML NBs are reorganized into thread‐like structures in HGPS patient fibroblasts and their presence is associated with late stage of senescence. By co‐immunoprecipitation analysis, we show that farnesylated Progerin interacts with human PML2, which accounts for the formation of thread‐like PML NBs. Specifically, human PML2 but not PML1 overexpression in HGPS cells promotes PML thread development and accelerates senescence. Further immunofluorescence microscopy, immuno‐TRAP, and deep sequencing data suggest that these irregular PML NBs might promote senescence by perturbing NB‐associated DNA repair and gene expression in HGPS cells. These data identify irregular structures of PML NBs in senescent HGPS cells and support that the thread‐like PML NBs might be a novel, morphological, and functional biomarker of late senescence.
Collapse
Affiliation(s)
- Ming Wang
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SAI) National Engineering Research Center for Biotechnology (Shenzhen) Medical Research Center Shenzhen University Health Science Center Shenzhen China
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention Department of Biochemistry & Molecular Biology School of Basic Medical Sciences Shenzhen University Health Science Center Shenzhen China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou China
| | - Lulu Wang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou China
| | - Minxian Qian
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SAI) National Engineering Research Center for Biotechnology (Shenzhen) Medical Research Center Shenzhen University Health Science Center Shenzhen China
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention Department of Biochemistry & Molecular Biology School of Basic Medical Sciences Shenzhen University Health Science Center Shenzhen China
| | - Xiaolong Tang
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SAI) National Engineering Research Center for Biotechnology (Shenzhen) Medical Research Center Shenzhen University Health Science Center Shenzhen China
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention Department of Biochemistry & Molecular Biology School of Basic Medical Sciences Shenzhen University Health Science Center Shenzhen China
| | - Zuojun Liu
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SAI) National Engineering Research Center for Biotechnology (Shenzhen) Medical Research Center Shenzhen University Health Science Center Shenzhen China
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention Department of Biochemistry & Molecular Biology School of Basic Medical Sciences Shenzhen University Health Science Center Shenzhen China
| | - Yiwei Lai
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou China
| | - Ying Ao
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SAI) National Engineering Research Center for Biotechnology (Shenzhen) Medical Research Center Shenzhen University Health Science Center Shenzhen China
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention Department of Biochemistry & Molecular Biology School of Basic Medical Sciences Shenzhen University Health Science Center Shenzhen China
| | - Yinghua Huang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou China
| | - Yuan Meng
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SAI) National Engineering Research Center for Biotechnology (Shenzhen) Medical Research Center Shenzhen University Health Science Center Shenzhen China
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention Department of Biochemistry & Molecular Biology School of Basic Medical Sciences Shenzhen University Health Science Center Shenzhen China
| | - Lei Shi
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SAI) National Engineering Research Center for Biotechnology (Shenzhen) Medical Research Center Shenzhen University Health Science Center Shenzhen China
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention Department of Biochemistry & Molecular Biology School of Basic Medical Sciences Shenzhen University Health Science Center Shenzhen China
| | - Linyuan Peng
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SAI) National Engineering Research Center for Biotechnology (Shenzhen) Medical Research Center Shenzhen University Health Science Center Shenzhen China
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention Department of Biochemistry & Molecular Biology School of Basic Medical Sciences Shenzhen University Health Science Center Shenzhen China
| | - Xinyue Cao
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SAI) National Engineering Research Center for Biotechnology (Shenzhen) Medical Research Center Shenzhen University Health Science Center Shenzhen China
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention Department of Biochemistry & Molecular Biology School of Basic Medical Sciences Shenzhen University Health Science Center Shenzhen China
| | - Zimei Wang
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SAI) National Engineering Research Center for Biotechnology (Shenzhen) Medical Research Center Shenzhen University Health Science Center Shenzhen China
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention Department of Biochemistry & Molecular Biology School of Basic Medical Sciences Shenzhen University Health Science Center Shenzhen China
- Carson International Cancer Center Shenzhen University Health Science Center Shenzhen China
| | - Baoming Qin
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou China
| | - Baohua Liu
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SAI) National Engineering Research Center for Biotechnology (Shenzhen) Medical Research Center Shenzhen University Health Science Center Shenzhen China
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention Department of Biochemistry & Molecular Biology School of Basic Medical Sciences Shenzhen University Health Science Center Shenzhen China
- Carson International Cancer Center Shenzhen University Health Science Center Shenzhen China
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases School of Basic Medical Sciences Shenzhen University Health Science Center Shenzhen China
| |
Collapse
|
18
|
Loe TK, Li JSZ, Zhang Y, Azeroglu B, Boddy MN, Denchi EL. Telomere length heterogeneity in ALT cells is maintained by PML-dependent localization of the BTR complex to telomeres. Genes Dev 2020; 34:650-662. [PMID: 32217664 PMCID: PMC7197349 DOI: 10.1101/gad.333963.119] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/26/2020] [Indexed: 12/11/2022]
Abstract
In this study, Loe et al. sought to understand ALT-associated PML bodies (APBs) and their function in the alternative lengthening of telomeres (ALT) pathway, a telomerase-independent mechanism of telomere extension that some cancer cells that use. Using CRISPR/Cas9 to delete PML and APB components from ALT-positive cells, they found that PML is required for the ALT mechanism, and that this necessity stems from APBs’ role in localizing the BLM–TOP3A–RMI (BTR) complex to ALT telomere ends, suggesting that BTR localization to telomeres is sufficient to sustain ALT activity. Telomeres consist of TTAGGG repeats bound by protein complexes that serve to protect the natural end of linear chromosomes. Most cells maintain telomere repeat lengths by using the enzyme telomerase, although there are some cancer cells that use a telomerase-independent mechanism of telomere extension, termed alternative lengthening of telomeres (ALT). Cells that use ALT are characterized, in part, by the presence of specialized PML nuclear bodies called ALT-associated PML bodies (APBs). APBs localize to and cluster telomeric ends together with telomeric and DNA damage factors, which led to the proposal that these bodies act as a platform on which ALT can occur. However, the necessity of APBs and their function in the ALT pathway has remained unclear. Here, we used CRISPR/Cas9 to delete PML and APB components from ALT-positive cells to cleanly define the function of APBs in ALT. We found that PML is required for the ALT mechanism, and that this necessity stems from APBs’ role in localizing the BLM–TOP3A–RMI (BTR) complex to ALT telomere ends. Strikingly, recruitment of the BTR complex to telomeres in a PML-independent manner bypasses the need for PML in the ALT pathway, suggesting that BTR localization to telomeres is sufficient to sustain ALT activity.
Collapse
Affiliation(s)
- Taylor K Loe
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Julia Su Zhou Li
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Yuxiang Zhang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Benura Azeroglu
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Michael Nicholas Boddy
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Eros Lazzerini Denchi
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
19
|
Attwood KM, Salsman J, Chung D, Mathavarajah S, Van Iderstine C, Dellaire G. PML isoform expression and DNA break location relative to PML nuclear bodies impacts the efficiency of homologous recombination. Biochem Cell Biol 2019; 98:314-326. [PMID: 31671275 DOI: 10.1139/bcb-2019-0115] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Promyelocytic leukemia nuclear bodies (PML NBs) are nuclear subdomains that respond to genotoxic stress by increasing in number via changes in chromatin structure. However, the role of the PML protein and PML NBs in specific mechanisms of DNA repair has not been fully characterized. Here, we have directly examined the role of PML in homologous recombination (HR) using I-SceI extrachromosomal and chromosome-based homology-directed repair (HDR) assays, and in HDR by CRISPR/Cas9-mediated gene editing. We determined that PML loss can inhibit HR in an extrachromosomal HDR assay but had less of an effect on CRISPR/Cas9-mediated chromosomal HDR. Overexpression of PML also inhibited both CRISPR HDR and I-SceI-induced HDR using a chromosomal reporter, and in an isoform-specific manner. However, the impact of PML overexpression on the chromosomal HDR reporter was dependent on the intranuclear chromosomal positioning of the reporter. Specifically, HDR at the TAP1 gene locus, which is associated with PML NBs, was reduced compared with a locus not associated with a PML NB; yet, HDR could be reduced at the non-PML NB-associated locus by PML overexpression. Thus, both loss and overexpression of PML isoforms can inhibit HDR, and proximity of a chromosomal break to a PML NB can impact HDR efficiency.
Collapse
Affiliation(s)
- Kathleen M Attwood
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Jayme Salsman
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Dudley Chung
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | | | | | - Graham Dellaire
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada.,Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
20
|
Vancurova M, Hanzlikova H, Knoblochova L, Kosla J, Majera D, Mistrik M, Burdova K, Hodny Z, Bartek J. PML nuclear bodies are recruited to persistent DNA damage lesions in an RNF168-53BP1 dependent manner and contribute to DNA repair. DNA Repair (Amst) 2019; 78:114-127. [PMID: 31009828 DOI: 10.1016/j.dnarep.2019.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/07/2019] [Accepted: 04/01/2019] [Indexed: 11/29/2022]
Abstract
The bulk of DNA damage caused by ionizing radiation (IR) is generally repaired within hours, yet a subset of DNA lesions may persist even for long periods of time. Such persisting IR-induced foci (pIRIF) co-associate with PML nuclear bodies (PML-NBs) and are among the characteristics of cellular senescence. Here we addressed some fundamental questions concerning the nature and determinants of this co-association, the role of PML-NBs at such sites, and the reason for the persistence of DNA damage in human primary cells. We show that the persistent DNA lesions are devoid of homologous recombination (HR) proteins BRCA1 and Rad51. Our super-resolution microscopy-based analysis showed that PML-NBs are juxtaposed to and partially overlap with the pIRIFs. Notably, depletion of 53BP1 resulted in decreased intersection between PML-NBs and pIRIFs implicating the RNF168-53BP1 pathway in their interaction. To test whether the formation and persistence of IRIFs is PML-dependent and to investigate the role of PML in the context of DNA repair and senescence, we genetically deleted PML in human hTERT-RPE-1 cells. Unexpectedly, upon high-dose IR treatment, cells displayed similar DNA damage signalling, repair dynamics and kinetics of cellular senescence regardless of the presence or absence of PML. In contrast, the PML knock-out cells showed increased sensitivity to low doses of IR and DNA-damaging agents mitomycin C, cisplatin and camptothecin that all cause DNA lesions requiring repair by HR. These results, along with enhanced sensitivity of the PML knock-out cells to DNA-PK and PARP inhibitors implicate PML as a factor contributing to HR-mediated DNA repair.
Collapse
Affiliation(s)
- Marketa Vancurova
- Department of Genome Integrity, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Hana Hanzlikova
- Department of Genome Integrity, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Lucie Knoblochova
- Department of Genome Integrity, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jan Kosla
- Department of Genome Integrity, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Dusana Majera
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Palacky University, Olomouc, Czech Republic
| | - Martin Mistrik
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Palacky University, Olomouc, Czech Republic
| | - Kamila Burdova
- Laboratory of Cancer Cell Biology, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Zdenek Hodny
- Department of Genome Integrity, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | - Jiri Bartek
- Department of Genome Integrity, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic; Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Palacky University, Olomouc, Czech Republic; Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark; Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21, Stockholm, Sweden.
| |
Collapse
|
21
|
Ditlev JA, Case LB, Rosen MK. Who's In and Who's Out-Compositional Control of Biomolecular Condensates. J Mol Biol 2018; 430:4666-4684. [PMID: 30099028 PMCID: PMC6204295 DOI: 10.1016/j.jmb.2018.08.003] [Citation(s) in RCA: 251] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/01/2018] [Accepted: 08/05/2018] [Indexed: 02/06/2023]
Abstract
Biomolecular condensates are two- and three-dimensional compartments in eukaryotic cells that concentrate specific collections of molecules without an encapsulating membrane. Many condensates behave as dynamic liquids and appear to form through liquid-liquid phase separation driven by weak, multivalent interactions between macromolecules. In this review, we discuss current models and data regarding the control of condensate composition, and we describe our current understanding of the composition of representative condensates including PML nuclear bodies, P-bodies, stress granules, the nucleolus, and two-dimensional membrane localized LAT and nephrin clusters. Specific interactions, such as interactions between modular binding domains, weaker interactions between intrinsically disorder regions and nucleic acid base pairing, and nonspecific interactions, such as electrostatic interactions and hydrophobic interactions, influence condensate composition. Understanding how specific condensate composition is determined is essential to understanding condensates as biochemical entities and ultimately discerning their cellular and organismic functions.
Collapse
Affiliation(s)
- Jonathon A Ditlev
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Lindsay B Case
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Michael K Rosen
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
22
|
Hoischen C, Monajembashi S, Weisshart K, Hemmerich P. Multimodal Light Microscopy Approaches to Reveal Structural and Functional Properties of Promyelocytic Leukemia Nuclear Bodies. Front Oncol 2018; 8:125. [PMID: 29888200 PMCID: PMC5980967 DOI: 10.3389/fonc.2018.00125] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/05/2018] [Indexed: 12/11/2022] Open
Abstract
The promyelocytic leukemia (pml) gene product PML is a tumor suppressor localized mainly in the nucleus of mammalian cells. In the cell nucleus, PML seeds the formation of macromolecular multiprotein complexes, known as PML nuclear bodies (PML NBs). While PML NBs have been implicated in many cellular functions including cell cycle regulation, survival and apoptosis their role as signaling hubs along major genome maintenance pathways emerged more clearly. However, despite extensive research over the past decades, the precise biochemical function of PML in these pathways is still elusive. It remains a big challenge to unify all the different previously suggested cellular functions of PML NBs into one mechanistic model. With the advent of genetically encoded fluorescent proteins it became possible to trace protein function in living specimens. In parallel, a variety of fluorescence fluctuation microscopy (FFM) approaches have been developed which allow precise determination of the biophysical and interaction properties of cellular factors at the single molecule level in living cells. In this report, we summarize the current knowledge on PML nuclear bodies and describe several fluorescence imaging, manipulation, FFM, and super-resolution techniques suitable to analyze PML body assembly and function. These include fluorescence redistribution after photobleaching, fluorescence resonance energy transfer, fluorescence correlation spectroscopy, raster image correlation spectroscopy, ultraviolet laser microbeam-induced DNA damage, erythrocyte-mediated force application, and super-resolution microscopy approaches. Since most if not all of the microscopic equipment to perform these techniques may be available in an institutional or nearby facility, we hope to encourage more researches to exploit sophisticated imaging tools for their research in cancer biology.
Collapse
|
23
|
Voisset E, Moravcsik E, Stratford EW, Jaye A, Palgrave CJ, Hills RK, Salomoni P, Kogan SC, Solomon E, Grimwade D. Pml nuclear body disruption cooperates in APL pathogenesis and impairs DNA damage repair pathways in mice. Blood 2018; 131:636-648. [PMID: 29191918 PMCID: PMC5805489 DOI: 10.1182/blood-2017-07-794784] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/26/2017] [Indexed: 01/20/2023] Open
Abstract
A hallmark of acute promyelocytic leukemia (APL) is altered nuclear architecture, with disruption of promyelocytic leukemia (PML) nuclear bodies (NBs) mediated by the PML-retinoic acid receptor α (RARα) oncoprotein. To address whether this phenomenon plays a role in disease pathogenesis, we generated a knock-in mouse model with NB disruption mediated by 2 point mutations (C62A/C65A) in the Pml RING domain. Although no leukemias developed in PmlC62A/C65A mice, these transgenic mice also expressing RARα linked to a dimerization domain (p50-RARα model) exhibited a doubling in the rate of leukemia, with a reduced latency period. Additionally, we found that response to targeted therapy with all-trans retinoic acid in vivo was dependent on NB integrity. PML-RARα is recognized to be insufficient for development of APL, requiring acquisition of cooperating mutations. We therefore investigated whether NB disruption might be mutagenic. Compared with wild-type cells, primary PmlC62A/C65A cells exhibited increased sister-chromatid exchange and chromosome abnormalities. Moreover, functional assays showed impaired homologous recombination (HR) and nonhomologous end-joining (NHEJ) repair pathways, with defective localization of Brca1 and Rad51 to sites of DNA damage. These data directly demonstrate that Pml NBs are critical for DNA damage responses, and suggest that Pml NB disruption is a central contributor to APL pathogenesis.
Collapse
MESH Headings
- Animals
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- DNA Damage/genetics
- DNA End-Joining Repair/genetics
- DNA Repair/genetics
- Intranuclear Inclusion Bodies/genetics
- Intranuclear Inclusion Bodies/metabolism
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Mice
- Mice, Transgenic
- Mutagenesis/genetics
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Promyelocytic Leukemia Protein/genetics
- Promyelocytic Leukemia Protein/physiology
- Signal Transduction/genetics
Collapse
Affiliation(s)
- Edwige Voisset
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Eva Moravcsik
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Eva W Stratford
- Department of Tumor Biology, The Norwegian Radium Hospital/Oslo University Hospital, Oslo, Norway
| | - Amie Jaye
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | | | - Robert K Hills
- Centre for Trials Research, College of Biomedical & Life Sciences, Cardiff University, Cardiff, United Kingdom
| | | | - Scott C Kogan
- Helen Diller Family Comprehensive Cancer Center and
- Department of Laboratory Medicine, University of California, San Francisco, CA
| | - Ellen Solomon
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - David Grimwade
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| |
Collapse
|
24
|
Fernandez-Vidal A, Vignard J, Mirey G. Around and beyond 53BP1 Nuclear Bodies. Int J Mol Sci 2017; 18:ijms18122611. [PMID: 29206178 PMCID: PMC5751214 DOI: 10.3390/ijms18122611] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/27/2017] [Accepted: 12/01/2017] [Indexed: 12/17/2022] Open
Abstract
Within the nucleus, sub-nuclear domains define territories where specific functions occur. Nuclear bodies (NBs) are dynamic structures that concentrate nuclear factors and that can be observed microscopically. Recently, NBs containing the p53 binding protein 1 (53BP1), a key component of the DNA damage response, were defined. Interestingly, 53BP1 NBs are visualized during G1 phase, in daughter cells, while DNA damage was generated in mother cells and not properly processed. Unlike most NBs involved in transcriptional processes, replication has proven to be key for 53BP1 NBs, with replication stress leading to the formation of these large chromatin domains in daughter cells. In this review, we expose the composition and organization of 53BP1 NBs and focus on recent findings regarding their regulation and dynamics. We then concentrate on the importance of the replication stress, examine the relation of 53BP1 NBs with DNA damage and discuss their dysfunction.
Collapse
Affiliation(s)
- Anne Fernandez-Vidal
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027 Toulouse, France.
| | - Julien Vignard
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027 Toulouse, France.
| | - Gladys Mirey
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027 Toulouse, France.
| |
Collapse
|
25
|
Niwa-Kawakita M, Ferhi O, Soilihi H, Le Bras M, Lallemand-Breitenbach V, de Thé H. PML is a ROS sensor activating p53 upon oxidative stress. J Exp Med 2017; 214:3197-3206. [PMID: 28931625 PMCID: PMC5679165 DOI: 10.1084/jem.20160301] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/21/2017] [Accepted: 08/09/2017] [Indexed: 12/30/2022] Open
Abstract
Promyelocytic leukemia (PML) nuclear bodies modulate several processes, including senescence or apoptosis. Niwa-Kawakita et al. demonstrate that PML regulates reactive oxygen species (ROS) homeostasis in vivo by coupling ROS to p53 signaling to enforce basal ROS protection and mediate their acute toxicity. Promyelocytic leukemia (PML) nuclear bodies (NBs) recruit partner proteins, including p53 and its regulators, thereby controlling their abundance or function. Investigating arsenic sensitivity of acute promyelocytic leukemia, we proposed that PML oxidation promotes NB biogenesis. However, physiological links between PML and oxidative stress response in vivo remain unexplored. Here, we identify PML as a reactive oxygen species (ROS) sensor. Pml−/− cells accumulate ROS, whereas PML expression decreases ROS levels. Unexpectedly, Pml−/− embryos survive acute glutathione depletion. Moreover, Pml−/− animals are resistant to acetaminophen hepatotoxicity or fasting-induced steatosis. Molecularly, Pml−/− animals fail to properly activate oxidative stress–responsive p53 targets, whereas the NRF2 response is amplified and accelerated. Finally, in an oxidative stress–prone background, Pml−/− animals display a longevity phenotype, likely reflecting decreased basal p53 activation. Thus, similar to p53, PML exerts basal antioxidant properties but also drives oxidative stress–induced changes in cell survival/proliferation or metabolism in vivo. Through NB biogenesis, PML therefore couples ROS sensing to p53 responses, shedding a new light on the role of PML in senescence or stem cell biology.
Collapse
Affiliation(s)
- Michiko Niwa-Kawakita
- Université Paris Diderot, Sorbonne Paris Cité, Hôpital St. Louis, Paris, France.,Institut National de la Santé et de la Recherche Medicale (INSERM) UMR 944, Equipe labellisée par la Ligue Nationale contre le Cancer, Institut Universitaire d'Hématologie, Paris, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7212, Paris, France
| | - Omar Ferhi
- Université Paris Diderot, Sorbonne Paris Cité, Hôpital St. Louis, Paris, France.,Institut National de la Santé et de la Recherche Medicale (INSERM) UMR 944, Equipe labellisée par la Ligue Nationale contre le Cancer, Institut Universitaire d'Hématologie, Paris, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7212, Paris, France.,Collège de France, PSL Research University, Paris, France
| | - Hassane Soilihi
- Université Paris Diderot, Sorbonne Paris Cité, Hôpital St. Louis, Paris, France.,Institut National de la Santé et de la Recherche Medicale (INSERM) UMR 944, Equipe labellisée par la Ligue Nationale contre le Cancer, Institut Universitaire d'Hématologie, Paris, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7212, Paris, France
| | - Morgane Le Bras
- Université Paris Diderot, Sorbonne Paris Cité, Hôpital St. Louis, Paris, France.,Institut National de la Santé et de la Recherche Medicale (INSERM) UMR 944, Equipe labellisée par la Ligue Nationale contre le Cancer, Institut Universitaire d'Hématologie, Paris, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7212, Paris, France
| | - Valérie Lallemand-Breitenbach
- Université Paris Diderot, Sorbonne Paris Cité, Hôpital St. Louis, Paris, France.,Institut National de la Santé et de la Recherche Medicale (INSERM) UMR 944, Equipe labellisée par la Ligue Nationale contre le Cancer, Institut Universitaire d'Hématologie, Paris, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7212, Paris, France.,Collège de France, PSL Research University, Paris, France
| | - Hugues de Thé
- Université Paris Diderot, Sorbonne Paris Cité, Hôpital St. Louis, Paris, France .,Institut National de la Santé et de la Recherche Medicale (INSERM) UMR 944, Equipe labellisée par la Ligue Nationale contre le Cancer, Institut Universitaire d'Hématologie, Paris, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7212, Paris, France.,Service de Biochimie, Assistance Publique Hôpitaux de Paris, Hôpital St. Louis, Paris, France.,Collège de France, PSL Research University, Paris, France
| |
Collapse
|
26
|
Chang HR, Munkhjargal A, Kim MJ, Park SY, Jung E, Ryu JH, Yang Y, Lim JS, Kim Y. The functional roles of PML nuclear bodies in genome maintenance. Mutat Res 2017; 809:99-107. [PMID: 28521962 DOI: 10.1016/j.mrfmmm.2017.05.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/28/2017] [Accepted: 05/04/2017] [Indexed: 02/07/2023]
Abstract
In the nucleus, there are several membraneless structures called nuclear bodies. Among them, promyelocytic leukemia nuclear bodies (PML-NBs) are involved in multiple genome maintenance pathways including the DNA damage response, DNA repair, telomere homeostasis, and p53-associated apoptosis. In response to DNA damage, PML-NBs are coalesced and divided by a fission mechanism, thus increasing their number. PML-NBs also play a role in repairing DNA double-strand breaks (DSBs) by homologous recombination (HR). Clinically, the dominant negative PML-RARα fusion protein expressed in acute promyelocytic leukemia (APL) inhibits the transactivation of downstream factors and disrupts PML function, revealing the tumor suppressor role of PML-NBs. All-trans retinoic acid and arsenic trioxide treatment has been implemented for promyelocytic leukemia to target the PML-RARα fusion protein. PML-NBs are associated with various factors implicated in genome maintenance, and are found at the sites of DNA damage. Their interaction with proteins such as p53 indicates that PML-NBs may play a significant role in apoptosis and cancer. Decades of research have revealed the importance of PML-NBs in diverse cellular pathways, yet the underlying molecular mechanisms and exact functions of PML-NBs remain elusive. In this review, PML protein modifications and the functional relevance of PML-NB and its associated factors in genome maintenance will be discussed.
Collapse
Affiliation(s)
- Hae Ryung Chang
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Anudari Munkhjargal
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Myung-Jin Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Seon Young Park
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Eunyoung Jung
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Jae-Ha Ryu
- Research Center for Cell Fate Control, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Young Yang
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Jong-Seok Lim
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Yonghwan Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, Republic of Korea.
| |
Collapse
|
27
|
Porter SS, Stepp WH, Stamos JD, McBride AA. Host cell restriction factors that limit transcription and replication of human papillomavirus. Virus Res 2017; 231:10-20. [PMID: 27863967 PMCID: PMC5325803 DOI: 10.1016/j.virusres.2016.11.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/09/2016] [Accepted: 11/10/2016] [Indexed: 02/08/2023]
Abstract
The life cycle of human papillomaviruses (HPV) is tightly regulated by the differentiation state of mucosal and cutaneous keratinocytes. To counteract viral infection, constitutively expressed cellular factors, which are defined herein as restriction factors, directly mitigate viral gene expression and replication. In turn, some HPV gene products target these restriction factors and abrogate their anti-viral effects to establish efficient gene expression and replication programs. Ironically, in certain circumstances, this delicate counterbalance between viral gene products and restriction factors facilitates persistent infection by HPVs. This review serves to recapitulate the current knowledge of nuclear restriction factors that directly affect the HPV infectious cycle.
Collapse
Affiliation(s)
- Samuel S Porter
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, 33 North Drive, MSC3209, Bethesda, MD 20892, USA; Biological Sciences Graduate Program, University of Maryland, University of Maryland, 4066 Campus Drive, College Park, MD 20742, USA
| | - Wesley H Stepp
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, 33 North Drive, MSC3209, Bethesda, MD 20892, USA
| | - James D Stamos
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, 33 North Drive, MSC3209, Bethesda, MD 20892, USA
| | - Alison A McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, 33 North Drive, MSC3209, Bethesda, MD 20892, USA.
| |
Collapse
|
28
|
Bloom's syndrome: Why not premature aging?: A comparison of the BLM and WRN helicases. Ageing Res Rev 2017; 33:36-51. [PMID: 27238185 DOI: 10.1016/j.arr.2016.05.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 01/19/2023]
Abstract
Genomic instability is a hallmark of cancer and aging. Premature aging (progeroid) syndromes are often caused by mutations in genes whose function is to ensure genomic integrity. The RecQ family of DNA helicases is highly conserved and plays crucial roles as genome caretakers. In humans, mutations in three RecQ genes - BLM, WRN, and RECQL4 - give rise to Bloom's syndrome (BS), Werner syndrome (WS), and Rothmund-Thomson syndrome (RTS), respectively. WS is a prototypic premature aging disorder; however, the clinical features present in BS and RTS do not indicate accelerated aging. The BLM helicase has pivotal functions at the crossroads of DNA replication, recombination, and repair. BS cells exhibit a characteristic form of genomic instability that includes excessive homologous recombination. The excessive homologous recombination drives the development in BS of the many types of cancers that affect persons in the normal population. Replication delay and slower cell turnover rates have been proposed to explain many features of BS, such as short stature. More recently, aberrant transcriptional regulation of growth and survival genes has been proposed as a hypothesis to explain features of BS.
Collapse
|
29
|
Cunniff C, Bassetti JA, Ellis NA. Bloom's Syndrome: Clinical Spectrum, Molecular Pathogenesis, and Cancer Predisposition. Mol Syndromol 2017; 8:4-23. [PMID: 28232778 PMCID: PMC5260600 DOI: 10.1159/000452082] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2016] [Indexed: 01/07/2023] Open
Abstract
Bloom's syndrome is an autosomal recessive disorder characterized by prenatal and postnatal growth deficiency, photosensitive skin changes, immune deficiency, insulin resistance, and a greatly increased risk of early onset of cancer and for the development of multiple cancers. Loss-of-function mutations of BLM, which codes for a RecQ helicase, cause Bloom's syndrome. The absence of a functional BLM protein causes chromosome instability, excessive homologous recombination, and a greatly increased number of sister chromatid exchanges that are pathognomonic of the syndrome. A common founder mutation designated blmAsh is present in about 1 in 100 persons of Eastern European Jewish ancestry, and there are additional recurrent founder mutations among other populations. Missense, nonsense, and frameshift mutations as well as multiexonic deletions have all been observed. Bloom's syndrome is a prototypical chromosomal instability syndrome, and the somatic mutations that occur as a result of that instability are responsible for the increased cancer risk. Although there is currently no treatment aimed at the underlying genetic abnormality, persons with Bloom's syndrome benefit from sun protection, aggressive treatment of infections, surveillance for insulin resistance, and early identification of cancer.
Collapse
Affiliation(s)
- Christopher Cunniff
- Division of Medical Genetics, Department of Pediatrics, Weill Cornell Medical College, New York, N.Y, USA
| | - Jennifer A. Bassetti
- Division of Medical Genetics, Department of Pediatrics, Weill Cornell Medical College, New York, N.Y, USA
| | - Nathan A. Ellis
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, Ariz., USA
| |
Collapse
|
30
|
Zhao L, So CWE. PARP-inhibitor-induced synthetic lethality for acute myeloid leukemia treatment. Exp Hematol 2016; 44:902-7. [PMID: 27473567 DOI: 10.1016/j.exphem.2016.07.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/13/2016] [Accepted: 07/17/2016] [Indexed: 10/21/2022]
Abstract
Genomic instability is one of the most common and critical characteristics of cancer cells. The combined effect of replication stress and DNA damage repair defects associated with various oncogenic events drives genomic instability and disease progression. However, these DNA repair defects found in cancer cells can also provide unique therapeutic opportunities and form the basis of synthetic lethal targeting of solid tumors carrying BRCA mutations. Although the idea of utilizing synthetic lethality as a therapy strategy has been gaining momentum in various solid tumors, its application in leukemia still largely lags behind. In this article, we review recent advances in understanding the roles of the DNA damage response in acute myeloid leukemia and examine the potential therapeutic avenues of using poly (ADP-ribose) polymerase (PARP) inhibitors in AML treatment.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Cell Transformation, Neoplastic/genetics
- Clinical Trials as Topic
- DNA Damage
- Drug Resistance, Neoplasm
- Gene Expression Regulation, Leukemic/drug effects
- Genomic Instability
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Oxidative Stress/drug effects
- PTEN Phosphohydrolase/metabolism
- Poly(ADP-ribose) Polymerase Inhibitors/pharmacology
- Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use
- Signal Transduction/drug effects
- Synthetic Lethal Mutations/drug effects
- Transcription, Genetic
Collapse
Affiliation(s)
- Lu Zhao
- Leukaemia and Stem Cell Biology Group. Department of Haematological Medicine, King's College London, London, UK
| | - Chi Wai Eric So
- Leukaemia and Stem Cell Biology Group. Department of Haematological Medicine, King's College London, London, UK.
| |
Collapse
|
31
|
Legartová S, Sehnalová P, Malyšková B, Küntziger T, Collas P, Cmarko D, Raška I, Sorokin DV, Kozubek S, Bártová E. Localized Movement and Levels of 53BP1 Protein Are Changed by γ-irradiation in PML Deficient Cells. J Cell Biochem 2016; 117:2583-96. [PMID: 27526954 DOI: 10.1002/jcb.25551] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 03/23/2016] [Indexed: 01/07/2023]
Abstract
We studied epigenetics, distribution pattern, kinetics, and diffusion of proteins recruited to spontaneous and γ-radiation-induced DNA lesions. We showed that PML deficiency leads to an increased number of DNA lesions, which was accompanied by changes in histone signature. In PML wt cells, we observed two mobile fractions of 53BP1 protein with distinct diffusion in spontaneous lesions. These protein fractions were not detected in PML-deficient cells, characterized by slow-diffusion of 53BP1. Single particle tracking analysis revealed limited local motion of 53BP1 foci in PML double null cells and local motion 53BP1 foci was even more reduced after γ-irradiation. However, radiation did not change co-localization between 53BP1 nuclear bodies and interchromatin granule-associated zones (IGAZs), nuclear speckles, or chromocenters. This newly observed interaction pattern imply that 53BP1 protein could be a part of not only DNA repair, but also process mediated via components accumulated in IGAZs, nuclear speckles, or paraspeckles. Together, PML deficiency affected local motion of 53BP1 nuclear bodies and changed composition and a number of irradiation-induced foci. J. Cell. Biochem. 117: 2583-2596, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Soňa Legartová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, Brno, 612 65, Czech Republic
| | - Petra Sehnalová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, Brno, 612 65, Czech Republic
| | - Barbora Malyšková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, Brno, 612 65, Czech Republic
| | | | - Philippe Collas
- Department of Biochemistry, Institute of Basic Medical Sciences, University of Oslo, Norwegian Center for Stem Cell Research, Oslo, Norway
| | - Dušan Cmarko
- Institute of Cellular Biology and Pathology, the First Faculty of Medicine, Charles University in Prague, Albertov 4, Prague, 128 01, Czech Republic
| | - Ivan Raška
- Institute of Cellular Biology and Pathology, the First Faculty of Medicine, Charles University in Prague, Albertov 4, Prague, 128 01, Czech Republic
| | - Dmitry V Sorokin
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, Brno, 612 65, Czech Republic.,Faculty of Informatics, Masaryk University, Botanická 68a, Brno, 602 00, Czech Republic
| | - Stanislav Kozubek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, Brno, 612 65, Czech Republic
| | - Eva Bártová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, Brno, 612 65, Czech Republic. .,Institute of Cellular Biology and Pathology, the First Faculty of Medicine, Charles University in Prague, Albertov 4, Prague, 128 01, Czech Republic.
| |
Collapse
|
32
|
Viziteu E, Kassambara A, Pasero P, Klein B, Moreaux J. RECQ helicases are deregulated in hematological malignancies in association with a prognostic value. Biomark Res 2016; 4:3. [PMID: 26877874 PMCID: PMC4752763 DOI: 10.1186/s40364-016-0057-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/08/2016] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND RECQ helicase family members act as guardians of the genome to assure proper DNA metabolism in response to genotoxic stress. Hematological malignancies are characterized by genomic instability that is possibly related to underlying defects in DNA repair of genomic stability maintenance. METHODS We have investigated the expression of RECQ helicases in different hematological malignancies and in their normal counterparts using publicly available gene expression data. Furthermore, we explored whether RECQ helicases expression could be associated with tumor progression and prognosis. RESULTS Expression of at least one RECQ helicase family member was found significantly deregulated in all hematological malignancies investigated when compared to their normal counterparts. In addition, RECQ helicase expression was associated with a prognostic value in acute myeloid leukemia, chronic lymphocytic leukemia, lymphoma and multiple myeloma. CONCLUSION RECQ helicase expression is deregulated in hematological malignancies compared to their normal counterparts in association with a prognostic value. Deregulation of RECQ helicases appears to play a role in tumorigenesis and represent potent therapeutic targets for synthetic lethal approaches in hematological malignancies.
Collapse
Affiliation(s)
- Elena Viziteu
- />Institute of Human Genetics, CNRS-UPR1142, Montpellier, F-34396 France
| | - Alboukadel Kassambara
- />Laboratory for Monitoring Innovative Therapies, Department of Biological Hematology, Hôpital Saint-Eloi - CHRU de Montpellier, 80, av. Augustin Fliche, 34295 Montpellier, Cedex 5 France
- />Institute of Human Genetics, CNRS-UPR1142, Montpellier, F-34396 France
| | - Philippe Pasero
- />Institute of Human Genetics, CNRS-UPR1142, Montpellier, F-34396 France
| | - Bernard Klein
- />Laboratory for Monitoring Innovative Therapies, Department of Biological Hematology, Hôpital Saint-Eloi - CHRU de Montpellier, 80, av. Augustin Fliche, 34295 Montpellier, Cedex 5 France
- />Institute of Human Genetics, CNRS-UPR1142, Montpellier, F-34396 France
- />University of Montpellier 1, UFR de Médecine, Montpellier, France
| | - Jerome Moreaux
- />Laboratory for Monitoring Innovative Therapies, Department of Biological Hematology, Hôpital Saint-Eloi - CHRU de Montpellier, 80, av. Augustin Fliche, 34295 Montpellier, Cedex 5 France
- />Institute of Human Genetics, CNRS-UPR1142, Montpellier, F-34396 France
- />University of Montpellier 1, UFR de Médecine, Montpellier, France
| |
Collapse
|
33
|
Bret C, Viziteu E, Kassambara A, Moreaux J. Identifying high-risk adult AML patients: epigenetic and genetic risk factors and their implications for therapy. Expert Rev Hematol 2016; 9:351-60. [PMID: 26761438 DOI: 10.1586/17474086.2016.1141673] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease at molecular level, in response to therapy and prognosis. The molecular landscape of AML is evolving with new technologies revealing complex panorama of genetic abnormalities where genomic instability and aberrations of epigenetic regulators play a key role in pathogenesis. The characterization of AML diversity has led to development of new personalized therapeutic strategies to improve outcome of the patients.
Collapse
Affiliation(s)
- Caroline Bret
- a Department of Biological Hematology , CHU Montpellier , Montpellier , France.,b Institute of Human Genetics, CNRS-UPR1142 , Montpellier F-34396 , France.,c University of Montpellier 1, UFR de Médecine , Montpellier , France
| | - Elena Viziteu
- b Institute of Human Genetics, CNRS-UPR1142 , Montpellier F-34396 , France
| | - Alboukadel Kassambara
- a Department of Biological Hematology , CHU Montpellier , Montpellier , France.,b Institute of Human Genetics, CNRS-UPR1142 , Montpellier F-34396 , France
| | - Jerome Moreaux
- a Department of Biological Hematology , CHU Montpellier , Montpellier , France.,b Institute of Human Genetics, CNRS-UPR1142 , Montpellier F-34396 , France.,c University of Montpellier 1, UFR de Médecine , Montpellier , France
| |
Collapse
|
34
|
Shire K, Wong AI, Tatham MH, Anderson OF, Ripsman D, Gulstene S, Moffat J, Hay RT, Frappier L. Identification of RNF168 as a PML nuclear body regulator. J Cell Sci 2016; 129:580-91. [PMID: 26675234 PMCID: PMC4760303 DOI: 10.1242/jcs.176446] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/12/2015] [Indexed: 12/15/2022] Open
Abstract
Promyelocytic leukemia (PML) protein forms the basis of PML nuclear bodies (PML NBs), which control many important processes. We have screened an shRNA library targeting ubiquitin pathway proteins for effects on PML NBs, and identified RNF8 and RNF168 DNA-damage response proteins as negative regulators of PML NBs. Additional studies confirmed that depletion of either RNF8 or RNF168 increased the levels of PML NBs and proteins, whereas overexpression induced loss of PML NBs. RNF168 partially localized to PML NBs through its UMI/MIU1 ubiquitin-interacting region and associated with NBs formed by any PML isoform. The association of RNF168 with PML NBs resulted in increased ubiquitylation and SUMO2 modification of PML. In addition, RNF168 was found to associate with proteins modified by SUMO2 and/or SUMO3 in a manner dependent on its ubiquitin-binding sequences, suggesting that hybrid SUMO-ubiquitin chains can be bound. In vitro assays confirmed that RNF168, preferentially, binds hybrid SUMO2-K63 ubiquitin chains compared with K63-ubiquitin chains or individual SUMO2. Our study identified previously unrecognized roles for RNF8 and RNF168 in the regulation of PML, and a so far unknown preference of RNF168 for hybrid SUMO-ubiquitin chains.
Collapse
Affiliation(s)
- Kathy Shire
- Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Andrew I Wong
- Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Michael H Tatham
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee
| | - Oliver F Anderson
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee
| | - David Ripsman
- Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Stephanie Gulstene
- Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Jason Moffat
- Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Ronald T Hay
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee
| | - Lori Frappier
- Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
35
|
Esposito MT, Zhao L, Fung TK, Rane JK, Wilson A, Martin N, Gil J, Leung AY, Ashworth A, So CWE. Synthetic lethal targeting of oncogenic transcription factors in acute leukemia by PARP inhibitors. Nat Med 2015; 21:1481-90. [PMID: 26594843 DOI: 10.1038/nm.3993] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 10/14/2015] [Indexed: 12/13/2022]
Abstract
Acute myeloid leukemia (AML) is mostly driven by oncogenic transcription factors, which have been classically viewed as intractable targets using small-molecule inhibitor approaches. Here we demonstrate that AML driven by repressive transcription factors, including AML1-ETO (encoded by the fusion oncogene RUNX1-RUNX1T1) and PML-RARα fusion oncoproteins (encoded by PML-RARA) are extremely sensitive to poly (ADP-ribose) polymerase (PARP) inhibition, in part owing to their suppressed expression of key homologous recombination (HR)-associated genes and their compromised DNA-damage response (DDR). In contrast, leukemia driven by mixed-lineage leukemia (MLL, encoded by KMT2A) fusions with dominant transactivation ability is proficient in DDR and insensitive to PARP inhibition. Intriguingly, genetic or pharmacological inhibition of an MLL downstream target, HOXA9, which activates expression of various HR-associated genes, impairs DDR and sensitizes MLL leukemia to PARP inhibitors (PARPis). Conversely, HOXA9 overexpression confers PARPi resistance to AML1-ETO and PML-RARα transformed cells. Together, these studies describe a potential utility of PARPi-induced synthetic lethality for leukemia treatment and reveal a novel molecular mechanism governing PARPi sensitivity in AML.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Cell Differentiation/drug effects
- Cell Line, Transformed
- Cell Line, Tumor
- Cell Survival/drug effects
- Cellular Senescence/drug effects
- Core Binding Factor Alpha 2 Subunit/metabolism
- DNA Damage
- DNA Repair/drug effects
- Fluorescent Antibody Technique
- Gene Expression Regulation, Leukemic
- Homeodomain Proteins/metabolism
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice
- Oncogene Proteins, Fusion/metabolism
- Oncogenes
- Phthalazines/pharmacology
- Phthalazines/therapeutic use
- Piperazines/pharmacology
- Piperazines/therapeutic use
- Poly(ADP-ribose) Polymerase Inhibitors/pharmacology
- Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use
- Poly(ADP-ribose) Polymerases/metabolism
- Protein Kinase Inhibitors/pharmacology
- RUNX1 Translocation Partner 1 Protein
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Maria Teresa Esposito
- Leukemia and Stem Cell Biology Group, Department of Haematological Medicine, Division of Cancer Studies, King's College London, London, UK
| | - Lu Zhao
- Leukemia and Stem Cell Biology Group, Department of Haematological Medicine, Division of Cancer Studies, King's College London, London, UK
| | - Tsz Kan Fung
- Leukemia and Stem Cell Biology Group, Department of Haematological Medicine, Division of Cancer Studies, King's College London, London, UK
| | - Jayant K Rane
- Leukemia and Stem Cell Biology Group, Department of Haematological Medicine, Division of Cancer Studies, King's College London, London, UK
| | - Amanda Wilson
- Leukemia and Stem Cell Biology Group, Department of Haematological Medicine, Division of Cancer Studies, King's College London, London, UK
| | - Nadine Martin
- Cell Proliferation Group, Medical Research Council Clinical Sciences Centre, Imperial College London, London, UK
| | - Jesus Gil
- Cell Proliferation Group, Medical Research Council Clinical Sciences Centre, Imperial College London, London, UK
| | - Anskar Y Leung
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Alan Ashworth
- University of California, San Francisco (UCSF) Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
| | - Chi Wai Eric So
- Leukemia and Stem Cell Biology Group, Department of Haematological Medicine, Division of Cancer Studies, King's College London, London, UK
| |
Collapse
|
36
|
Guan D, Kao HY. The function, regulation and therapeutic implications of the tumor suppressor protein, PML. Cell Biosci 2015; 5:60. [PMID: 26539288 PMCID: PMC4632682 DOI: 10.1186/s13578-015-0051-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/28/2015] [Indexed: 12/21/2022] Open
Abstract
The tumor suppressor protein, promyelocytic leukemia protein (PML), was originally identified in acute promyelocytic leukemia due to a chromosomal translocation between chromosomes 15 and 17. PML is the core component of subnuclear structures called PML nuclear bodies (PML-NBs), which are disrupted in acute promyelocytic leukemia cells. PML plays important roles in cell cycle regulation, survival and apoptosis, and inactivation or down-regulation of PML is frequently found in cancer cells. More than 120 proteins have been experimentally identified to physically associate with PML, and most of them either transiently or constitutively co-localize with PML-NBs. These interactions are associated with many cellular processes, including cell cycle arrest, apoptosis, senescence, transcriptional regulation, DNA repair and intermediary metabolism. Importantly, PML inactivation in cancer cells can occur at the transcriptional-, translational- or post-translational- levels. However, only a few somatic mutations have been found in cancer cells. A better understanding of its regulation and its role in tumor suppression will provide potential therapeutic opportunities. In this review, we discuss the role of PML in multiple tumor suppression pathways and summarize the players and stimuli that control PML protein expression or subcellular distribution.
Collapse
Affiliation(s)
- Dongyin Guan
- Department of Biochemistry, School of Medicine, Case Western Reserve University, and Comprehensive Cancer Center of Case Western Reserve University, Cleveland, 10900 Euclid Avenue, Cleveland, OH 44106 USA
| | - Hung-Ying Kao
- Department of Biochemistry, School of Medicine, Case Western Reserve University, and Comprehensive Cancer Center of Case Western Reserve University, Cleveland, 10900 Euclid Avenue, Cleveland, OH 44106 USA
| |
Collapse
|
37
|
Gao J, Yan J, Xu M, Ren S, Xie W. CAR Suppresses Hepatic Gluconeogenesis by Facilitating the Ubiquitination and Degradation of PGC1α. Mol Endocrinol 2015; 29:1558-70. [PMID: 26407237 DOI: 10.1210/me.2015-1145] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The constitutive androstane receptor (CAR) and peroxisome proliferator-activated receptor gamma coactivator-1α (PGC1α) are master regulators of drug metabolism and gluconeogenesis, respectively. In supporting the cross talk between drug metabolism and energy metabolism, activation of CAR has been shown to suppress hepatic gluconeogenesis and ameliorate hyperglycemia in vivo, but the underlying molecular mechanism remains elusive. In this study, we demonstrated that CAR suppressed hepatic gluconeogenic gene expression through posttranslational regulation of the subcellular localization and degradation of PGC1α. Activated CAR translocated into the nucleus and served as an adaptor protein to recruit PGC1α to the Cullin1 E3 ligase complex for ubiquitination. The interaction between CAR and PGC1α also led to their sequestration within the promyelocytic leukemia protein-nuclear bodies, where PGC1α and CAR subsequently underwent proteasomal degradation. Taken together, our findings revealed an unexpected function of CAR in recruiting an E3 ligase and targeting the gluconeogenic activity of PGC1α. Both drug metabolism and gluconeogenesis are energy-demanding processes. The negative regulation of PGC1α by CAR may represent a cellular adaptive mechanism to accommodate energy-restricted conditions.
Collapse
Affiliation(s)
- Jie Gao
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences (J.G., J.Y., M.X., S.R., W.X.), and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Jiong Yan
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences (J.G., J.Y., M.X., S.R., W.X.), and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Meishu Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences (J.G., J.Y., M.X., S.R., W.X.), and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Songrong Ren
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences (J.G., J.Y., M.X., S.R., W.X.), and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences (J.G., J.Y., M.X., S.R., W.X.), and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
38
|
Böhm S, Mihalevic MJ, Casal MA, Bernstein KA. Disruption of SUMO-targeted ubiquitin ligases Slx5-Slx8/RNF4 alters RecQ-like helicase Sgs1/BLM localization in yeast and human cells. DNA Repair (Amst) 2014; 26:1-14. [PMID: 25588990 DOI: 10.1016/j.dnarep.2014.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 10/24/2022]
Abstract
RecQ-like helicases are a highly conserved protein family that functions during DNA repair and, when mutated in humans, is associated with cancer and/or premature aging syndromes. The budding yeast RecQ-like helicase Sgs1 has important functions in double-strand break (DSB) repair of exogenously induced breaks, as well as those that arise endogenously, for example during DNA replication. To further investigate Sgs1's regulation, we analyzed the subcellular localization of a fluorescent fusion of Sgs1 upon DNA damage. Consistent with a role in DSB repair, Sgs1 recruitment into nuclear foci in asynchronous cultures increases after ionizing radiation (IR) and after exposure to the alkylating agent methyl methanesulfonate (MMS). Yet, despite the importance of Sgs1 in replicative damage repair and in contrast to its elevated protein levels during S-phase, we find that the number of Sgs1 foci decreases upon nucleotide pool depletion by hydroxyurea (HU) treatment and that this negative regulation depends on the intra S-phase checkpoint kinase Mec1. Importantly, we identify the SUMO-targeted ubiquitin ligase (STUbL) complex Slx5-Slx8 as a negative regulator of Sgs1 foci, both spontaneously and upon replicative damage. Slx5-Slx8 regulation of Sgs1 foci is likely conserved in eukaryotes, since expression of the mammalian Slx5-Slx8 functional homologue, RNF4, restores Sgs1 focus number in slx8 cells and furthermore, knockdown of RNF4 leads to more BLM foci in U-2 OS cells. Our results point to a model where RecQ-like helicase subcellular localization is regulated by STUbLs in response to DNA damage, presumably to prevent illegitimate recombination events.
Collapse
Affiliation(s)
- Stefanie Böhm
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | - Michael Joseph Mihalevic
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | - Morgan Alexandra Casal
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | - Kara Anne Bernstein
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA.
| |
Collapse
|
39
|
Esposito MT, So CWE. DNA damage accumulation and repair defects in acute myeloid leukemia: implications for pathogenesis, disease progression, and chemotherapy resistance. Chromosoma 2014; 123:545-61. [PMID: 25112726 DOI: 10.1007/s00412-014-0482-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 12/15/2022]
Abstract
DNA damage repair mechanisms are vital to maintain genomic integrity. Mutations in genes involved in the DNA damage response (DDR) can increase the risk of developing cancer. In recent years, a variety of polymorphisms in DDR genes have been associated with increased risk of developing acute myeloid leukemia (AML) or of disease relapse. Moreover, a growing body of literature has indicated that epigenetic silencing of DDR genes could contribute to the leukemogenic process. In addition, a variety of AML oncogenes have been shown to induce replication and oxidative stress leading to accumulation of DNA damage, which affects the balance between proliferation and differentiation. Conversely, upregulation of DDR genes can provide AML cells with escape mechanisms to the DDR anticancer barrier and induce chemotherapy resistance. The current review summarizes the DDR pathways in the context of AML and describes how aberrant DNA damage response can affect AML pathogenesis, disease progression, and resistance to standard chemotherapy, and how defects in DDR pathways may provide a new avenue for personalized therapeutic strategies in AML.
Collapse
Affiliation(s)
- Maria Teresa Esposito
- Leukemia and Stem Cell Biology Group, Department of Hematological Medicine, King's College London, Denmark Hill campus, SE5 9NU, London, UK
| | | |
Collapse
|
40
|
Zeng C, Xu Y, Xu L, Yu X, Cheng J, Yang L, Chen S, Li Y. Inhibition of long non-coding RNA NEAT1 impairs myeloid differentiation in acute promyelocytic leukemia cells. BMC Cancer 2014; 14:693. [PMID: 25245097 PMCID: PMC4180842 DOI: 10.1186/1471-2407-14-693] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 09/19/2014] [Indexed: 11/10/2022] Open
Abstract
Background Acute promyelocytic leukemia (APL) is characterized by the reciprocal translocation t(15;17), which fuses PML with retinoic acid receptor alpha (RARα). Although PML-RARα is crucially important for pathogenesis and responsiveness to treatment, the molecular and cellular mechanisms by which PML-RARα exerts its oncogenic potential have not been fully elucidated. Recent reports have suggested that long non-coding RNAs (lncRNAs) contribute to the precise control of gene expression and are involved in human diseases. Little is known about the role of lncRNA in APL. Methods We analyzed NEAT1 expression in APL samples and cell lines by real-time quantitative reverse transcription-PCR (qRT-PCR). The expression of PML-RARα was measured by Western blot. Cell differentiation was assessed by measuring the surface CD11b antigen expression by flow cytometry analysis. Results We found that nuclear enriched abundant transcript 1 (NEAT1), a lncRNA essential for the formation of nuclear body paraspeckles, is significantly repressed in de novo APL samples compared with those of healthy donors. We further provide evidence that NEAT1 expression was repressed by PML-RARα. Furthermore, significant NEAT1 upregulation was observed during all-trans retinoic acid (ATRA)-induced NB4 cell differentiation. Finally, we demonstrate the importance of NEAT1 in myeloid differentiation. We show that reduction of NEAT1 by small interfering RNA (siRNA) blocks ATRA-induced differentiation. Conclusions Our results indicate that reduced expression of the nuclear long noncoding RNA NEAT1 may play a role in the myeloid differentiation of APL cells. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-693) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yangqiu Li
- Institute of Hematology, Medical College, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
41
|
Böhm S, Bernstein KA. The role of post-translational modifications in fine-tuning BLM helicase function during DNA repair. DNA Repair (Amst) 2014; 22:123-32. [PMID: 25150915 DOI: 10.1016/j.dnarep.2014.07.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 07/14/2014] [Indexed: 12/12/2022]
Abstract
RecQ-like helicases are a highly conserved family of proteins which are critical for preserving genome integrity. Genome instability is considered a hallmark of cancer and mutations within three of the five human RECQ genes cause hereditary syndromes that are associated with cancer predisposition. The human RecQ-like helicase BLM has a central role in DNA damage signaling, repair, replication, and telomere maintenance. BLM and its budding yeast orthologue Sgs1 unwind double-stranded DNA intermediates. Intriguingly, BLM functions in both a pro- and anti-recombinogenic manner upon replicative damage, acting on similar substrates. Thus, BLM activity must be intricately controlled to prevent illegitimate recombination events that could have detrimental effects on genome integrity. In recent years it has become evident that post-translational modifications (PTMs) of BLM allow a fine-tuning of its function. To date, BLM phosphorylation, ubiquitination, and SUMOylation have been identified, in turn regulating its subcellular localization, protein-protein interactions, and protein stability. In this review, we will discuss the cellular context of when and how these different modifications of BLM occur. We will reflect on the current model of how PTMs control BLM function during DNA damage repair and compare this to what is known about post-translational regulation of the budding yeast orthologue Sgs1. Finally, we will provide an outlook toward future research, in particular to dissect the cross-talk between the individual PTMs on BLM.
Collapse
Affiliation(s)
- Stefanie Böhm
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States
| | - Kara Anne Bernstein
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States.
| |
Collapse
|
42
|
Sahin U, Ferhi O, Jeanne M, Benhenda S, Berthier C, Jollivet F, Niwa-Kawakita M, Faklaris O, Setterblad N, de Thé H, Lallemand-Breitenbach V. Oxidative stress-induced assembly of PML nuclear bodies controls sumoylation of partner proteins. ACTA ACUST UNITED AC 2014; 204:931-45. [PMID: 24637324 PMCID: PMC3998805 DOI: 10.1083/jcb.201305148] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PML multimerization into nuclear bodies following its oxidation promotes sumoylation and sequestration of partner proteins in these structures. The promyelocytic leukemia (PML) protein organizes PML nuclear bodies (NBs), which are stress-responsive domains where many partner proteins accumulate. Here, we clarify the basis for NB formation and identify stress-induced partner sumoylation as the primary NB function. NB nucleation does not rely primarily on intermolecular interactions between the PML SUMO-interacting motif (SIM) and SUMO, but instead results from oxidation-mediated PML multimerization. Oxidized PML spherical meshes recruit UBC9, which enhances PML sumoylation, allow partner recruitment through SIM interactions, and ultimately enhance partner sumoylation. Intermolecular SUMO–SIM interactions then enforce partner sequestration within the NB inner core. Accordingly, oxidative stress enhances NB formation and global sumoylation in vivo. Some NB-associated sumoylated partners also become polyubiquitinated by RNF4, precipitating their proteasomal degradation. As several partners are protein-modifying enzymes, NBs could act as sensors that facilitate and confer oxidative stress sensitivity not only to sumoylation but also to other post-translational modifications, thereby explaining alterations of stress response upon PML or NB loss.
Collapse
Affiliation(s)
- Umut Sahin
- Université Paris Diderot, Sorbonne Paris Cité, Hôpital St. Louis 1, 75475 Paris Cedex 10, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Münch S, Weidtkamp-Peters S, Klement K, Grigaravicius P, Monajembashi S, Salomoni P, Pandolfi PP, Weißhart K, Hemmerich P. The tumor suppressor PML specifically accumulates at RPA/Rad51-containing DNA damage repair foci but is nonessential for DNA damage-induced fibroblast senescence. Mol Cell Biol 2014; 34:1733-46. [PMID: 24615016 PMCID: PMC4019039 DOI: 10.1128/mcb.01345-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/19/2013] [Accepted: 02/14/2014] [Indexed: 12/24/2022] Open
Abstract
The PML tumor suppressor has been functionally implicated in DNA damage response and cellular senescence. Direct evidence for such a role based on PML knockdown or knockout approaches is still lacking. We have therefore analyzed the irradiation-induced DNA damage response and cellular senescence in human and mouse fibroblasts lacking PML. Our data show that PML nuclear bodies (NBs) nonrandomly associate with persistent DNA damage foci in unperturbed human skin and in high-dose-irradiated cell culture systems. PML bodies do not associate with transient γH2AX foci after low-dose gamma irradiation. Superresolution microscopy reveals that all PML bodies within a nucleus are engaged at Rad51- and RPA-containing repair foci during ongoing DNA repair. The lack of PML (i) does not majorly affect the DNA damage response, (ii) does not alter the efficiency of senescence induction after DNA damage, and (iii) does not affect the proliferative potential of primary mouse embryonic fibroblasts during serial passaging. Thus, while PML NBs specifically accumulate at Rad51/RPA-containing lesions and senescence-derived persistent DNA damage foci, they are not essential for DNA damage-induced and replicative senescence of human and murine fibroblasts.
Collapse
Affiliation(s)
- Sandra Münch
- Leibniz Institute for Age Research, Jena, Germany
| | | | | | | | | | - Paolo Salomoni
- University College London, UCL Cancer Institute, London, United Kingdom
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Klaus Weißhart
- Carl Zeiss Microscopy GmbH, BioSciences Division, Jena, Germany
| | | |
Collapse
|
44
|
Chung YL, Wu ML. Promyelocytic leukaemia protein links DNA damage response and repair to hepatitis B virus-related hepatocarcinogenesis. J Pathol 2013; 230:377-87. [PMID: 23620081 DOI: 10.1002/path.4195] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 03/12/2013] [Accepted: 03/27/2013] [Indexed: 12/12/2022]
Abstract
DNA damage response and repair pathways are important barriers to carcinogenesis. Here, we show that promyelocytic leukaemia (PML, also known as TRIM19), involved in sensing DNA damage and executing homologous recombination repair, is down-regulated in non-tumour liver cells surrounding hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). No PML mutation or deletion was found in HBV-infected liver or HCC cells. Immunohistochemical analysis of liver biopsies from patients with breast or liver cancer and HBV reactivation after chemotherapy revealed PML up-regulation and HBV exacerbation in normal liver tissue in response to DNA damage (functional PML), PML down-regulation in HCC peritumour cells associated with high HBsAg accumulation and low HBV replication activity (suppressive PML), and heterogeneous nuclear PML expression in HCC cells that lost HBV DNA and HBsAg and were non-reactive to DNA damage (dysregulated PML). Loss of PML in HBsAg-transgenic mice promoted chromosome breaks in liver cells and accelerated the accumulation of body and liver fat and the development of a liver steatosis-dysplasia-adenoma-carcinoma sequence in an inflammation-independent and male-predominant manner, compared to PML knock-out or HBsAg-transgenic mice during the same time period. These results indicate that PML deficiency facilitates genomic instability and promotes HBsAg-related hepatocarcinogenesis, which also involves androgen and lipid metabolism. These findings uncover a novel PML link between HBV-related tumourigenesis, DNA repair, and metabolism.
Collapse
MESH Headings
- Adiposity
- Animals
- Antibiotics, Antineoplastic/therapeutic use
- Biomarkers/blood
- Biopsy
- Carcinoma, Hepatocellular/chemically induced
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/virology
- Cell Transformation, Viral
- DNA Damage
- DNA Repair
- Diethylnitrosamine
- Disease Models, Animal
- Doxorubicin/therapeutic use
- Fatty Liver/metabolism
- Fatty Liver/pathology
- Fatty Liver/virology
- Female
- Genomic Instability
- Hepatitis B/complications
- Hepatitis B/diagnosis
- Hepatitis B/genetics
- Hepatitis B Surface Antigens/blood
- Hepatitis B Surface Antigens/genetics
- Hepatitis B virus/genetics
- Hepatitis B virus/growth & development
- Hepatitis B virus/immunology
- Hepatitis B virus/pathogenicity
- Humans
- Immunohistochemistry
- Liver Neoplasms/chemically induced
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/virology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Nuclear Proteins/deficiency
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Promyelocytic Leukemia Protein
- Sex Factors
- Time Factors
- Transcription Factors/deficiency
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Tumor Suppressor Proteins/deficiency
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
- Up-Regulation
- Virus Activation
- Virus Replication
Collapse
Affiliation(s)
- Yih-Lin Chung
- Department of Radiation Oncology, Koo Foundation Sun-Yat-Sen Cancer Center, Taipei, 112, Taiwan.
| | | |
Collapse
|
45
|
Salsman J, Pinder J, Tse B, Corkery D, Dellaire G. The translation initiation factor 3 subunit eIF3K interacts with PML and associates with PML nuclear bodies. Exp Cell Res 2013; 319:2554-65. [PMID: 24036361 DOI: 10.1016/j.yexcr.2013.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 08/08/2013] [Accepted: 09/02/2013] [Indexed: 12/17/2022]
Abstract
The promyelocytic leukemia protein (PML) is a tumor suppressor protein that regulates a variety of important cellular processes, including gene expression, DNA repair and cell fate decisions. Integral to its function is the ability of PML to form nuclear bodies (NBs) that serve as hubs for the interaction and modification of over 90 cellular proteins. There are seven canonical isoforms of PML, which encode diverse C-termini generated by alternative pre-mRNA splicing. Recruitment of specific cellular proteins to PML NBs is mediated by protein-protein interactions with individual PML isoforms. Using a yeast two-hybrid screen employing peptide sequences unique to PML isoform I (PML-I), we identified an interaction with the eukaryotic initiation factor 3 subunit K (eIF3K), and in the process identified a novel eIF3K isoform, which we term eIF3K-2. We further demonstrate that eIF3K and PML interact both in vitro via pull-down assays, as well as in vivo within human cells by co-immunoprecipitation and co-immunofluorescence. In addition, eIF3K isoform 2 (eIF3K-2) colocalizes to PML bodies, particularly those enriched in PML-I, while eIF3K isoform 1 associates poorly with PML NBs. Thus, we report eIF3K as the first known subunit of the eIF3 translation pre-initiation complex to interact directly with the PML protein, and provide data implicating alternative splicing of both PML and eIF3K as a possible regulatory mechanism for eIF3K localization at PML NBs.
Collapse
Affiliation(s)
- Jayme Salsman
- Department of Pathology, Dalhousie University, P.O. Box 15000, Halifax, Nova Scotia, Canada B3H 4R2
| | | | | | | | | |
Collapse
|
46
|
Martin-Martin N, Sutherland JD, Carracedo A. PML: Not all about Tumor Suppression. Front Oncol 2013; 3:200. [PMID: 23936764 PMCID: PMC3732998 DOI: 10.3389/fonc.2013.00200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 07/19/2013] [Indexed: 12/21/2022] Open
|
47
|
Abstract
The role of the promyelocytic leukemia (PML) protein has been widely tested in many different contexts, as attested by the hundreds of papers present in the literature. In most of these studies, PML is regarded as a tumor suppressor, a notion on the whole accepted by the scientific community. In this review, we examine how the concept of tumor-suppressor gene has evolved until now and then systematically assess whether this assumption for PML is supported by unambiguous experimental evidence.
Collapse
Affiliation(s)
- Massimiliano Mazza
- Department of Experimental Oncology, European Institute of Oncology , Milan , Italy
| | | |
Collapse
|
48
|
Jin G, Wang YJ, Lin HK. Emerging Cellular Functions of Cytoplasmic PML. Front Oncol 2013; 3:147. [PMID: 23761861 PMCID: PMC3674320 DOI: 10.3389/fonc.2013.00147] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/21/2013] [Indexed: 11/23/2022] Open
Abstract
The tumor suppressor promyelocytic leukemia protein (PML) is located primarily in the nucleus, where it is the scaffold component of the PML nuclear bodies (PML-NBs). PML-NBs regulate multiple cellular functions, such as apoptosis, senescence, DNA damage response, and resistance to viral infection. Despite its nuclear localization, a small portion of PML has been identified in the cytoplasm. The cytoplasmic PML (cPML) could be originally derived from the retention of exported nuclear PML (nPML). In addition, bona fide cPML isoforms devoid of nuclear localization signal (NLS) have also been identified. Recently, emerging evidence showed that cPML performs its specific cellular functions in tumorigenesis, glycolysis, antiviral responses, laminopothies, and cell cycle regulation. In this review, we will summarize the emerging roles of cPML in cellular functions.
Collapse
Affiliation(s)
- Guoxiang Jin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center , Houston, TX , USA
| | | | | |
Collapse
|
49
|
PML-mediated signaling and its role in cancer stem cells. Oncogene 2013; 33:1475-84. [PMID: 23563177 DOI: 10.1038/onc.2013.111] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 02/06/2013] [Accepted: 02/09/2013] [Indexed: 02/08/2023]
Abstract
The promyelocytic leukemia (PML) protein, initially discovered as a part of the PML/retinoic acid receptor alpha fusion protein, has been found to be a critical player in oncogenesis and tumor progression. Multiple cellular activities, including DNA repair, alternative lengthening of telomeres, transcriptional control, apoptosis and senescence, are regulated by PML and its featured subcellular structure, the PML nuclear body. In correspondence with its role in many important life processes, PML mediates several complex downstream signaling pathways. The determinant function of PML in tumorigenesis and cancer progression raises the interest in its involvement in cancer stem cells (CSCs), a subpopulation of cancer cells that share properties with stem cells and are critical for tumor propagation. Recently, there are exciting discoveries concerning the requirement of PML in CSC maintenance. Growing evidences strongly suggest a positive role of PML in regulating CSCs in both hematopoietic cancers and solid tumors, whereas the underlying mechanisms may be different and remain elusive. Here we summarize and discuss the PML-mediated signaling pathways in cancers and their potential roles in regulating CSCs.
Collapse
|
50
|
Ito K, Ito K. Newly Identified Roles of PML in Stem Cell Biology. Front Oncol 2013; 3:50. [PMID: 23504288 PMCID: PMC3596805 DOI: 10.3389/fonc.2013.00050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 02/27/2013] [Indexed: 12/24/2022] Open
Abstract
It has long been believed that the tumor suppressor promyelocytic leukemia (PML), the core component of the nuclear substructures known as the PML-nuclear bodies, plays a key part in acute PML (APL), as it is first cloned at the breakpoint of the t(15;17) translocation typical of that disease. Research over the past decade, however, has radically changed our view of how this tumor suppressor is regulated, how it can be therapeutically targeted, and how it functions in a number of tissue systems. One noteworthy recent study, for instance, revealed that PML regulates the activation of fatty acid metabolism, and that this metabolic reprograming plays an essential role in cancer biology and stem cell biology through the control it exerts over stem cell fate decisions. These findings sparked exciting new investigations of PML as a critical “rheostat” responsible for fine-tuning tissue homeostasis, and thus created at the intersection of cancer and stem cell biology a new field of study with important therapeutic implications.
Collapse
Affiliation(s)
- Kyoko Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine Bronx, NY, USA ; Department of Cell Biology, Albert Einstein College of Medicine Bronx, NY, USA ; Department of Medicine, Albert Einstein College of Medicine Bronx, NY, USA ; Albert Einstein Cancer Center, Albert Einstein College of Medicine Bronx, NY, USA
| | | |
Collapse
|