1
|
Abstract
Erythropoietin (Epo) is an essential hormone that binds and activates the Epo receptor (EpoR) resident on the surface of erythroid progenitor cells, thereby promoting erythropoiesis. Recombinant human erythropoietin has been used successfully for over 20 years to treat anemia in millions of patients. In addition to erythropoiesis, Epo has also been reported to have other effects, such as tissue protection and promotion of tumor cell growth or survival. This became of significant concern in 2003, when some clinical trials in cancer patients reported increased tumor progression and worse survival outcomes in patients treated with erythropoiesis-stimulating agents (ESAs). One of the potential mechanisms proffered to explain the observed safety issues was that functional EpoR was expressed in tumors and/or endothelial cells, and that ESAs directly stimulated tumor growth and/or antagonized tumor ablative therapies. Since then, numerous groups have performed further research evaluating this potential mechanism with conflicting data and conclusions. Here, we review the biology of endogenous Epo and EpoR expression and function in erythropoiesis, and evaluate the evidence pertaining to the expression of EpoR on normal nonhematopoietic and tumor cells.
Collapse
|
2
|
Wang Y, Yao M, Zhou C, Dong D, Jiang Y, Wei G, Cui X. Erythropoietin promotes spinal cord-derived neural progenitor cell proliferation by regulating cell cycle. Neuroscience 2010; 167:750-7. [PMID: 20167254 DOI: 10.1016/j.neuroscience.2010.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 02/04/2010] [Accepted: 02/04/2010] [Indexed: 02/02/2023]
Abstract
Erythropoietin (EPO) regulates the proliferation and differentiation of erythroid cells by binding to its specific transmembrane receptor (EPOR). The presence of EPO and its receptor in the CNS suggests a different function for EPO other than erythropoiesis. The purpose of the present study was to examine EPOR expression and the role of EPO in the proliferation of neonatal spinal cord-derived neural progenitor cells. The effect of EPO on cell cycle progression was also examined, as well as the signaling cascades involved in this process. Our results showed that EPOR was present in the neural progenitor cells and EPO significantly enhanced their proliferation. Cell cycle analysis of EPO-treated neural progenitor cells indicated a reduced percentage of cells in G0/G1 phase, whereas the cell proliferation index (S phase plus G2/M phase) was increased. EPO also increased the proportion of 5-bromo-2-deoxyuridine (BrdU)-positive cells. With respect to the cell cycle signaling, we examined the cyclin-dependent kinases D1, D2 and E, and cyclin-dependent kinase inhibitors, p21cip1, p27kip1 and p57kip2. No significant differences were observed in the expression of these transcripts after EPO administration. Interestingly, the anti-apoptotic factors, mcl-1 and bcl-2 were significantly increased twofold. Moreover, these specific effects of EPO were eliminated by incubation of the progenitor cells with anti-EPO neutralizing antibody. Those observations suggested that EPO may play a role in normal spinal cord development by regulating cell proliferation and apoptosis.
Collapse
Affiliation(s)
- Y Wang
- Department of Spine Surgery, Second Affiliated Hospital of Harbin Medical University, Hei Long Jiang Province, PR China.
| | | | | | | | | | | | | |
Collapse
|
3
|
Abstract
Hypertension is the most significant complication from treatment with erythropoietin (Epo). Can Epo-induced hypertension be eliminated? We examined systemic and local effects of our genetically engineered products, Epo-binding protein (Epo-bp) and anti–Epo-bp antibodies, on randomly assigned Sprague–Dawley rats at midnight, 4
am
, 8
am
, noon, 4
pm
, and 8
pm
. Blood pressure, hematocrit, and body weight were measured immediately before and after the completion of a 4-week, twice-weekly course of Epo (50 U/kg), Epo-bp, anti–Epo-bp antibodies, or physiological saline injections. Epo treatment increased hematocrit markedly overall as compared with the saline, Epo-bp, and anti–Epo-bp antibody groups (0.616 versus 0.427, 0.439, and 0.441, respectively) and at each of the 6 test times (all
P
<0.0001). Epo-bp and anti–Epo-bp antibody treatment with Epo had almost no effect on the Epo-induced hematocrit increase (0.616 versus 0.580 or 0.591, respectively). Circadian blood pressures for Epo versus saline, Epo-bp, and anti–Epo-bp antibody groups were 136.2±2.3 versus 116.2±1.7, 118.4±2.1, and 116.6±2.1 mm Hg, respectively (each
P
<0.0001). Significantly increased blood pressure was detected at noon, 4
pm
, 8
pm
, and midnight in Epo treatment. When Epo was given with Epo-bp or anti–Epo-bp antibodies, blood pressure was maintained at similar levels as in saline treatment (each
P
<0.0001) as compared with Epo treatment alone. Overall, body, brain, and heart weights were significantly lower in Epo treatment than those of other groups. Thus, Epo-bp and anti–Epo-bp antibodies eliminate Epo-induced hypertension without affecting hematocrit and blood volume.
Collapse
Affiliation(s)
- Mary S Lee
- School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | |
Collapse
|
4
|
Sarna MK, Ingley E, Busfield SJ, Cull VS, Lepere W, McCarthy DJ, Wright MJ, Palmer GA, Chappell D, Sayer MS, Alexander WS, Hilton DJ, Starr R, Watowich SS, Bittorf T, Klinken SP, Tilbrook PA. Differential regulation of SOCS genes in normal and transformed erythroid cells. Oncogene 2003; 22:3221-30. [PMID: 12761492 PMCID: PMC2396148 DOI: 10.1038/sj.onc.1206381] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The SOCS family of genes are negative regulators of cytokine signalling with SOCS-1 displaying tumor suppressor activity. SOCS-1, CIS and SOCS-3 have been implicated in the regulation of red blood cell production. In this study, a detailed examination was conducted on the expression patterns of these three SOCS family members in normal erythroid progenitors and a panel of erythroleukemic cell lines. Unexpectedly, differences in SOCS gene expression were observed during maturation of normal red cell progenitors, viz changes to CIS were inversely related to the alterations of SOCS-1 and SOCS-3. Similarly, these SOCS genes were differentially expressed in transformed erythoid cells - erythroleukemic cells immortalized at an immature stage of differentiation expressed SOCS-1 and SOCS-3 mRNA constitutively, whereas in more mature cell lines SOCS-1 and CIS were induced only after exposure to erythropoietin (Epo). Significantly, when ectopic expression of the tyrosine kinase Lyn was used to promote differentiation of immature cell lines, constitutive expression of SOCS-1 and SOCS-3 was completely suppressed. Modulation of intracellular signalling via mutated Epo receptors in mature erythroleukemic lines also highlighted different responses by the three SOCS family members. Close scrutiny of SOCS-1 revealed that, despite large increases in mRNA levels, the activity of the promoter did not alter after erythropoietin stimulation; in addition, erythroid cells from SOCS-1-/- mice displayed increased sensitivity to Epo. These observations indicate complex, stage-specific regulation of SOCS genes during normal erythroid maturation and in erythroleukemic cells.
Collapse
Affiliation(s)
- Mohinder K Sarna
- Laboratory for Cancer Medicine, Western Australian Institute for Medical Research, Royal Perth Hospital and Centre for Medical Research, The University of Western Australia, Perth, Australia
| | - Evan Ingley
- Laboratory for Cancer Medicine, Western Australian Institute for Medical Research, Royal Perth Hospital and Centre for Medical Research, The University of Western Australia, Perth, Australia
| | - Samantha J Busfield
- Neurotrauma Laboratory, Western Australian Institute for Medical Research, Royal Perth Hospital, Australia
| | - Vanessa S Cull
- Laboratory for Cancer Medicine, Western Australian Institute for Medical Research, Royal Perth Hospital and Centre for Medical Research, The University of Western Australia, Perth, Australia
| | - Winald Lepere
- Laboratory for Cancer Medicine, Western Australian Institute for Medical Research, Royal Perth Hospital and Centre for Medical Research, The University of Western Australia, Perth, Australia
- Institute of Medical Biochemistry, University of Rostock, Rostock, Germany
| | - David J McCarthy
- Laboratory for Cancer Medicine, Western Australian Institute for Medical Research, Royal Perth Hospital and Centre for Medical Research, The University of Western Australia, Perth, Australia
| | - Michael J Wright
- Laboratory for Cancer Medicine, Western Australian Institute for Medical Research, Royal Perth Hospital and Centre for Medical Research, The University of Western Australia, Perth, Australia
| | - Gene A Palmer
- Laboratory for Cancer Medicine, Western Australian Institute for Medical Research, Royal Perth Hospital and Centre for Medical Research, The University of Western Australia, Perth, Australia
| | - David Chappell
- Laboratory for Cancer Medicine, Western Australian Institute for Medical Research, Royal Perth Hospital and Centre for Medical Research, The University of Western Australia, Perth, Australia
| | - Melissa S Sayer
- Laboratory for Cancer Medicine, Western Australian Institute for Medical Research, Royal Perth Hospital and Centre for Medical Research, The University of Western Australia, Perth, Australia
| | - Warren S Alexander
- Walter and Eliza Hall Institute of Medical Research and The Cooperative Research Center for Cellular Growth Factors, PO Box Royal Melbourne Hospital, Melbourne, Australia
| | - Douglas J Hilton
- Walter and Eliza Hall Institute of Medical Research and The Cooperative Research Center for Cellular Growth Factors, PO Box Royal Melbourne Hospital, Melbourne, Australia
| | - Robyn Starr
- Walter and Eliza Hall Institute of Medical Research and The Cooperative Research Center for Cellular Growth Factors, PO Box Royal Melbourne Hospital, Melbourne, Australia
| | | | - Thomas Bittorf
- Institute of Medical Biochemistry, University of Rostock, Rostock, Germany
| | - S Peter Klinken
- Laboratory for Cancer Medicine, Western Australian Institute for Medical Research, Royal Perth Hospital and Centre for Medical Research, The University of Western Australia, Perth, Australia
- *Correspondence: SP Klinken, Laboratory for Cancer Medicine, Western Australian Institute for Medical Research, 6th Floor MRF Building, Rear, 50 Murray St, Perth, WA 6000, Australia; E-mail:
| | - Peta A Tilbrook
- Laboratory for Cancer Medicine, Western Australian Institute for Medical Research, Royal Perth Hospital and Centre for Medical Research, The University of Western Australia, Perth, Australia
| |
Collapse
|
5
|
Cull VS, Tilbrook PA, Bartlett EJ, Brekalo NL, James CM. Type I interferon differential therapy for erythroleukemia: specificity of STAT activation. Blood 2003; 101:2727-35. [PMID: 12446459 DOI: 10.1182/blood-2002-05-1521] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Type I interferons (IFNs), pleiotropic cytokines with antiviral, antiproliferative, apoptotic, and immunoregulatory functions, are efficacious in the treatment of malignancies, viral infections, and autoimmune diseases. Binding of these cytokines to their cognate receptor leads to activation of the Jak-signal transducers and activators of transcription (STAT) signaling pathway and altered gene expression. This signal pathway has been intensely studied using human IFN-alpha 2 and IFN-beta. However, there are over 14 human IFN-alpha subtypes and over 10 murine IFN-alpha subtypes, with a single IFN-beta subtype in both species. J2E cells are immortalized at the proerythroblast stage of development and produce a rapid and fatal erythroleukemia in vivo. These cells retain the ability to respond to erythropoietin in vitro by proliferating, differentiating, and remaining viable in the absence of serum. Here, we show that J2E cells are also functionally regulated differentially by IFN subtype treatment in vitro. A novel finding was the selective activation of STAT and mitogen-activated protein kinase (MAPK) molecules by different subtypes binding the IFN receptor. These findings indicate distinct effects for individual type I IFN subtypes, which are able to differentially activate members of the STAT and MAPK family. Finally, we investigated the efficacy of IFN naked DNA therapy in treating J2E-induced erythroleukemia in athymic nude mice. IFN subtypes differentially regulated the onset of erythroleukemia with delayed onset and increased survival, possibly via a reduction in cell viability, and enhanced antiproliferative and apoptotic effects observed for IFNA6 and IFNA9 treatment, respectively. Moreover, these data highlight the necessity to choose the best IFN subtype in disease treatment.
Collapse
Affiliation(s)
- Vanessa S Cull
- Division of Veterinary and Biomedical Sciences, Western Australian Biomedical Research Institute, Murdoch University, Perth, Western Australia, Australia
| | | | | | | | | |
Collapse
|