1
|
Richard C, Carton M, Hazkani I, Couloigner V, Sheyn A, Rastatter J, Haroun L, Helmig S, Houston MB, Helfre S, Thebault E, Andre N, Faure Conter C, Teissier N, Fresneau B, Orbach D. Cervical Lymph Node Invasion in Pediatric Salivary Gland Malignancies: Clinical Overview and Therapeutic Implications. Pediatr Blood Cancer 2025:e31581. [PMID: 39895422 DOI: 10.1002/pbc.31581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/28/2024] [Accepted: 01/22/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND AND AIMS Pediatric salivary gland malignancies (SGM) present challenges in managing cervical nodes. We aimed to characterize lymph node invasion to inform decisions regarding the need of systematic wide lymph node dissection (WLND). METHODS International retrospective study, conducted across seven large French and American pediatric centers, including pediatric patients (0-18 years) diagnosed with SGM from 2000 to 2020. RESULTS Among the 82 patients (median age 13 years), the parotid gland was frequently affected (60 cases). Histotypes comprised mucoepidermoid (mucoepidermoid carcinoma [MEC], 43 cases), acinic cells (acinic cells carcinoma [AcCC], 22 cases), adenoid cystic (adenoid cystic carcinoma [AdCC], 8 cases), (MASC, 6 cases), and adenocarcinoma (3 cases). Primary treatments were surgery (82 cases) and radiotherapy (20 cases; median dosage 64 gray). Cervical nodes therapy included WLND (≥2 levels, 29 cases), limited nodes resection (LNR; one level, 13 cases), and/or irradiation (4 cases; median 54 gray; range 52.0-63.0). At diagnosis, six patients had cervical node invasion (CNI) managed with LNR (four cases), WLND (two cases), and radiotherapy (three cases). After a median follow-up of 6 years (range 1-22), nine patients had tumor event: local (four cases), cervical relapse/progression (three cases) or combined (two cases). Of the nine with CNI, at diagnosis or relapse, four had MASC. Five-year event-free and overall survival (OS) rates were, respectively, 90.1% and 98.8%. CONCLUSIONS CNI is rare in pediatric SGM but noted in 11% of cases, with higher incidence in MASC. Overall, outcome in SGM is good with a tailored locoregional multidisciplinary approach. Systematic lymph node dissection should be reconsidered. SUMMARY This international multi-institutional study analyzed the clinical presentation and the cervical pattern of relapse of 82 pediatric patients with newly diagnosed salivary gland malignancies. Overall, nodal invasion was rare at diagnosis and only noted in 7%. In addition, 6% developed nodal relapse during follow-up. Incidence of nodal spread was frequent in mammary analogue secretory carcinoma (MASC). The overall outcome was promising with a tailored locoregional multidisciplinary approach. Systematic lymph node dissection should be reconsidered in pediatric salivary gland tumors.
Collapse
Affiliation(s)
- Celine Richard
- Department of Otolaryngology, University of Tennessee Health Science Center College of Medicine, Memphis, Tennessee, USA
- Division of Pediatric Otolaryngology, Le Bonheur Children's Hospital, Memphis, Tennessee, USA
- Division of Pediatric Otolaryngology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Matthieu Carton
- Biostatistics, Clinical Research and Epidemiology Unit, Institut Curie, Paris, France
| | - Inbal Hazkani
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Division of Pediatric Otolaryngology-Head and Neck Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Vincent Couloigner
- Department of Pediatric Otolaryngology, Necker-Enfants-Malades Hospital, Paris-Descartes University, AP-HP, Paris, France
| | - Anthony Sheyn
- Department of Otolaryngology, University of Tennessee Health Science Center College of Medicine, Memphis, Tennessee, USA
- Division of Pediatric Otolaryngology, Le Bonheur Children's Hospital, Memphis, Tennessee, USA
- Division of Pediatric Otolaryngology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jeffrey Rastatter
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Division of Pediatric Otolaryngology-Head and Neck Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | | | - Sara Helmig
- Solid Tumor Division, Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Mary Beth Houston
- Division of Pediatric Otolaryngology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Sylvie Helfre
- Department of Radiotherapy, Institut Curie, Paris, France
| | - Eric Thebault
- Department of Tumor Pediatrics, Centre Oscar Lambret, Lille, France
| | - Nicolas Andre
- Department of Pediatric Hematology and Oncology, Hôpital de La Timone, AP-HM, Marseille, France
- UMR INSERM 1068, CNRS UMR 7258, Aix Marseille Université U105, Marseille Cancer Research Center (CRCM), Marseille, France
| | | | - Natacha Teissier
- Pediatric Otorhinolaryngology Department, Robert Debre University Hospital, Paris, France
| | - Brice Fresneau
- Gustave Roussy, Department of Children and Adolescent Oncology, Paris-Saclay University, Paris-Sud University, CESP, INSERM, Villejuif, France
| | - Daniel Orbach
- SIREDO Oncology Center (Care, Innovation and Research for Children, Adolescents and Young Adults With Cancer), Institut Curie, PSL University, Paris, France
| |
Collapse
|
2
|
Gupta R, Dittmeier M, Wohlleben G, Nickl V, Bischler T, Luzak V, Wegat V, Doll D, Sodmann A, Bady E, Langlhofer G, Wachter B, Havlicek S, Gupta J, Horn E, Lüningschrör P, Villmann C, Polat B, Wischhusen J, Monoranu CM, Kuper J, Blum R. Atypical cellular responses mediated by intracellular constitutive active TrkB (NTRK2) kinase domains and a solely intracellular NTRK2-fusion oncogene. Cancer Gene Ther 2024; 31:1357-1379. [PMID: 39039193 PMCID: PMC11405271 DOI: 10.1038/s41417-024-00809-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 06/25/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024]
Abstract
Trk (NTRK) receptor and NTRK gene fusions are oncogenic drivers of a wide variety of tumors. Although Trk receptors are typically activated at the cell surface, signaling of constitutive active Trk and diverse intracellular NTRK fusion oncogenes is barely investigated. Here, we show that a high intracellular abundance is sufficient for neurotrophin-independent, constitutive activation of TrkB kinase domains. In HEK293 cells, constitutive active TrkB kinase and an intracellular NTRK2-fusion oncogene (SQSTM1-NTRK2) reduced actin filopodia dynamics, phosphorylated FAK, and altered the cell morphology. Atypical cellular responses could be mimicked with the intracellular kinase domain, which did not activate the Trk-associated MAPK/ERK pathway. In glioblastoma-like U87MG cells, expression of TrkB or SQSTM1-NTRK2 reduced cell motility and caused drastic changes in the transcriptome. Clinically approved Trk inhibitors or mutating Y705 in the kinase domain, blocked the cellular effects and transcriptome changes. Atypical signaling was also seen for TrkA and TrkC. Moreover, hallmarks of atypical pTrk kinase were found in biopsies of Nestin-positive glioblastoma. Therefore, we suggest Western blot-like immunoassay screening of NTRK-related (brain) tumor biopsies to identify patients with atypical panTrk or phosphoTrk signals. Such patients could be candidates for treatment with NTRK inhibitors such as Larotrectinhib or Entrectinhib.
Collapse
Affiliation(s)
- Rohini Gupta
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Melanie Dittmeier
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Gisela Wohlleben
- Department of Radiation Oncology, University of Würzburg, Würzburg, Germany
| | - Vera Nickl
- Department of Neurosurgery, Section Experimental Neurosurgery, University Hospital Würzburg, Würzburg, Germany
| | - Thorsten Bischler
- Core Unit Systems Medicine, University of Würzburg, Würzburg, Germany
| | - Vanessa Luzak
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
- Ludwig-Maximilians-Universität München, Biomedizinisches Zentrum, Planegg, Germany
| | - Vanessa Wegat
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
- Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB, Bio- Elektro- und Chemokatalyse BioCat, Straubing, Germany
| | - Dennis Doll
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Annemarie Sodmann
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Elena Bady
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Georg Langlhofer
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Britta Wachter
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Steven Havlicek
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
- Neurona Therapeutics, 170 Harbor Way, South San Francisco, CA, USA
| | - Jahnve Gupta
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Evi Horn
- Department of Obstetrics and Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Patrick Lüningschrör
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Carmen Villmann
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Bülent Polat
- Department of Radiation Oncology, University of Würzburg, Würzburg, Germany
| | - Jörg Wischhusen
- Department of Obstetrics and Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Camelia M Monoranu
- Department of Neuropathology, Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Jochen Kuper
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, Würzburg, Germany
| | - Robert Blum
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany.
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
3
|
Hasegawa N, Hayashi T, Niizuma H, Kikuta K, Imanishi J, Endo M, Ikeuchi H, Sasa K, Sano K, Hirabayashi K, Takagi T, Ishijima M, Kato S, Kohsaka S, Saito T, Suehara Y. Detection of Novel Tyrosine Kinase Fusion Genes as Potential Therapeutic Targets in Bone and Soft Tissue Sarcomas Using DNA/RNA-based Clinical Sequencing. Clin Orthop Relat Res 2024; 482:549-563. [PMID: 38014853 PMCID: PMC10871756 DOI: 10.1097/corr.0000000000002901] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Approximately 1% of clinically treatable tyrosine kinase fusions, including anaplastic lymphoma kinase, neurotrophic tyrosine receptor kinase, RET proto-oncogene, and ROS proto-oncogene 1, have been identified in soft tissue sarcomas via comprehensive genome profiling based on DNA sequencing. Histologic tumor-specific fusion genes have been reported in approximately 20% of soft tissue sarcomas; however, unlike tyrosine kinase fusion genes, these fusions cannot be directly targeted in therapy. Approximately 80% of tumor-specific fusion-negative sarcomas, including myxofibrosarcoma and leiomyosarcoma, that are defined in complex karyotype sarcomas remain genetically uncharacterized; this mutually exclusive pattern of mutations suggests that other mutually exclusive driver oncogenes are yet to be discovered. Tumor-specific, fusion-negative sarcomas may be associated with unique translocations, and oncogenic fusion genes, including tyrosine kinase fusions, may have been overlooked in these sarcomas. QUESTIONS/PURPOSES (1) Can DNA- or RNA-based analysis reveal any characteristic gene alterations in bone and soft tissue sarcomas? (2) Can useful and potential tyrosine kinase fusions in tumors from tumor-specific, fusion-negative sarcomas be detected using an RNA-based screening system? (3) Do the identified potential fusion tumors, especially in neurotrophic tyrosine receptor kinase gene fusions in bone sarcoma, transform cells and respond to targeted drug treatment in in vitro assays? (4) Can the identified tyrosine kinase fusion genes in sarcomas be useful therapeutic targets? METHODS Between 2017 and 2020, we treated 100 patients for bone and soft tissue sarcomas at five institutions. Any biopsy or surgery from which a specimen could be obtained was included as potentially eligible. Ninety percent (90 patients) of patients were eligible; a further 8% (8 patients) were excluded because they were either lost to follow-up or their diagnosis was changed, leaving 82% (82 patients) for analysis here. To answer our first and second questions regarding gene alterations and potential tyrosine kinase fusions in eight bone and 74 soft tissue sarcomas, we used the TruSight Tumor 170 assay to detect mutations, copy number variations, and gene fusions in the samples. To answer our third question, we performed functional analyses involving in vitro assays to determine whether the identified tyrosine kinase fusions were associated with oncogenic abilities and drug responses. Finally, to determine usefulness as therapeutic targets, two pediatric patients harboring an NTRK fusion and an ALK fusion were treated with tyrosine kinase inhibitors in clinical trials. RESULTS DNA/RNA-based analysis demonstrated characteristic alterations in bone and soft tissue sarcomas; DNA-based analyses detected TP53 and copy number alterations of MDM2 and CDK4 . These single-nucleotide variants and copy number variations were enriched in specific fusion-negative sarcomas. RNA-based screening detected fusion genes in 24% (20 of 82) of patients. Useful potential fusions were detected in 19% (11 of 58) of tumor-specific fusion-negative sarcomas, with nine of these patients harboring tyrosine kinase fusion genes; five of these patients had in-frame tyrosine kinase fusion genes ( STRN3-NTRK3, VWC2-EGFR, ICK-KDR, FOXP2-MET , and CEP290-MET ) with unknown pathologic significance. The functional analysis revealed that STRN3-NTRK3 rearrangement that was identified in bone had a strong transforming potential in 3T3 cells, and that STRN3-NTRK3 -positive cells were sensitive to larotrectinib in vitro. To confirm the usefulness of identified tyrosine kinase fusion genes as therapeutic targets, patients with well-characterized LMNA-NTRK1 and CLTC-ALK fusions were treated with tyrosine kinase inhibitors in clinical trials, and a complete response was achieved. CONCLUSION We identified useful potential therapeutic targets for tyrosine kinase fusions in bone and soft tissue sarcomas using RNA-based analysis. We successfully identified STRN3-NTRK3 fusion in a patient with leiomyosarcoma of bone and determined the malignant potential of this fusion gene via functional analyses and drug effects. In light of these discoveries, comprehensive genome profiling should be considered even if the sarcoma is a bone sarcoma. There seem to be some limitations regarding current DNA-based comprehensive genome profiling tests, and it is important to use RNA testing for proper diagnosis and accurate identification of fusion genes. Studies on more patients, validation of results, and further functional analysis of unknown tyrosine kinase fusion genes are required to establish future treatments. CLINICAL RELEVANCE DNA- and RNA-based screening systems may be useful for detecting tyrosine kinase fusion genes in specific fusion-negative sarcomas and identifying key therapeutic targets, leading to possible breakthroughs in the treatment of bone and soft tissue sarcomas. Given that current DNA sequencing misses fusion genes, RNA-based screening systems should be widely considered as a worldwide test for sarcoma. If standard treatments such as chemotherapy are not effective, or even if the sarcoma is of bone, RNA sequencing should be considered to identify as many therapeutic targets as possible.
Collapse
Affiliation(s)
- Nobuhiko Hasegawa
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Takuo Hayashi
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hidetaka Niizuma
- Department of Pediatrics, Tohoku University School of Medicine, Miyagi, Japan
| | - Kazutaka Kikuta
- Division of Musculoskeletal Oncology and Orthopaedic Surgery, Tochigi Cancer Center, Tochigi, Japan
| | - Jungo Imanishi
- Department of Orthopaedic Surgery, Teikyo University School of Medicine, Tokyo, Japan
- Department of Orthopaedic Oncology and Surgery, Saitama Medical University International Medical Center, Saitama, Japan
| | - Makoto Endo
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Ikeuchi
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Keita Sasa
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kei Sano
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kaoru Hirabayashi
- Division of Diagnostic Pathology, Tochigi Cancer Center, Tochigi, Japan
| | - Tatsuya Takagi
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Muneaki Ishijima
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shunsuke Kato
- Department of Clinical Oncology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shinji Kohsaka
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Tsuyoshi Saito
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshiyuki Suehara
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Mirovic M, Stojanovic MD, Jovanovic M, Stankovic V, Milosev D, Zdravkovic N, Milosevic B, Cvetkovic A, Spasic M, Vekic B, Jovanovic I, Stojanovic BS, Petrovic M, Bogut A, Peulic M, Stojanovic B. Exploring Perforated Jejunal GIST: A Rare Case Report and Review of Molecular and Clinical Literature. Curr Issues Mol Biol 2024; 46:1192-1207. [PMID: 38392194 PMCID: PMC10887764 DOI: 10.3390/cimb46020076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/13/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
This case report details a rare instance of a perforated jejunal gastrointestinal stromal tumor (GIST) in a 76-year-old female patient. The patient presented with acute abdominal pain and distension without any changes in bowel habits or episodes of nausea and vomiting. Initial diagnostics, including abdominal plain radiography and ultrasonography, were inconclusive; however, a computed tomography (CT) scan revealed pneumoperitoneum and an irregular fluid collection suggestive of small intestine perforations. Surgical intervention uncovered a 35 mm jejunal GIST with a 10 mm perforation. Histopathological examination confirmed a mixed cell type GIST with high malignancy potential, further substantiated by immunohistochemistry markers CD117, DOG1, and vimentin. Molecular analysis illuminated the role of key oncogenes, primarily KIT and PDGFRA mutations, emphasizing the importance of molecular diagnostics in GIST management. Despite the severity of the presentation, the patient's postoperative recovery was favorable, highlighting the effectiveness of prompt surgical and multidisciplinary approaches in managing complex GIST cases.
Collapse
Affiliation(s)
- Milos Mirovic
- Department of General Surgery, Clinical Hospital Center Kotor, 85330 Kotor, Montenegro
| | - Milica Dimitrijevic Stojanovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Pathology, University Clinical Center Kragujevac, 34000 Kragujevac, Serbia
| | - Marina Jovanovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Vesna Stankovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Pathology, University Clinical Center Kragujevac, 34000 Kragujevac, Serbia
| | - Danijela Milosev
- Department of Pathology, University Clinical Center Kragujevac, 34000 Kragujevac, Serbia
| | - Natasa Zdravkovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Bojan Milosevic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Aleksandar Cvetkovic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Marko Spasic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Berislav Vekic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Ivan Jovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Bojana S Stojanovic
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Marko Petrovic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Ana Bogut
- City Medical Emergency Department, 11000 Belgrade, Serbia
| | - Miodrag Peulic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Bojan Stojanovic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
5
|
Monovich AC, Gurumurthy A, Ryan RJH. The Diverse Roles of ETV6 Alterations in B-Lymphoblastic Leukemia and Other Hematopoietic Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:291-320. [PMID: 39017849 DOI: 10.1007/978-3-031-62731-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Genetic alterations of the repressive ETS family transcription factor gene ETV6 are recurrent in several categories of hematopoietic malignancy, including subsets of B-cell and T-cell acute lymphoblastic leukemias (B-ALL and T-ALL), myeloid neoplasms, and mature B-cell lymphomas. ETV6 is essential for adult hematopoietic stem cells (HSCs), contributes to specific functions of some mature immune cells, and plays a key role in thrombopoiesis as demonstrated by familial ETV6 mutations associated with thrombocytopenia and predisposition to hematopoietic cancers, particularly B-ALL. ETV6 appears to have a tumor suppressor role in several hematopoietic lineages, as demonstrated by recurrent somatic loss-of-function (LoF) and putative dominant-negative alterations in leukemias and lymphomas. ETV6 rearrangements contribute to recurrent fusion oncogenes such as the B-ALL-associated transcription factor (TF) fusions ETV6::RUNX1 and PAX5::ETV6, rare drivers such as ETV6::NCOA6, and a spectrum of tyrosine kinase gene fusions encoding hyperactive signaling proteins that self-associate via the ETV6 N-terminal pointed domain. Another subset of recurrent rearrangements involving the ETV6 gene locus appear to function primarily to drive overexpression of the partner gene. This review surveys what is known about the biochemical and genome regulatory properties of ETV6 as well as our current understanding of how alterations in these functions contribute to hematopoietic and nonhematopoietic cancers.
Collapse
Affiliation(s)
- Alexander C Monovich
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Aishwarya Gurumurthy
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Russell J H Ryan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Aliyeva A, Karimov Z, Muderris T. Metastatic salivary gland mammary analogue secretory carcinoma (MASC) of parotid gland – A rare case report in the literature review. ACTA OTO-LARYNGOLOGICA CASE REPORTS 2023. [DOI: 10.1080/23772484.2023.2178439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Affiliation(s)
- Aynur Aliyeva
- Department of Otorhinolaryngology, Seoul St.Mary Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ziya Karimov
- Medicine Program, Ege University Faculty of Medicine, Izmir, Turkey
| | - Togay Muderris
- Department of Otorhinolaryngology, Cigli Education and Research Hospital, Izmir Bakircay University, Izmir, Turkey
| |
Collapse
|
7
|
Zhu T, Xie J, He H, Li H, Tang X, Wang S, Li Z, Tian Y, Li L, Zhu J, Zhu G. Phase separation underlies signaling activation of oncogenic NTRK fusions. Proc Natl Acad Sci U S A 2023; 120:e2219589120. [PMID: 37812694 PMCID: PMC10589674 DOI: 10.1073/pnas.2219589120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 09/02/2023] [Indexed: 10/11/2023] Open
Abstract
NTRK (neurotrophic tyrosine receptor kinase) gene fusions that encode chimeric proteins exhibiting constitutive activity of tropomyosin receptor kinases (TRK), are oncogenic drivers in multiple cancer types. However, the underlying mechanisms in oncogenesis that involve various N-terminal fusion partners of NTRK fusions remain elusive. Here, we show that NTRK fusion proteins form liquid-like condensates driven by their N-terminal fusion partners. The kinase reactions are accelerated in these condensates where the complexes for downstream signaling activation are also concentrated. Our work demonstrates that the phase separation driven by NTRK fusions is not only critical for TRK activation, but the condensates formed through phase separation serve as organizational hubs for oncogenic signaling.
Collapse
Affiliation(s)
- Tianxin Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai201203, China
- University of the Chinese Academy of Sciences, Beijing100049, China
| | | | - Hao He
- Etern Biopharma, Shanghai201203, China
| | - Huan Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai201203, China
- University of the Chinese Academy of Sciences, Beijing100049, China
| | - Xianbin Tang
- Department of Pathology, Taihe hospital, Hubei University of Medicine, Shiyan442000, China
| | - Shuyang Wang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Ziwen Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai201203, China
- University of the Chinese Academy of Sciences, Beijing100049, China
| | - Yawen Tian
- Lingang Laboratory, Shanghai200031, China
| | - Lingyu Li
- Lingang Laboratory, Shanghai200031, China
| | | | | |
Collapse
|
8
|
Richardson ET, Jo VY, Schnitt SJ. Salivary Gland-like Tumors of the Breast. Arch Pathol Lab Med 2023; 147:1014-1024. [PMID: 37651394 DOI: 10.5858/arpa.2023-0038-ra] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2023] [Indexed: 09/02/2023]
Abstract
CONTEXT The World Health Organization classification of tumors of the breast recognizes several special type carcinomas and benign lesions with features comparable to those of salivary gland tumors. OBJECTIVE To discuss the histologic, immunophenotypic, molecular, and clinical features of salivary gland-like carcinomas of the breast. These breast tumors are often negative for hormone receptors and human epidermal growth factor receptor 2 (HER2), that is, triple-negative, but they generally have a much better prognosis than triple-negative breast carcinomas of no special type. We compare the immunophenotypic, molecular, and clinical features of these breast tumors with their salivary gland counterparts, highlighting similarities and differences. We also discuss benign salivary gland-like breast tumors. Finally, we highlight recent developments in understanding the molecular pathogenesis of these breast tumors and novel ancillary studies that can be used to support their diagnosis. DATA SOURCES A literature review was conducted, and papers were selected for further analysis and discussion by the authors of this review based on their novelty, applicability, and impact in the field. CONCLUSIONS Breast tumors that exhibit morphologic overlap with salivary gland tumors have been recognized by pathologists for decades, but the similarities and differences in their molecular pathogenesis have not been understood until more recently. These developments have led to novel diagnostic tools and further knowledge of these rare breast lesions.
Collapse
Affiliation(s)
- Edward T Richardson
- From the Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- The Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Vickie Y Jo
- From the Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- The Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Stuart J Schnitt
- From the Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- The Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
9
|
Kinnunen M, Liu X, Niemelä E, Öhman T, Gawriyski L, Salokas K, Keskitalo S, Varjosalo M. The Impact of ETV6-NTRK3 Oncogenic Gene Fusions on Molecular and Signaling Pathway Alterations. Cancers (Basel) 2023; 15:4246. [PMID: 37686522 PMCID: PMC10486691 DOI: 10.3390/cancers15174246] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Chromosomal translocations creating fusion genes are common cancer drivers. The oncogenic ETV6-NTRK3 (EN) gene fusion joins the sterile alpha domain of the ETV6 transcription factor with the tyrosine kinase domain of the neurotrophin-3 receptor NTRK3. Four EN variants with alternating break points have since been detected in a wide range of human cancers. To provide molecular level insight into EN oncogenesis, we employed a proximity labeling mass spectrometry approach to define the molecular context of the fusions. We identify in total 237 high-confidence interactors, which link EN fusions to several key signaling pathways, including ERBB, insulin and JAK/STAT. We then assessed the effects of EN variants on these pathways, and showed that the pan NTRK inhibitor Selitrectinib (LOXO-195) inhibits the oncogenic activity of EN2, the most common variant. This systems-level analysis defines the molecular framework in which EN oncofusions operate to promote cancer and provides some mechanisms for therapeutics.
Collapse
Affiliation(s)
- Matias Kinnunen
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Xiaonan Liu
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Elina Niemelä
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Tiina Öhman
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Lisa Gawriyski
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Kari Salokas
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Salla Keskitalo
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
10
|
Boyarskikh UA, Savostyanova TA, Oscorbin IP, Filipenko ML. Development of a Cell Line Containing the Chimeric ETV6-NTRK3 Gene. The Search for Mutations of the Tyrosine Kinase Chimeric Domain That Cause Resistance to Larotrectinib. Bull Exp Biol Med 2023:10.1007/s10517-023-05824-z. [PMID: 37338765 DOI: 10.1007/s10517-023-05824-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 06/21/2023]
Abstract
The development, registration, and further use of entrectinib and larotrectinib for the treatment of tumors resulting from oncogenic stimulation of chimeric neurotrophin receptors (TRK) attracted much interest to the mechanisms of tumor cells resistance to TRK inhibitors during treatment. In the presented study, a cell line carrying the chimeric gene ETV6-NTRK3 (HFF-EN) was created on the basis of human fibroblasts. The transcription level of the chimeric ETV6-NTRK3 gene in HFF-EN was comparable to the transcription level of the household ACTB gene, the expression of the ETV6-NTRKA protein was confirmed by immunoblotting. A comparison of the dose-effect curves of fibroblasts and HFF-EN cells showed a ~38-fold increase in the sensitivity of HFF-EN to larotrectinib. To obtain a cell model of the resistance to larotrectinib in NTRK-dependent cancer, we used cell passages with a gradually increasing concentration of larotrectinib and obtained six resistant clones. p.G623E c.1868G>A mutation was found in five clones, and p.R582W c.1744C>T mutation, previously not described as a resistance mutation, was found in one clone showing significantly less resistance. These results can be further used for more complete understanding of the mechanisms of the resistance to TRK inhibitors and for the development of new drugs.
Collapse
Affiliation(s)
- U A Boyarskikh
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - T A Savostyanova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - I P Oscorbin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - M L Filipenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia.
| |
Collapse
|
11
|
Meng Z, Si W, Xiuli Z, Liu Y. A Parotid Gland Mammary Analogue Secretory Carcinoma in a 4-Year-Old Boy: Case Report and Literature Review. Fetal Pediatr Pathol 2023; 42:342-350. [PMID: 36053082 DOI: 10.1080/15513815.2022.2116621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 02/08/2023]
Abstract
Background: Mammary analogue secretory carcinoma (MASC) is characterized by similar histologic, immunohistochemical, and molecular features with breast secretory carcinoma. MASC usually occurs in adults. Case report: A 4-year-old boy presented with a right infra-auricular mass. Features of the tumor include solid, tubular, and papillary growth patterns, with homogenous eosinophilic secretions inside microcystic structures. Immunohistochemical stains showed strong, diffuse staining for CK7, S100, pan-TRK protein. P63 was positive in a peripheral pattern. Fluorescence in situ hybridization (FISH) analysis showed the characteristic ETV6-NTRK3 gene fusion. Conclusion: Typical histological, immunohistochemical, and molecular features are present in MASC occurring early in childhood.
Collapse
Affiliation(s)
- Zhao Meng
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wu Si
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhu Xiuli
- Department of Pediatric, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yueping Liu
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
12
|
Medford AJ, Oshry L, Boyraz B, Kiedrowski L, Menshikova S, Butusova A, Dai CS, Gogakos T, Keenan JC, Occhiogrosso RH, Ryan P, Lennerz JK, Spring LM, Moy B, Ellisen LW, Bardia A. TRK inhibitor in a patient with metastatic triple-negative breast cancer and NTRK fusions identified via cell-free DNA analysis. Ther Adv Med Oncol 2023; 15:17588359231152844. [PMID: 36743521 PMCID: PMC9893401 DOI: 10.1177/17588359231152844] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/05/2023] [Indexed: 02/04/2023] Open
Abstract
Tissue-agnostic indications for targeted therapies have expanded options for patients with advanced solid tumors. The Food and Drug Administration approvals of the programmed death-ligand 1 inhibitor pembrolizumab and the TRK inhibitors larotrectinib and entrectinib provide rationale for next-generation sequencing (NGS) in effectively all advanced solid tumor patients given potential for clinical responses even in otherwise refractory disease. As proof of concept, this case report describes a 64-year-old woman with triple-negative breast cancer refractory to multiple lines of therapy, found to have a rare mutation on NGS which led to targeted therapy with meaningful response. She initially presented with metastatic recurrence 5 years after treatment for a localized breast cancer, with rapid progression through four lines of therapy in the metastatic setting, including immunotherapy, antibody-drug conjugate-based therapy, and chemotherapy. Germline genetic testing was normal. Ultimately, NGS evaluation of cell-free DNA via an 83-gene assay (Guardant Health, Inc.) identified two NTRK3 fusions: an ETV6-NTRK3 fusion associated with the rare secretory breast carcinoma, and CRTC3-NTRK3, a novel fusion partner not previously described in breast cancer. Liver biopsy was sent for whole exome sequencing and RNA-seq analysis of tissue (BostonGene, Inc., Boston, MA, USA), which provided orthogonal confirmation of both the ETV6-NTRK3 and CRTC3-NTRK3 fusions. She was started on the TRK inhibitor larotrectinib with a marked clinical and radiographic response after only 2 months of therapy. The patient granted verbal consent to share her clinical story, images, and data in this case report. This case demonstrates the significant potential benefits of NGS testing in advanced cancer and the lessons we may learn from individual patient experiences.
Collapse
Affiliation(s)
| | - Lauren Oshry
- Boston Medical Center, Boston, MA, USA,Boston University School of Medicine, Boston, MA, USA
| | - Baris Boyraz
- Massachusetts General Hospital Cancer Center, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | | | | | | | - Charles S. Dai
- Massachusetts General Hospital Cancer Center, Boston, MA, USA,Dana Farber Cancer Institute, Boston, MA, USA
| | - Tasos Gogakos
- Massachusetts General Hospital Cancer Center, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | | | - Rachel H. Occhiogrosso
- Massachusetts General Hospital Cancer Center, Boston, MA, USA,Dana Farber Cancer Institute, Boston, MA, USA
| | - Phoebe Ryan
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Jochen K. Lennerz
- Massachusetts General Hospital Cancer Center, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Laura M. Spring
- Massachusetts General Hospital Cancer Center, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Beverly Moy
- Massachusetts General Hospital Cancer Center, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Leif W. Ellisen
- Massachusetts General Hospital Cancer Center, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Aditya Bardia
- Massachusetts General Hospital Cancer Center, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Arai H, Minami Y, Chi S, Utsu Y, Masuda S, Aotsuka N. Molecular-Targeted Therapy for Tumor-Agnostic Mutations in Acute Myeloid Leukemia. Biomedicines 2022; 10:3008. [PMID: 36551764 PMCID: PMC9775249 DOI: 10.3390/biomedicines10123008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
Abstract
Comprehensive genomic profiling examinations (CGPs) have recently been developed, and a variety of tumor-agnostic mutations have been detected, leading to the development of new molecular-targetable therapies across solid tumors. In addition, the elucidation of hereditary tumors, such as breast and ovarian cancer, has pioneered a new age marked by the development of new treatments and lifetime management strategies required for patients with potential or presented hereditary cancers. In acute myeloid leukemia (AML), however, few tumor-agnostic or hereditary mutations have been the focus of investigation, with associated molecular-targeted therapies remaining poorly developed. We focused on representative tumor-agnostic mutations such as the TP53, KIT, KRAS, BRCA1, ATM, JAK2, NTRK3, FGFR3 and EGFR genes, referring to a CGP study conducted in Japan, and we considered the possibility of developing molecular-targeted therapies for AML with tumor-agnostic mutations. We summarized the frequency, the prognosis, the structure and the function of these mutations as well as the current treatment strategies in solid tumors, revealed the genetical relationships between solid tumors and AML and developed tumor-agnostic molecular-targeted therapies and lifetime management strategies in AML.
Collapse
Affiliation(s)
- Hironori Arai
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho 286-0041, Japan
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan
| | - Yosuke Minami
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan
| | - SungGi Chi
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan
| | - Yoshikazu Utsu
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho 286-0041, Japan
| | - Shinichi Masuda
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho 286-0041, Japan
| | - Nobuyuki Aotsuka
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho 286-0041, Japan
| |
Collapse
|
14
|
Xiong Z, Wu S, Li FJ, Luo C, Jin QY, Connolly ID, Hayden Gephart M, You L. Elevated ETV6 Expression in Glioma Promotes an Aggressive In Vitro Phenotype Associated with Shorter Patient Survival. Genes (Basel) 2022; 13:genes13101882. [PMID: 36292767 PMCID: PMC9656946 DOI: 10.3390/genes13101882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/29/2022] Open
Abstract
Background: GBM astrocytes may adopt fetal astrocyte transcriptomic signatures involved in brain development and migration programs to facilitate diffuse tumor infiltration. Our previous data show that ETS variant 6 (ETV6) is highly expressed in human GBM and fetal astrocytes compared to normal mature astrocytes. We hypothesized that ETV6 played a role in GBM tumor progression. Methods: Expression of ETV6 was first examined in two American and three Chinese tissue microarrays. The correlation between ETV6 staining intensity and patient survival was calculated, followed by validation using public databases—TCGA and REMBRANDT. The effect of ETV6 knockdown on glioma cell proliferation (EdU), viability (AnnexinV labeling), clonogenic growth (colony formation), and migration/invasion (transwell assays) in GBM cells was tested. RNA sequencing and Western blot were performed to elucidate the underlying molecular mechanisms. Results: ETV6 was highly expressed in GBM and associated with an unfavorable prognosis. ETV6 silencing in glioma cells led to increased apoptosis or decreased proliferation, clonogenicity, migration, and invasion. RNA-Seq-based gene expression and pathway analyses revealed that ETV6 knockdown in U251 cells led to the upregulation of genes involved in extracellular matrix organization, NF-κB signaling, TNF-mediated signaling, and the downregulation of genes in the regulation of cell motility, cell proliferation, PI3K-AKT signaling, and the Ras pathway. The downregulation of the PI3K-AKT and Ras-MAPK pathways were further validated by immunoblotting. Conclusion: Our findings suggested that ETV6 was highly expressed in GBM and its high expression correlated with poor survival. ETV6 silencing decreased an aggressive in vitro phenotype probably via the PI3K-AKT and Ras-MAPK pathways. The study encourages further investigation of ETV6 as a potential therapeutic target of GBM.
Collapse
Affiliation(s)
- Zhang Xiong
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- Neurosurgical Institute, Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China
| | - Shuai Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- Neurosurgical Institute, Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China
| | - Feng-jiao Li
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Chen Luo
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- Neurosurgical Institute, Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China
| | - Qiu-yan Jin
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ian David Connolly
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Melanie Hayden Gephart
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA
- Correspondence: to: (M.H.G.); (L.Y.)
| | - Linya You
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai 200032, China
- Correspondence: to: (M.H.G.); (L.Y.)
| |
Collapse
|
15
|
Biswas A, Rajesh Y, Das S, Banerjee I, Kapoor N, Mitra P, Mandal M. Therapeutic targeting of RBPJ, an upstream regulator of ETV6 gene, abrogates ETV6-NTRK3 fusion gene transformations in glioblastoma. Cancer Lett 2022; 544:215811. [PMID: 35787922 DOI: 10.1016/j.canlet.2022.215811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022]
Abstract
Fusion genes are abnormal genes resulting from chromosomal translocation, insertion, deletion, inversion, etc. ETV6, a rather promiscuous partner forms fusions with several other genes, most commonly, the NTRK3 gene. This fusion leads to the formation of a constitutively activated tyrosine kinase which activates the Ras-Raf-MEK and PI3K/AKT/MAPK pathways, leading the cells through cycles of uncontrolled division and ultimately resulting in cancer. Targeted therapies against this ETV6-NTRK3 fusion protein are much needed. Therefore, to find a targeted approach, a transcription factor RBPJ regulating the ETV6 gene was established and since the ETV6-NTRK3 fusion gene is downstream of the ETV6 promoter/enhancer, this fusion protein is also regulated. The regulation of the ETV6 gene via RBPJ was validated by ChIP analysis in human glioblastoma (GBM) cell lines and patient tissue samples. This study was further followed by the identification of an inhibitor, Furamidine, against transcription factor RBPJ. It was found to be binding with the DNA binding domain of RBPJ with antitumorigenic properties and minimal organ toxicity. Hence, a new target RBPJ, regulating the production of ETV6 and ETV6-NTRK3 fusion protein was found along with a potent RBPJ inhibitor Furamidine.
Collapse
Affiliation(s)
- Angana Biswas
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Yetirajam Rajesh
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Subhayan Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Indranil Banerjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Neelkamal Kapoor
- Department of Pathology and Lab Medicine, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, 462020, India
| | - Pralay Mitra
- Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
16
|
Loo SK, Yates ME, Yang S, Oesterreich S, Lee AV, Wang X. Fusion-associated carcinomas of the breast: Diagnostic, prognostic, and therapeutic significance. Genes Chromosomes Cancer 2022; 61:261-273. [PMID: 35106856 PMCID: PMC8930468 DOI: 10.1002/gcc.23029] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/11/2022] Open
Abstract
Recurrent gene fusions comprise a class of viable genetic targets in solid tumors that have culminated several recent breakthrough cancer therapies. Their role in breast cancer, however, remains largely underappreciated due to the complexity of genomic rearrangements in breast malignancy. Just recently, we and others have identified several recurrent gene fusions in breast cancer with important clinical and biological implications. Examples of the most significant recurrent gene fusions to date include (1) ESR1::CCDC170 gene fusions in luminal B and endocrine-resistant breast cancer that exert oncogenic function via modulating the HER2/HER3/SRC Proto-Oncogene (SRC) complex, (2) ESR1 exon 6 fusions in metastatic disease that drive estrogen-independent estrogen-receptor transcriptional activity, (3) BCL2L14::ETV6 fusions in a more aggressive form of the triple-negative subtype that prime epithelial-mesenchymal transition and endow paclitaxel resistance, (4) the ETV6::NTRK3 fusion in secretory breast carcinoma that constitutively activates NTRK3 kinase, (5) the oncogenic MYB-NFIB fusion as a genetic driver underpinning adenoid cystic carcinomas of the breast that activates MYB Proto-Oncogene (MYB) pathway, and (6) the NOTCH/microtubule-associated serine-threonine (MAST) kinase gene fusions that activate NOTCH and MAST signaling. Importantly, these fusions are enriched in more aggressive and lethal breast cancer presentations and appear to confer therapeutic resistance. Thus, these gene fusions could be utilized as genetic biomarkers to identify patients who require more intensive treatment and surveillance. In addition, kinase fusions are currently being evaluated in breast cancer clinical trials and ongoing mechanistic investigation is exposing therapeutic vulnerabilities in patients with fusion-positive disease.
Collapse
Affiliation(s)
- Suet Kee Loo
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15232, USA
| | - Megan E. Yates
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA
- Integrative Systems Biology Program, University of Pittsburgh, Pittsburgh, PA, 15232, USA
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15232, USA
| | - Sichun Yang
- Center for Proteomics and Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Steffi Oesterreich
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15232, USA
| | - Adrian V. Lee
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15232, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, 15232, USA
| | - Xiaosong Wang
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15232, USA
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, 15232, USA
| |
Collapse
|
17
|
Roosen M, Odé Z, Bunt J, Kool M. The oncogenic fusion landscape in pediatric CNS neoplasms. Acta Neuropathol 2022; 143:427-451. [PMID: 35169893 PMCID: PMC8960661 DOI: 10.1007/s00401-022-02405-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 01/09/2023]
Abstract
Pediatric neoplasms in the central nervous system (CNS) are the leading cause of cancer-related deaths in children. Recent developments in molecular analyses have greatly contributed to a more accurate diagnosis and risk stratification of CNS tumors. Additionally, sequencing studies have identified various, often entity specific, tumor-driving events. In contrast to adult tumors, which often harbor multiple mutated oncogenic drivers, the number of mutated genes in pediatric cancers is much lower and many tumors can have a single oncogenic driver. Moreover, in children, much more than in adults, fusion proteins play an important role in driving tumorigenesis, and many different fusions have been identified as potential driver events in pediatric CNS neoplasms. However, a comprehensive overview of all the different reported oncogenic fusion proteins in pediatric CNS neoplasms is still lacking. A better understanding of the fusion proteins detected in these tumors and of the molecular mechanisms how these proteins drive tumorigenesis, could improve diagnosis and further benefit translational research into targeted therapies necessary to treat these distinct entities. In this review, we discuss the different oncogenic fusions reported in pediatric CNS neoplasms and their structure to create an overview of the variety of oncogenic fusion proteins to date, the tumor entities they occur in and their proposed mode of action.
Collapse
Affiliation(s)
- Mieke Roosen
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, The Netherlands
| | - Zelda Odé
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, The Netherlands
| | - Jens Bunt
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, The Netherlands
| | - Marcel Kool
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, The Netherlands.
- Hopp Children's Cancer Center (KiTZ), 69120, Heidelberg, Germany.
- Division of Pediatric Neurooncology, German Cancer Research Center DKFZ and German Cancer Consortium DKTK, 69120, Heidelberg, Germany.
| |
Collapse
|
18
|
Vohra P, Chen YY, Krings G. Less Common Triple-Negative Breast Cancers. A COMPREHENSIVE GUIDE TO CORE NEEDLE BIOPSIES OF THE BREAST 2022:463-573. [DOI: 10.1007/978-3-031-05532-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
Mortensen L, Ordulu Z, Dagogo-Jack I, Bossuyt V, Winters L, Taghian A, Smith BL, Ellisen LW, Kiedrowski LA, Lennerz JK, Bardia A, Spring LM. Locally Recurrent Secretory Carcinoma of the Breast with NTRK3 Gene Fusion. Oncologist 2021; 26:818-824. [PMID: 34176200 DOI: 10.1002/onco.13880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/03/2021] [Indexed: 12/20/2022] Open
Abstract
Enhanced understanding of the molecular events underlying oncogenesis has led to the development of "tumor-agnostic" treatment strategies, which aim to target a tumor's genomic profile regardless of its anatomic site of origin. A classic example is the translocation resulting in an ETV6-NTRK3 gene fusion, a characteristic driver of a histologically diverse array of cancers. The chimeric ETV6-NTRK3 fusion protein elicits constitutive activation of the tropomyosin receptor kinase (TRK) C protein, leading to increased cell survival, growth, and proliferation. Two TRK inhibitors, larotrectinib and entrectinib, are currently approved for use in the metastatic setting for the treatment of advanced solid tumors harboring NTRK fusions. Here we report a rare case of recurrent secretory carcinoma of the breast (SCB) with NTRK3 gene fusion. Whereas most cases of SCB represent slow-growing tumors with favorable outcomes, the case detailed here is the first to the authors' knowledge of recurrence within 1 year of surgery. We review the molecular findings and potential clinical significance. KEY POINTS: The translocation resulting in the ETV6-NTRK3 gene fusion is a known oncogenic driver characteristic of secretory carcinoma of the breast (SCB). Whereas most cases of SCB represent slow-growing tumors with favorable outcomes, the case here with ETV6-NTRK3 gene fusion had local recurrence within 1 year of surgery. Two tropomyosin receptor kinase (TRK) inhibitors, larotrectinib and entrectinib, are approved to treat NTRK fusion-positive tumors, demonstrating sustained high overall response rates in the metastatic setting. Approval of TRK inhibitors necessitates optimization of NTRK fusion detection assays, including detection with liquid biopsies.
Collapse
Affiliation(s)
| | - Zehra Ordulu
- Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Ibiayi Dagogo-Jack
- Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Veerle Bossuyt
- Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Loren Winters
- Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Alphonse Taghian
- Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Barbara L Smith
- Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Leif W Ellisen
- Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | | | - Jochen K Lennerz
- Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Aditya Bardia
- Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Laura M Spring
- Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Gerak CAN, Zhang SM, Balgi AD, Sadowski IJ, Sessions RB, McIntosh LP, Roberge M. A Multipronged Screening Approach Targeting Inhibition of ETV6 PNT Domain Polymerization. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2021; 26:698-711. [PMID: 33345679 DOI: 10.1177/2472555220979599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
ETV6 is an ETS family transcriptional repressor for which head-to-tail polymerization of its PNT domain facilitates cooperative binding to DNA by its ETS domain. Chromosomal translocations frequently fuse the ETV6 PNT domain to one of several protein tyrosine kinases. The resulting chimeric oncoproteins undergo ligand-independent self-association, autophosphorylation, and aberrant stimulation of downstream signaling pathways, leading to a variety of cancers. Currently, no small-molecule inhibitors of ETV6 PNT domain polymerization are known and no assays targeting PNT domain polymerization have been described. In this study, we developed complementary experimental and computational approaches for identifying such inhibitory compounds. One mammalian cellular approach utilized a mutant PNT domain heterodimer system covalently attached to split Gaussia luciferase fragments. In this protein-fragment complementation assay, inhibition of PNT domain heterodimerization reduces luminescence. A yeast assay took advantage of activation of the reporter HIS3 gene upon heterodimerization of mutant PNT domains fused to DNA-binding and transactivation domains. In this two-hybrid screen, inhibition of PNT domain heterodimerization prevents cell growth in medium lacking histidine. The Bristol University Docking Engine (BUDE) was used to identify virtual ligands from the ZINC8 library predicted to bind the PNT domain polymerization interfaces. More than 75 hits from these three assays were tested by nuclear magnetic resonance spectroscopy for binding to the purified ETV6 PNT domain. Although none were found to bind, the lessons learned from this study may facilitate future approaches for developing therapeutics that act against ETV6 oncoproteins by disrupting PNT domain polymerization.
Collapse
Affiliation(s)
- Chloe A N Gerak
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Si Miao Zhang
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Aruna D Balgi
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Ivan J Sadowski
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | | | - Lawrence P McIntosh
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Michel Roberge
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
21
|
Preclinical In Vivo Modeling of Pediatric Sarcoma-Promises and Limitations. J Clin Med 2021; 10:jcm10081578. [PMID: 33918045 PMCID: PMC8069549 DOI: 10.3390/jcm10081578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023] Open
Abstract
Pediatric sarcomas are an extremely heterogeneous group of genetically distinct diseases. Despite the increasing knowledge on their molecular makeup in recent years, true therapeutic advancements are largely lacking and prognosis often remains dim, particularly for relapsed and metastasized patients. Since this is largely due to the lack of suitable model systems as a prerequisite to develop and assess novel therapeutics, we here review the available approaches to model sarcoma in vivo. We focused on genetically engineered and patient-derived mouse models, compared strengths and weaknesses, and finally explored possibilities and limitations to utilize these models to advance both biological understanding as well as clinical diagnosis and therapy.
Collapse
|
22
|
Gerak CAN, Cho SY, Kolesnikov M, Okon M, Murphy MEP, Sessions RB, Roberge M, McIntosh LP. Biophysical characterization of the ETV6 PNT domain polymerization interfaces. J Biol Chem 2021; 296:100284. [PMID: 33450226 PMCID: PMC7949025 DOI: 10.1016/j.jbc.2021.100284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/22/2020] [Accepted: 01/11/2021] [Indexed: 11/21/2022] Open
Abstract
ETV6 is an E26 transformation specific family transcriptional repressor that self-associates by its PNT domain to facilitate cooperative DNA binding. Chromosomal translocations frequently generate constitutively active oncoproteins with the ETV6 PNT domain fused to the kinase domain of one of many protein tyrosine kinases. Although an attractive target for therapeutic intervention, the propensity of the ETV6 PNT domain to polymerize via the tight head-to-tail association of two relatively flat interfaces makes it challenging to identify suitable small molecule inhibitors of this protein-protein interaction. Herein, we provide a comprehensive biophysical characterization of the ETV6 PNT domain interaction interfaces to aid future drug discovery efforts and help define the mechanisms by which its self-association mediates transcriptional repression. Using NMR spectroscopy, X-ray crystallography, and molecular dynamics simulations, along with amide hydrogen exchange measurements, we demonstrate that monomeric PNT domain variants adopt very stable helical bundle folds that do not change in conformation upon self-association into heterodimer models of the ETV6 polymer. Surface plasmon resonance-monitored alanine scanning mutagenesis studies identified hot spot regions within the self-association interfaces. These regions include both central hydrophobic residues and flanking salt-bridging residues. Collectively, these studies indicate that small molecules targeted to these hydrophobic or charged regions within the relatively rigid interfaces could potentially serve as orthosteric inhibitors of ETV6 PNT domain polymerization.
Collapse
Affiliation(s)
- Chloe A N Gerak
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sophia Y Cho
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Maxim Kolesnikov
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mark Okon
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael E P Murphy
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Michel Roberge
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lawrence P McIntosh
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
23
|
Chu YH, Wirth LJ, Farahani AA, Nosé V, Faquin WC, Dias-Santagata D, Sadow PM. Clinicopathologic features of kinase fusion-related thyroid carcinomas: an integrative analysis with molecular characterization. Mod Pathol 2020; 33:2458-2472. [PMID: 32737449 PMCID: PMC7688509 DOI: 10.1038/s41379-020-0638-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 01/16/2023]
Abstract
The discovery of actionable kinase gene rearrangements has revolutionized the therapeutic landscape of thyroid carcinomas. Unsolved challenges include histopathologic recognition of targetable cases, correlation between genotypes and tumor behavior, and evolving resistance mechanisms against kinase inhibitors (KI). We present 62 kinase fusion-positive thyroid carcinomas (KFTC), including 57 papillary thyroid carcinomas (PTC), two poorly differentiated thyroid carcinomas (PDTC), two undifferentiated thyroid carcinomas (ATC), and one primary secretory carcinoma (SC), in 57 adults and 5 adolescents. Clinical records, post-operative histology, and molecular profiles were reviewed. Histologically, all KFTC showed multinodular growth with prominent intratumoral fibrosis. Lymphovascular invasion (95%), extrathyroidal extension, gross and microscopic (63%), and cervical lymph node metastasis (79%) were common. Several kinase fusions were identified: STRN-ALK, EML4-ALK, AGK-BRAF, CUL1-BRAF, MKRN1-BRAF, SND1-BRAF, TTYH3-BRAF, EML4-MET, TFG-MET, IRF2BP2-NTRK1, PPL-NTRK1, SQSTM1-NTRK1, TPR-NTRK1, TPM3-NTRK1, EML4-NTRK3, ETV6-NTRK3, RBPMS-NTRK3, SQSTM1-NTRK3, CCDC6-RET, ERC1-RET, NCOA4-RET, RASAL2-RET, TRIM24-RET, TRIM27-RET, and CCDC30-ROS1. Individual cases also showed copy number variants of EGFR and nucleotide variants and indels in pTERT, TP53, PIK3R1, AKT2, TSC2, FBXW7, JAK2, MEN1, VHL, IDH1, PTCH1, GNA11, GNAQ, SMARCA4, and CDH1. In addition to thyroidectomy and radioactive iodine, ten patients received multi-kinase and/or selective kinase inhibitor therapy, with 6 durable, objective responses and four with progressive disease. Among 47 cases with >6 months of follow-up (median [range]: 41 [6-480] months), persistent/recurrent disease, distant metastasis and thyroid cancer-related death occurred in 57%, 38% and 6%, respectively. In summary, KFTC encompass a spectrum of molecularly diverse tumors with overlapping clinicopathologic features and a tendency for clinical aggressiveness. Characteristic histology with multinodular growth and prominent fibrosis, particularly when there is extensive lymphovascular spread, should trigger molecular testing for gene rearrangements, either in a step-wise manner by prevalence or using a combined panel. Further, our findings provide information on molecular therapy in radioiodine-refractory thyroid carcinomas.
Collapse
Affiliation(s)
- Ying-Hsia Chu
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, United States of America
| | - Lori J. Wirth
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, United States of America
| | - Alexander A. Farahani
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, United States of America
| | - Vânia Nosé
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, United States of America
| | - William C. Faquin
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, United States of America
| | - Dora Dias-Santagata
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, United States of America
| | - Peter M. Sadow
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, United States of America
| |
Collapse
|
24
|
Abstract
NTRK fusions in malignant tumors are therapeutic targets of tyrosine kinase inhibitors. Because they occur only in a small subset of mesenchymal tumors, knowledge regarding the corresponding histology is important to effectively identify patients who could benefit from targeted therapy. In this study, using RNA sequencing, we identified novel NTRK3 fusions involving related partner genes in 2 adult bone and soft tissue tumors that met the current histologic criteria of fibrosarcoma. Case 1 involved the left radius of a 38-year-old woman, whereas in case 2, the right thigh of a 26-year-old man was affected. Histologically, both tumors consisted of the long fascicular growth of long spindle cells. The tumor in case 1 additionally showed focal myxoid changes. Tumor cells had nonpleomorphic, atypical nuclei, and lacked evidence of a specific line of differentiation. Both tumors showed widespread CD34 immunoreactivity and very limited expression of actin. RNA sequencing detected in-frame fusion transcripts of STRN (exon 3)-NTRK3 (exon 14) in case 1 and STRN3 (exon 3)-NTRK3 (exon 14) in case 2, which were confirmed by reverse transcription polymerase chain reaction and Sanger sequencing. Pan-TRK immunostaining was diffusely positive in both cases. Fluorescence in situ hybridization showed signal patterns compatible with NTRK3 rearrangements in both cases, with case 2 additionally harboring a CDKN2A homozygous deletion. This study expands the clinicopathologic and genetic spectrum of sarcomas associated with NTRK fusions, and suggests that CD34-positive fibrosarcoma of bone and soft tissue could be a good candidate for NTRK testing.
Collapse
|
25
|
Roles of TrkC Signaling in the Regulation of Tumorigenicity and Metastasis of Cancer. Cancers (Basel) 2020; 12:cancers12010147. [PMID: 31936239 PMCID: PMC7016819 DOI: 10.3390/cancers12010147] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 12/12/2022] Open
Abstract
Tropomyosin receptor kinase (Trk) C contributes to the clinicopathology of a variety of human cancers, and new chimeric oncoproteins containing the tyrosine kinase domain of TrkC occur after fusion to the partner genes. Overexpression of TrkC and TrkC fusion proteins was observed in patients with a variety of cancers, including mesenchymal, hematopoietic, and those of epithelial cell lineage. Both microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) were involved in the regulation of TrkC expression through transcriptional and posttranscriptional alteration. Aberrant activation of TrkC and TrkC fusion proteins markedly induces the epithelial-mesenchymal transition (EMT) program, growth rate, tumorigenic capacity via constitutive activation of Ras-MAP kinase (MAPK), PI3K-AKT, and the JAK2-STAT3 pathway. The clinical trial of TrkC or TrkC fusion-positive cancers with newly developed Trk inhibitors demonstrated that Trk inhibitors were highly effective in inducing tumor regression in patients who do not harbor mutations in the kinase domain. Recently, there has been a progressive accumulation of mutations in TrkC or the TrkC fusion protein detected in the clinic and its related cancer cell lines caused by high-throughput DNA sequencing. Despite given the high overall response rate against Trk or Trk fusion proteins-positive solid tumors, acquired drug resistance was observed in patients with various cancers caused by mutations in the Trk kinase domain. To overcome acquired resistance caused by kinase domain mutation, next-generation Trk inhibitors have been developed, and these inhibitors are currently under investigation in clinical trials.
Collapse
|
26
|
Joshi SK, Davare MA, Druker BJ, Tognon CE. Revisiting NTRKs as an emerging oncogene in hematological malignancies. Leukemia 2019; 33:2563-2574. [PMID: 31551508 PMCID: PMC7410820 DOI: 10.1038/s41375-019-0576-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/18/2019] [Indexed: 12/17/2022]
Abstract
NTRK fusions are dominant oncogenic drivers found in rare solid tumors. These fusions have also been identified in more common cancers, such as lung and colorectal carcinomas, albeit at low frequencies. Patients harboring these fusions demonstrate significant clinical response to inhibitors such as entrectinib and larotrectinib. Although current trials have focused entirely on solid tumors, there is evidence supporting the use of these drugs for patients with leukemia. To assess the broader applicability for Trk inhibitors in hematological malignancies, this review describes the current state of knowledge about alterations in the NTRK family in these disorders. We present these findings in relation to the discovery and therapeutic targeting of BCR–ABL1 in chronic myeloid leukemia. The advent of deep sequencing technologies has shown that NTRK fusions and somatic mutations are present in a variety of hematologic malignancies. Efficacy of Trk inhibitors has been demonstrated in NTRK-fusion positive human leukemia cell lines and patient-derived xenograft studies, highlighting the potential clinical utility of these inhibitors for a subset of leukemia patients.
Collapse
Affiliation(s)
- Sunil K Joshi
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States.,Department of Physiology & Pharmacology, School of Medicine, Oregon Health & Science University, Portland, OR, United States.,Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Monika A Davare
- Papé Pediatric Research Institute, Oregon Health & Science University, Portland, OR, United States.,Division of Pediatric Hematology & Oncology, Department of Pediatrics, Oregon Health & Science University, Portland, OR, United States
| | - Brian J Druker
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States. .,Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, United States. .,Howard Hughes Medical Institute, Oregon Health & Science University, Portland, OR, United States.
| | - Cristina E Tognon
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States. .,Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, United States. .,Howard Hughes Medical Institute, Oregon Health & Science University, Portland, OR, United States.
| |
Collapse
|
27
|
Marchiò C, Scaltriti M, Ladanyi M, Iafrate AJ, Bibeau F, Dietel M, Hechtman JF, Troiani T, López-Rios F, Douillard JY, Andrè F, Reis-Filho JS. ESMO recommendations on the standard methods to detect NTRK fusions in daily practice and clinical research. Ann Oncol 2019; 30:1417-1427. [PMID: 31268127 DOI: 10.1093/annonc/mdz204] [Citation(s) in RCA: 254] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND NTRK1, NTRK2 and NTRK3 fusions are present in a plethora of malignancies across different histologies. These fusions represent the most frequent mechanism of oncogenic activation of these receptor tyrosine kinases, and biomarkers for the use of TRK small molecule inhibitors. Given the varying frequency of NTRK1/2/3 fusions, crucial to the administration of NTRK inhibitors is the development of optimal approaches for the detection of human cancers harbouring activating NTRK1/2/3 fusion genes. MATERIALS AND METHODS Experts from several Institutions were recruited by the European Society for Medical Oncology (ESMO) Translational Research and Precision Medicine Working Group (TR and PM WG) to review the available methods for the detection of NTRK gene fusions, their potential applications, and strategies for the implementation of a rational approach for the detection of NTRK1/2/3 fusion genes in human malignancies. A consensus on the most reasonable strategy to adopt when screening for NTRK fusions in oncologic patients was sought, and further reviewed and approved by the ESMO TR and PM WG and the ESMO leadership. RESULTS The main techniques employed for NTRK fusion gene detection include immunohistochemistry, fluorescence in situ hybridization (FISH), RT-PCR, and both RNA-based and DNA-based next generation sequencing (NGS). Each technique has advantages and limitations, and the choice of assays for screening and final diagnosis should also take into account the resources and clinical context. CONCLUSION In tumours where NTRK fusions are highly recurrent, FISH, RT-PCR or RNA-based sequencing panels can be used as confirmatory techniques, whereas in the scenario of testing an unselected population where NTRK1/2/3 fusions are uncommon, either front-line sequencing (preferentially RNA-sequencing) or screening by immunohistochemistry followed by sequencing of positive cases should be pursued.
Collapse
MESH Headings
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/isolation & purification
- High-Throughput Nucleotide Sequencing
- Humans
- Immunohistochemistry/standards
- In Situ Hybridization, Fluorescence/standards
- Medical Oncology/standards
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/isolation & purification
- Neoplasms/diagnosis
- Neoplasms/drug therapy
- Neoplasms/genetics
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/isolation & purification
- Precision Medicine/standards
- Protein Kinase Inhibitors/therapeutic use
- Receptor, trkA/genetics
- Receptor, trkA/isolation & purification
- Receptor, trkB/genetics
- Receptor, trkB/isolation & purification
- Receptor, trkC/genetics
- Receptor, trkC/isolation & purification
- Translational Research, Biomedical/standards
Collapse
Affiliation(s)
- C Marchiò
- Department of Medical Sciences, University of Turin, Turin; Division of Pathology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - M Scaltriti
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York; Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York
| | - M Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York
| | - A J Iafrate
- Department of Pathology, Massachusetts General Hospital, Boston; Department of Pathology, Harvard Medical School, Boston, USA
| | - F Bibeau
- Department of Pathology, Caen University Hospital, Caen, France
| | - M Dietel
- Institute of Pathology, Charité, University Medicine Berlin, Berlin, Germany
| | - J F Hechtman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York
| | - T Troiani
- Medical Oncology, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - F López-Rios
- Pathology & Targeted Therapies Laboratory, HM Sanchinarro University Hospital, Madrid, Spain
| | - J-Y Douillard
- European Society for Medical Oncology, Lugano, Switzerland
| | - F Andrè
- Department of Medical Oncology, INSERM Unit 981, Institut Gustave Roussy, Villejuif, France.
| | - J S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York
| |
Collapse
|
28
|
Abstract
Recent molecular studies of spitzoid neoplasms have identified mutually exclusive kinase fusions involving ROS1, ALK, RET, BRAF, NTRK1, MET, and NTRK3 as early initiating genomic events. Pigmented spindle cell nevus (PSCN) of Reed is a morphologic variant of Spitz and may be very diagnostically challenging, having histologic features concerning for melanoma. Their occurrence in younger patients, lack of association to sun exposure, and rapid early growth phase similar to Spitz nevi suggest fusions may also play a significant role in these lesions. However, to date, there is little data in the literature focused on the molecular characterization of PSCN of Reed with next-generation sequencing. We analyzed a total of 129 melanocytic neoplasms with RNA sequencing including 67 spitzoid neoplasms (10 Spitz nevi, 44 atypical Spitz tumors, 13 spitzoid melanomas) and 23 PSCN of Reed. Although only 2 of 67 (3.0%) of spitzoid lesions had NTRK3 fusions, 13 of 23 (57%) of PSCN of Reed harbored NTRK3 fusions with 5' partners ETV6 (12p13) in 2 cases and MYO5A (15q21) in 11 cases. NTRK3 fusions were confirmed with a fluorescent in situ hybridization break-apart probe. The presence of a NTRK3 fusion correlated with younger age (P=0.021) and adnexal extension (P=0.001). Other minor fusions identified in PSCN of Reed included MYO5A-MERTK (2), MYO5A-ROS1, MYO5A-RET, and ETV6-PITX3 leading to a total of 78% with fusions. Our study suggests that the majority of PSCN of Reed are the result of genomic fusions, and the most frequent and characteristic genomic aberration is an NTRK3 fusion.
Collapse
|
29
|
Methods for Identifying Patients with Tropomyosin Receptor Kinase (TRK) Fusion Cancer. Pathol Oncol Res 2019; 26:1385-1399. [PMID: 31256325 PMCID: PMC7297824 DOI: 10.1007/s12253-019-00685-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/11/2019] [Indexed: 11/01/2022]
Abstract
NTRK gene fusions affecting the tropomyosin receptor kinase (TRK) protein family have been found to be oncogenic drivers in a broad range of cancers. Small molecule inhibitors targeting TRK activity, such as the recently Food and Drug Administration-approved agent larotrectinib (Vitrakvi®), have shown promising efficacy and safety data in the treatment of patients with TRK fusion cancers. NTRK gene fusions can be detected using several different approaches, including fluorescent in situ hybridization, reverse transcription polymerase chain reaction, immunohistochemistry, next-generation sequencing, and ribonucleic acid-based multiplexed assays. Identifying patients with cancers that harbor NTRK gene fusions will optimize treatment outcomes by providing targeted precision therapy.
Collapse
|
30
|
Abstract
NTRK gene fusions involving either NTRK1, NTRK2 or NTRK3 (encoding the neurotrophin receptors TRKA, TRKB and TRKC, respectively) are oncogenic drivers of various adult and paediatric tumour types. These fusions can be detected in the clinic using a variety of methods, including tumour DNA and RNA sequencing and plasma cell-free DNA profiling. The treatment of patients with NTRK fusion-positive cancers with a first-generation TRK inhibitor, such as larotrectinib or entrectinib, is associated with high response rates (>75%), regardless of tumour histology. First-generation TRK inhibitors are well tolerated by most patients, with toxicity profiles characterized by occasional off-tumour, on-target adverse events (attributable to TRK inhibition in non-malignant tissues). Despite durable disease control in many patients, advanced-stage NTRK fusion-positive cancers eventually become refractory to TRK inhibition; resistance can be mediated by the acquisition of NTRK kinase domain mutations. Fortunately, certain resistance mutations can be overcome by second-generation TRK inhibitors, including LOXO-195 and TPX-0005 that are being explored in clinical trials. In this Review, we discuss the biology of NTRK fusions, strategies to target these drivers in the treatment-naive and acquired-resistance disease settings, and the unique safety profile of TRK inhibitors.
Collapse
|
31
|
Albert CM, Davis JL, Federman N, Casanova M, Laetsch TW. TRK Fusion Cancers in Children: A Clinical Review and Recommendations for Screening. J Clin Oncol 2019; 37:513-524. [DOI: 10.1200/jco.18.00573] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chromosomal translocations involving the NTRK1, NTRK2, and NTRK3 genes (TRK fusions), which encode the neurotrophin tyrosine kinase receptors TRKA, TRKB, and TRKC, can result in constitutive activation and aberrant expression of TRK kinase. Certain cancers almost universally harbor TRK fusions, including infantile fibrosarcoma, cellular congenital mesoblastic nephroma, secretory breast cancer, and mammary analog secretory carcinoma of the salivary gland. TRK fusions have also been identified at lower frequencies across a broad range of other pediatric cancers, including undifferentiated sarcomas, gliomas, papillary thyroid cancers, spitzoid neoplasms, inflammatory myofibroblastic tumors, and acute leukemias. Here we review the prevalence and diseases associated with TRK fusions and methods of detection of these fusions in light of the recent development of selective TRK inhibitors, such as larotrectinib, which demonstrated a 75% response rate across children and adults with TRK fusion cancers. We provide recommendations for screening pediatric tumors for the presence of TRK fusions, including the use of immunohistochemistry or fluorescence in situ hybridization for patients with tumors likely to harbor TRK fusions. Further, we recommend next-generation sequencing for tumors that have a relatively low prevalence of TRK fusions, both to identify patients who may benefit from TRK inhibition and to identify other targetable oncogenic drivers that exist in the same tumor types.
Collapse
|
32
|
Al‐Husseinawi E, Hamidpour S, Omoscharka E. Mammary analogue secretory carcinoma of salivary gland diagnosed on submandibular gland cytology: A case report and review of the literature. Cytopathology 2019; 30:318-322. [DOI: 10.1111/cyt.12666] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/17/2018] [Accepted: 11/20/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Ethar Al‐Husseinawi
- Department of Pathology Truman Medical Center University of Missouri at Kansas City Kansas City Missouri USA
| | - Soheila Hamidpour
- Department of Pathology Truman Medical Center University of Missouri at Kansas City Kansas City Missouri USA
| | - Evanthia Omoscharka
- Department of Pathology Truman Medical Center University of Missouri at Kansas City Kansas City Missouri USA
| |
Collapse
|
33
|
Abstract
Introduction: TRK fusions occur across a wide range of cancers in children and adults. These fusions drive constitutive expression and ligand-independent activation of the TRK kinase and are oncogenic. Larotrectinib is the first highly potent and selective small molecule ATP competitive inhibitor of all three TRK kinases to enter clinical development. Areas covered: This review covers the current preclinical and clinical evidence for TRK inhibitors for TRK fusion cancers, focusing on larotrectinib. Expert commentary: Larotrectinib has demonstrated a remarkable 75% centrally confirmed objective response rate in patients with TRK fusion cancers in phase 1 and phase 2 clinical trials with generally mild side effects. Responses appear independent of the patient's age, underlying histology, and specific fusion partner and are durable in many patients. Larotrectinib is likely to be the first FDA-approved histology-agnostic molecularly targeted therapy. The evolving role of molecular profiling of advanced cancers is discussed.
Collapse
Affiliation(s)
- Theodore W Laetsch
- a Dept. of Pediatrics , University of Texas Southwestern/Children's Health , Dallas , TX , USA
| | - Douglas S Hawkins
- b Seattle Children's Hospital , University of Washington, Fred Hutchinson Cancer Research Center , Seattle , WA , USA
| |
Collapse
|
34
|
Torre M, Jessop N, Hornick JL, Alexandrescu S. Expanding the spectrum of pediatric NTRK-rearranged fibroblastic tumors to the central nervous system: A case report with RBPMS-NTRK3 fusion. Neuropathology 2018; 38:624-630. [PMID: 30187580 DOI: 10.1111/neup.12513] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/05/2018] [Accepted: 08/05/2018] [Indexed: 01/20/2023]
Abstract
We report a case of a 20-month-old male presenting with seizures who was found to have a hyperintense lesion on T2-weighted images of magnetic resonance imaging in the left medial temporal lobe that was initially clinically and radiologically thought to be either low-grade glioma or focal cortical dysplasia. Histologic, immunohistochemical and molecular evaluation (array comparative genomic hybridization, Archer fusion panel) of the resection specimen demonstrated a highly infiltrative fibroblastic spindle cell neoplasm with mild nuclear atypia and an RBPMS-NTRK3 fusion. NTRK-fused mesenchymal tumors are known to involve extracranial sites but, to our knowledge, have not been described within the central nervous system. Accurate and timely diagnosis of this entity has important prognostic and therapeutic implications, as NTRK-fused tumors may recur locally and may respond to selective kinase inhibitor therapies.
Collapse
Affiliation(s)
- Matthew Torre
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Nicholas Jessop
- Massachusetts General Hospital Center for Integrated Diagnostics and Harvard Medical School, Boston, Massachusetts, USA
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Sanda Alexandrescu
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
35
|
Tognon CE, Rafn B, Cetinbas NM, Kamura T, Trigo G, Rotblat B, Okumura F, Matsumoto M, Chow C, Davare M, Pollak M, Mayor T, Sorensen PH. Insulin-like growth factor 1 receptor stabilizes the ETV6-NTRK3 chimeric oncoprotein by blocking its KPC1/Rnf123-mediated proteasomal degradation. J Biol Chem 2018; 293:12502-12515. [PMID: 29903916 DOI: 10.1074/jbc.ra117.000321] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 06/07/2018] [Indexed: 12/26/2022] Open
Abstract
Many oncogenes, including chimeric oncoproteins, require insulin-like growth factor 1 receptor (IGF1R) for promoting cell transformation. The ETS variant 6 (ETV6)-neurotrophic receptor tyrosine kinase 3 (NTRK3) (EN) chimeric tyrosine kinase is expressed in mesenchymal, epithelial, and hematopoietic cancers and requires the IGF1R axis for transformation. However, current models of IGF1R-mediated EN activation are lacking mechanistic detail. We demonstrate here that IGF-mediated IGF1R stimulation enhances EN tyrosine phosphorylation and that blocking IGF1R activity or decreasing protein levels of the adaptor protein insulin receptor substrate 1/2 (IRS1/2) results in rapid EN degradation. This was observed both in vitro and in vivo in fibroblast and breast epithelial cell line models and in MO91, an EN-expressing human leukemia cell line. Stable isotope labeling with amino acids in cell culture (SILAC)-based MS analysis identified the E3 ligase RING-finger protein 123 (Rnf123, more commonly known as KPC1) as an EN interactor upon IGF1R/insulin receptor (INSR) inhibitor treatment. KPC1/Rnf123 ubiquitylated EN in vitro, and its overexpression decreased EN protein levels. In contrast, KPC1/Rnf123 knockdown rendered EN resistant to IGF1R inhibitor-mediated degradation. These results support a critical function for IGF1R in protecting EN from KPC1/Rnf123-mediated proteasomal degradation. Attempts to therapeutically target oncogenic chimeric tyrosine kinases have traditionally focused on blocking kinase activity to restrict downstream activation of essential signaling pathways. In this study, we demonstrate that IGF1R inhibition results in rapid ubiquitylation and degradation of the EN oncoprotein through a proteasome-dependent mechanism that is reversible, highlighting a potential strategy for targeting chimeric tyrosine kinases in cancer.
Collapse
Affiliation(s)
- Cristina E Tognon
- From the Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L3, Canada
| | - Bo Rafn
- From the Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L3, Canada
| | - Naniye Malli Cetinbas
- From the Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L3, Canada
| | - Takumi Kamura
- the Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan, 812-8582
| | - Genny Trigo
- From the Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L3, Canada
| | - Barak Rotblat
- From the Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L3, Canada
| | - Fumihiko Okumura
- the Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan, 812-8582
| | - Masaki Matsumoto
- the Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan, 812-8582
| | - Christine Chow
- From the Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L3, Canada
| | - Monika Davare
- the Department of Pediatrics, Oregon Health & Science University, Portland, Oregon 97239, and
| | - Michael Pollak
- the Lady Davis Institute for Medical Research SMBD, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | - Thibault Mayor
- the Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Poul H Sorensen
- From the Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L3, Canada,
| |
Collapse
|
36
|
Li YX, Aibaidula A, Shi Z, Chen H, Li KKW, Chung NYF, Yang RR, Chan DTM, Poon WS, Lee KLR, Mao Y, Wu J, Chan AKY, Zhou L, Ng HK. Oligodendrogliomas in pediatric and teenage patients only rarely exhibit molecular markers and patients have excellent survivals. J Neurooncol 2018; 139:307-322. [DOI: 10.1007/s11060-018-2890-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 03/22/2018] [Indexed: 11/30/2022]
|
37
|
Novel identification of STAT1 as a crucial mediator of ETV6-NTRK3-induced tumorigenesis. Oncogene 2018; 37:2270-2284. [PMID: 29391602 DOI: 10.1038/s41388-017-0102-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 10/09/2017] [Accepted: 11/27/2017] [Indexed: 01/06/2023]
Abstract
Chromosomal rearrangements that facilitate tumor formation and progression through activation of oncogenic tyrosine kinases are frequently observed in cancer. The ETV6-NTRK3 (EN) fusion has been implicated in various cancers, including infantile fibrosarcoma, secretory breast carcinoma, and acute myeloblastic leukemia, and has exhibited in vivo and in vitro transforming ability. In the present study, we analyzed transcriptome alterations using DNA microarray and RNA-Seq in EN-transduced NIH3T3 fibroblasts to identify the mechanisms that are involved in EN-mediated tumorigenesis. Through functional profile assessment of EN-regulated transcriptome alterations, we found that upregulated genes by EN were mainly associated with cell motion, membrane invagination, and cell proliferation, while downregulated genes were involved in cell adhesion, which correlated with the transforming potential and increased proliferation in EN-transduced cells. KEGG pathway analysis identified the JAK-STAT signaling pathway with the highest statistical significance. Moreover, Ingenuity Pathway Analysis and gene regulatory network analysis identified the STAT1 transcription factor and its target genes as top EN-regulated molecules. We further demonstrated that EN enhanced STAT1 phosphorylation but attenuated STAT1 acetylation, eventually inhibiting the interaction between the NF-κB p65 subunit and acetylated STAT1. Consequently, nuclear translocation of NF-κB p65 and subsequent NF-κB activity were increased by EN. Notably, inhibition of STAT1 phosphorylation attenuated tumorigenic ability of EN in vitro and in vivo. Taken together, here we report, for the first time, STAT1 as a significant EN-regulated transcription factor and a crucial mediator of EN-induced tumorigenesis.
Collapse
|
38
|
Niinuma T, Suzuki H, Sugai T. Molecular characterization and pathogenesis of gastrointestinal stromal tumor. Transl Gastroenterol Hepatol 2018; 3:2. [PMID: 29441367 DOI: 10.21037/tgh.2018.01.02] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/04/2018] [Indexed: 12/11/2022] Open
Abstract
Most gastrointestinal stromal tumors (GISTs) harbor activating mutations in the receptor tyrosine kinase gene KIT or platelet-derived growth factor receptor alpha (PDGFRA), and the resultant activation of downstream signals plays a pivotal role in the development of GISTs. The sites of the tyrosine kinase gene mutations are associated with the biological behavior of GISTs, including risk category, clinical outcome and drug response. Mutations in RAS signaling pathway genes, including KRAS and BRAF, have also been reported in KIT/PDGFRA wild-type GISTs, though they are rare. Neurofibromin 1 (NF1) is a tumor suppressor gene mutated in neurofibromatosis type 1. Patients with NF1 mutations are at high risk of developing GISTs. Recent findings suggest that altered expression or mutation of members of succinate dehydrogenase (SDH) heterotetramer are causally associated with GIST development through induction of aberrant DNA methylation. At present, GISTs with no alterations in KIT, PDGFRA, RAS signaling genes or SDH family genes are referred to as true wild-type GISTs. KIT and PDGFRA mutations are thought as the earliest events in GIST development, and subsequent accumulation of chromosomal aberrations and other molecular alterations are required for malignant progression. In addition, recent studies have shown that epigenetic alterations and noncoding RNAs also play key roles in the pathogenesis of GISTs.
Collapse
Affiliation(s)
- Takeshi Niinuma
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| |
Collapse
|
39
|
Smith KM, Fagan PC, Pomari E, Germano G, Frasson C, Walsh C, Silverman I, Bonvini P, Li G. Antitumor Activity of Entrectinib, a Pan-TRK, ROS1, and ALK Inhibitor, in ETV6-NTRK3-Positive Acute Myeloid Leukemia. Mol Cancer Ther 2017; 17:455-463. [PMID: 29237803 DOI: 10.1158/1535-7163.mct-17-0419] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/10/2017] [Accepted: 11/21/2017] [Indexed: 11/16/2022]
Abstract
Activation of tropomyosin receptor kinase (TRK) family tyrosine kinases by chromosomal rearrangement has been shown to drive a wide range of solid tumors and hematologic malignancies. TRK fusions are actionable targets as evidenced by recent clinical trial results in solid tumors. Entrectinib (RXDX-101) is an investigational, orally available, CNS-active, highly potent, and selective kinase inhibitor against TRKA/B/C, ROS1, and ALK kinase activities. Here, we demonstrate that TRK kinase inhibition by entrectinib selectively targets preclinical models of TRK fusion-driven hematologic malignancies. In acute myelogenous leukemia (AML) cell lines with endogenous expression of the ETV6-NTRK3 fusion gene, entrectinib treatment blocked cell proliferation and induced apoptotic cell death in vitro with subnanomolar IC50 values. Phosphorylation of the ETV6-TRKC fusion protein and its downstream signaling effectors was inhibited by entrectinib treatment in a dose-dependent manner. In animal models, entrectinib treatment at clinically relevant doses resulted in tumor regression that was accompanied by elimination of residual cancer cells from the bone marrow. Our preclinical data demonstrate the potential of entrectinib as an effective treatment for patients with TRK fusion-driven AML and other hematologic malignancies. Mol Cancer Ther; 17(2); 455-63. ©2017 AACR.
Collapse
Affiliation(s)
| | | | - Elena Pomari
- Foundation Institute of Pediatric Research Città della Speranza, Padova, Italy.,Department of Woman and Child Health, University-Hospital of Padova, Padova, Italy
| | - Giuseppe Germano
- Foundation Institute of Pediatric Research Città della Speranza, Padova, Italy
| | - Chiara Frasson
- Foundation Institute of Pediatric Research Città della Speranza, Padova, Italy
| | | | | | - Paolo Bonvini
- Foundation Institute of Pediatric Research Città della Speranza, Padova, Italy
| | - Gang Li
- Ignyta, Inc., San Diego, California
| |
Collapse
|
40
|
Chen S, Nagel S, Schneider B, Dai H, Geffers R, Kaufmann M, Meyer C, Pommerenke C, Thress KS, Li J, Quentmeier H, Drexler HG, MacLeod RAF. A new ETV6-NTRK3 cell line model reveals MALAT1 as a novel therapeutic target - a short report. Cell Oncol (Dordr) 2017; 41:93-101. [PMID: 29119387 DOI: 10.1007/s13402-017-0356-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Previously, the chromosomal translocation t(12;15)(p13;q25) has been found to recurrently occur in both solid tumors and leukemias. This translocation leads to ETV6-NTRK3 (EN) gene fusions resulting in ectopic expression of the NTRK3 neurotropic tyrosine receptor kinase moiety as well as oligomerization through the donated ETV6-sterile alpha motif domain. As yet, no in vitro cell line model carrying this anomaly is available. Here we genetically characterized the acute promyelocytic leukemia (APL) cell line AP-1060 and, by doing so, revealed the presence of a t(12;15)(p13;q25). Subsequently, we evaluated its suitability as a model for this important clinical entity. METHODS Spectral karyotyping, fluorescence in situ hybridization (FISH), and genomic and transcriptomic microarray-based profiling were used to screen for the presence of EN fusions. qRT-PCR was used for quantitative expression analyses. Responses to AZ-23 (NTRK) and wortmannin (PI3K) inhibitors, as well as to arsenic trioxide (ATO), were assessed using colorimetric assays. An AZ-23 microarray screen was used to define the EN targetome, which was parsed bioinformatically. MAPK1 and MALAT1 activation were assayed using Western blotting and RNA-FISH, respectively, whereas an AML patient cohort was used to assess the clinical occurrence of MALAT1 activation. RESULTS An EN fusion was detected in AP1060 cells which, accordingly, turned out to be hypersensitive to AZ-23. We also found that AZ-23 can potentiate the effect of ATO and inhibit the phosphorylation of its canonical target MAPK1. The AZ-23 microarray screen highlighted a novel EN target, MALAT1, which also proved sensitive to wortmannin. Finally, we found that MALAT1 was massively up-regulated in a subset of AML patients. CONCLUSIONS From our data we conclude that AP-1060 may serve as a first publicly available preclinical model for EN. In addition, we conclude that these EN-positive cells are sensitive to the NTRK inhibitor AZ-23 and that this inhibitor may potentiate the therapeutic efficacy of ATO. Our data also highlight a novel AML EN target, MALAT1, which was so far only conspicuous in solid tumors.
Collapse
Affiliation(s)
- Suning Chen
- Department of Human and Animal Cell Lines, DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7b, 38124, Braunschweig, Germany.,Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Stefan Nagel
- Department of Human and Animal Cell Lines, DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7b, 38124, Braunschweig, Germany
| | - Bjoern Schneider
- Department of Human and Animal Cell Lines, DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7b, 38124, Braunschweig, Germany.,Institute of Pathology and Molecular Pathology, University of Rostock, Rostock, Germany
| | - Haiping Dai
- Department of Human and Animal Cell Lines, DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7b, 38124, Braunschweig, Germany.,Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Robert Geffers
- Genome Analytics Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Maren Kaufmann
- Department of Human and Animal Cell Lines, DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7b, 38124, Braunschweig, Germany
| | - Corinna Meyer
- Department of Human and Animal Cell Lines, DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7b, 38124, Braunschweig, Germany
| | - Claudia Pommerenke
- Department of Human and Animal Cell Lines, DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7b, 38124, Braunschweig, Germany
| | | | - Jiao Li
- Department of Hematology, Yixing People's Hospital of Jiangsu Province, Yixing, People's Republic of China
| | - Hilmar Quentmeier
- Department of Human and Animal Cell Lines, DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7b, 38124, Braunschweig, Germany
| | - Hans G Drexler
- Department of Human and Animal Cell Lines, DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7b, 38124, Braunschweig, Germany
| | - Roderick A F MacLeod
- Department of Human and Animal Cell Lines, DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7b, 38124, Braunschweig, Germany.
| |
Collapse
|
41
|
Genomic profiling of breast secretory carcinomas reveals distinct genetics from other breast cancers and similarity to mammary analog secretory carcinomas. Mod Pathol 2017; 30:1086-1099. [PMID: 28548128 DOI: 10.1038/modpathol.2017.32] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/28/2017] [Accepted: 02/28/2017] [Indexed: 12/23/2022]
Abstract
Secretory carcinomas of the breast are rare tumors with distinct histologic features, recurrent t(12;15)(p13;q25) translocation resulting in ETV6-NTRK3 gene fusion and indolent clinical behavior. Mammary analog secretory carcinomas arising in other sites are histopathologically similar to the breast tumors and also harbor ETV6-NTRK3 fusions. Breast secretory carcinomas are often triple (estrogen and progesterone receptor, HER2) negative with a basal-like immunophenotype. However, genomic studies are lacking, and whether these tumors share genetic features with other basal and/or triple negative breast cancers is unknown. Aside from shared ETV6-NTRK3 fusions, the genetic relatedness of secretory carcinomas arising in different sites is also uncertain. We immunoprofiled and sequenced 510 cancer-related genes in nine breast secretory carcinomas and six salivary gland mammary analog secretory carcinomas. Immunoprofiles of breast and salivary gland secretory carcinomas were similar. All the tumors showed strong diffuse MUC4 expression (n=15), and SOX10 was positive in all nine breast and in five out of six salivary gland tumors. All breast secretory carcinomas were triple negative or weakly ER-positive, and all tumors at both the sites expressed CK5/6 and/or EGFR, consistent with a basal-like phenotype. Sequencing revealed classic ETV6-NTRK3 fusion genes in all cases, including in carcinoma in situ of one breast tumor. Translocations were reciprocal and balanced in six out of nine breast and three out of six salivary gland tumors and were complex in three others. In contrast to most breast basal carcinomas, the mutational burden of secretory carcinomas was very low, and no additional pathogenic aberrations were identified in genes typically mutated in breast cancer. Five (56%) breast and two (33%) salivary gland tumors had simple genomes without copy number changes; the remainder had very few changes, averaging 1.3 per tumor. The ETV6-NTRK3 derivative chromosome was duplicated in one breast and one salivary gland tumor, and was the only copy number change in the latter. The findings highlight breast secretory carcinoma as a subtype more closely related to mammary analog secretory carcinoma than to basal/triple negative breast cancers of no special type. Lack of pathogenic mutations in common cancer-related genes suggests that ETV6-NTRK3 alone may suffice to drive these tumors and likely helps explain their indolent behavior.
Collapse
|
42
|
Ge L, Li N, Liu M, Xu NZ, Wang MR, Wu LY. Copy number variations of neurotrophic tyrosine receptor kinase 3 (NTRK3) may predict prognosis of ovarian cancer. Medicine (Baltimore) 2017; 96:e7621. [PMID: 28746220 PMCID: PMC5627846 DOI: 10.1097/md.0000000000007621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Platinum resistance is a critical barrier for clinicians to improve the survival of ovarian cancer. Our study evaluated the correlation between copy number variations (CNVs) of neurotrophic tyrosine receptor kinase 3 (NTRK3) and the prognosis of ovarian cancer, which might predict platinum resistance in ovarian cancer patients.Array comparative genomic hybridization (CGH) was used to test gene backgrounds between platinum-sensitive and platinum-resistant relapsed populations and CNVs of NTRK3 were indicated by cluster analysis. Fluorescence in situ hybridization (FISH) was adopted in 41 cases for further verification, which confirmed the results of array CGH. Spearman's rank correlation analysis and χ test were used to evaluate the accuracy of CNVs of NTRK3 which predicted platinum-sensitive or platinum-resistant recurrence.We detected CNVs of NTRK3 between 2 groups by array CGH, and amplification of NTRK3 was confirmed by FISH in the platinum-sensitive recurrence group with enlarged samples. The test concordance of 2 methods was 78.6%. Among 41 cases with satisfied FISH results, the median time to recurrence (TTR) of patients with amplified and nonamplified NTRK3 were respectively 18 and 5 months (P <.01). The cut-off value of TTR to differentiate platinum-sensitive or platinum-resistant recurrence was 6 months in accordance with clinical practice. According to the above standard, 15 cases with NTRK3 amplification were platinum-sensitive and 12 cases without NTRK3 amplification were platinum-resistant recurrences which demonstrated that the accuracy of NTRK3 amplification/nonamplification to predict recurrent types was 65.9% (27/41).CNVs of NTRK3 were associated with platinum-sensitive and platinum-resistant recurrences. Amplification of NTRK3 perfectly predicted platinum-sensitive relapse of ovarian cancer.
Collapse
Affiliation(s)
- Li Ge
- Department of Gynecologic Oncology
| | - Ning Li
- Department of Gynecologic Oncology
| | - Mei Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center /Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning-Zhi Xu
- State Key Laboratory of Molecular Oncology, National Cancer Center /Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming-Rong Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center /Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | |
Collapse
|
43
|
Wang L, Busam KJ, Benayed R, Cimera R, Wang J, Denley R, Rao M, Aryeequaye R, Mullaney K, Cao L, Ladanyi M, Hameed M. Identification of NTRK3 Fusions in Childhood Melanocytic Neoplasms. J Mol Diagn 2017; 19:387-396. [PMID: 28433076 PMCID: PMC5417047 DOI: 10.1016/j.jmoldx.2016.11.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/23/2016] [Accepted: 11/07/2016] [Indexed: 01/18/2023] Open
Abstract
Spitzoid neoplasms are a distinct group of melanocytic tumors. Genetically, they lack mutations in common melanoma-associated oncogenes. Recent studies have shown that spitzoid tumors may contain a variety of kinase fusions, including ROS1, NTRK1, ALK, BRAF, and RET fusions. We report herein the discovery of recurrent NTRK3 gene rearrangements in childhood melanocytic neoplasms with spitzoid and/or atypical features, based on genome-wide copy number analysis by single-nucleotide polymorphism array, which showed intragenic copy number changes in NTRK3. Break-apart fluorescence in situ hybridization confirmed the presence of NTRK3 rearrangement, and a novel MYO5A-NTRK3 transcript, representing an in-frame fusion of MYO5A exon 32 to NTRK3 exon 12, was identified using a rapid amplification of cDNA ends-based anchored multiplex PCR assay followed by next-generation sequencing. The predicted MYO5A-NTRK3 fusion protein consists of several N-terminal coiled-coil protein dimerization motifs encoded by MYO5A and C-terminal tyrosine kinase domain encoded by NTRK3, which is consistent with the prototypical structure of TRK oncogenic fusions. Our study also demonstrates how array-based copy number analysis can be useful in discovering gene fusions associated with unbalanced genomic aberrations flanking the fusion points. Our findings add another potentially targetable kinase fusion to the list of oncogenic fusions in melanocytic tumors.
Collapse
Affiliation(s)
- Lu Wang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Klaus J Busam
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ryma Benayed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Robert Cimera
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jiajing Wang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ryan Denley
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mamta Rao
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ruth Aryeequaye
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kerry Mullaney
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Long Cao
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Meera Hameed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
44
|
Inaki R, Abe M, Zong L, Abe T, Shinozaki-Ushiku A, Ushiku T, Hoshi K. Secretory carcinoma - impact of translocation and gene fusions on salivary gland tumor. Chin J Cancer Res 2017; 29:379-384. [PMID: 29142456 DOI: 10.21147/j.issn.1000-9604.2017.05.01] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Secretory carcinoma (SC), previously described as mammary analogue secretory carcinoma (MASC), is a recently described salivary gland tumor which morphologically resembles mammary secretory carcinoma. The first description of SC/MASC, reported by Skálová et al. in 2010, was as a rare salivary carcinoma imitating secretory carcinoma of the breast. SC/MASC is a unique salivary gland tumor with morphological overlap with acinic cell carcinoma (AciCC), mucoepidermoid carcinoma (MEC), and adenocarcinoma not otherwise specified (ADC-NOS). SC/MASC shares similar clinicopathological features with AciCC. As a critical difference between SC/MASC and AciCC, SC/MASC characteristically has the chromosomal translocation t(12;15)(p13;q25) which leads to a fusion gene between the ETV6 gene on chromosome 12 and the NTRK3 gene on chromosome 15. This genetic background is an important differential diagnostic finding for excluding other salivary gland tumors and may be a critical factor determining the prognosis for patients with SC/MASC. Research in recent years has provided a large body of new data on SC/MASC and suggests the possibility that the ETV6-NTRK3 translocation could be a therapeutic target. Here, we review the morphological and clinicopathological features of SC/MASC and discuss new directions for therapy.
Collapse
Affiliation(s)
- Ryoko Inaki
- Department of Oral & Maxillofacial Surgery, University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Masanobu Abe
- Department of Oral & Maxillofacial Surgery, University of Tokyo Hospital, Tokyo 113-8655, Japan.,Division for Health Service Promotion, University of Tokyo, Tokyo 113-003, Japan
| | - Liang Zong
- Department of Oral & Maxillofacial Surgery, University of Tokyo Hospital, Tokyo 113-8655, Japan.,Division for Health Service Promotion, University of Tokyo, Tokyo 113-003, Japan
| | - Takahiro Abe
- Department of Oral & Maxillofacial Surgery, University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Aya Shinozaki-Ushiku
- Department of Oral & Maxillofacial Surgery, University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Tetsuo Ushiku
- Department of Oral & Maxillofacial Surgery, University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Kazuto Hoshi
- Department of Oral & Maxillofacial Surgery, University of Tokyo Hospital, Tokyo 113-8655, Japan
| |
Collapse
|
45
|
Tannenbaum-Dvir S, Glade Bender JL, Church AJ, Janeway KA, Harris MH, Mansukhani MM, Nagy PL, Andrews SJ, Murty VV, Kadenhe-Chiweshe A, Connolly EP, Kung AL, Dela Cruz FS. Characterization of a novel fusion gene EML4-NTRK3 in a case of recurrent congenital fibrosarcoma. Cold Spring Harb Mol Case Stud 2016; 1:a000471. [PMID: 27148571 PMCID: PMC4850889 DOI: 10.1101/mcs.a000471] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We describe the clinical course of a recurrent case of congenital fibrosarcoma diagnosed in a 9-mo-old boy with a history of hemimelia. Following complete surgical resection of the primary tumor, the patient subsequently presented with bulky bilateral pulmonary metastases 6 mo following surgery. Molecular characterization of the tumor revealed the absence of the prototypical ETV6-NTRK3 translocation. However, tumor characterization incorporating cytogenetic, array comparative genomic hybridization, and RNA sequencing analyses, revealed a somatic t(2;15)(2p21;15q25) translocation resulting in the novel fusion of EML4 with NTRK3. Cloning and expression of EML4-NTRK3 in murine fibroblast NIH 3T3 cells revealed a potent tumorigenic phenotype as assessed in vitro and in vivo. These results demonstrate that multiple fusion partners targeting NTRK3 can contribute to the development of congenital fibrosarcoma.
Collapse
Affiliation(s)
- Sarah Tannenbaum-Dvir
- Columbia University Medical Center, Department of Pediatric Oncology/Hematology/Stem Cell Transplantation, Department of Pediatrics, New York, New York 10032, USA
| | - Julia L Glade Bender
- Columbia University Medical Center, Department of Pediatric Oncology/Hematology/Stem Cell Transplantation, Department of Pediatrics, New York, New York 10032, USA
| | - Alanna J Church
- Harvard Medical School, Department of Pathology, Boston, Massachusetts 02115, USA
| | - Katherine A Janeway
- Harvard Medical School, Department of Pediatric Oncology/Hematology, Boston, Massachusetts 02115, USA
| | - Marian H Harris
- Harvard Medical School, Department of Pathology, Boston, Massachusetts 02115, USA
| | - Mahesh M Mansukhani
- Columbia University Medical Center, Department of Pathology and Cell Biology, New York, New York 10032, USA
| | - Peter L Nagy
- Columbia University Medical Center, Department of Pathology and Cell Biology, New York, New York 10032, USA
| | - Stuart J Andrews
- Columbia University Medical Center, Department of Pathology and Cell Biology, New York, New York 10032, USA
| | - Vundavalli V Murty
- Columbia University Medical Center, Department of Pathology and Cell Biology, New York, New York 10032, USA
| | | | - Eileen P Connolly
- Columbia University Medical Center, Department of Radiation Oncology, New York, New York 10032, USA
| | - Andrew L Kung
- Columbia University Medical Center, Department of Pediatric Oncology/Hematology/Stem Cell Transplantation, Department of Pediatrics, New York, New York 10032, USA
| | - Filemon S Dela Cruz
- Columbia University Medical Center, Department of Pediatric Oncology/Hematology/Stem Cell Transplantation, Department of Pediatrics, New York, New York 10032, USA
| |
Collapse
|
46
|
Paratala BS, Dolfi SC, Khiabanian H, Rodriguez-Rodriguez L, Ganesan S, Hirshfield KM. Emerging Role of Genomic Rearrangements in Breast Cancer: Applying Knowledge from Other Cancers. BIOMARKERS IN CANCER 2016; 8:1-14. [PMID: 26917980 PMCID: PMC4756769 DOI: 10.4137/bic.s34417] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/28/2015] [Accepted: 12/31/2015] [Indexed: 12/16/2022]
Abstract
Significant advances in our knowledge of cancer genomes are rapidly changing the way we think about tumor biology and the heterogeneity of cancer. Recent successes in genomically-guided treatment approaches accompanied by more sophisticated sequencing techniques have paved the way for deeper investigation into the landscape of genomic rearrangements in cancer. While considerable research on solid tumors has focused on point mutations that directly alter the coding sequence of key genes, far less is known about the role of somatic rearrangements. With many recurring alterations observed across tumor types, there is an obvious need for functional characterization of these genomic biomarkers in order to understand their relevance to tumor biology, therapy, and prognosis. As personalized therapy approaches are turning toward genomic alterations for answers, these biomarkers will become increasingly relevant to the practice of precision medicine. This review discusses the emerging role of genomic rearrangements in breast cancer, with a particular focus on fusion genes. In addition, it raises several key questions on the therapeutic value of such rearrangements and provides a framework to evaluate their significance as predictive and prognostic biomarkers.
Collapse
Affiliation(s)
- Bhavna S. Paratala
- Department of Medicine, Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Department of Cellular and Molecular Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Sonia C. Dolfi
- Department of Medicine, Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Hossein Khiabanian
- Department of Pathology, Division of Medical Informatics, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Lorna Rodriguez-Rodriguez
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Shridar Ganesan
- Department of Medicine, Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Kim M. Hirshfield
- Department of Medicine, Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
47
|
Mammary Analogue Secretory Carcinoma of the Parotid Gland: A Third World Country Perspective-A Case Series. Case Rep Otolaryngol 2015; 2015:697254. [PMID: 26783481 PMCID: PMC4691471 DOI: 10.1155/2015/697254] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/26/2015] [Accepted: 12/06/2015] [Indexed: 11/25/2022] Open
Abstract
Mammary analogue secretory carcinoma (MASC) is a recently described pathological entity in major salivary glands, which was first described by Skálová et al. in 2010. Since then only a limited number of case reports/series have been published describing this tumor with the majority of them discussing the genetic and cytoarchitectural aspect of this tumor. Keeping this in view with the lack of clinical correlation with regard to this tumor, we present our approach to management of two such cases which, according to the best of our knowledge, are the first 2 cases presenting in the South Asian continent. Both patients were diagnosed and managed at Aga Khan University Hospital, Karachi, Pakistan.
Collapse
|
48
|
Javadekar SM, Raghavan SC. Snaps and mends: DNA breaks and chromosomal translocations. FEBS J 2015; 282:2627-45. [PMID: 25913527 DOI: 10.1111/febs.13311] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/29/2015] [Accepted: 04/23/2015] [Indexed: 01/11/2023]
Abstract
Integrity in entirety is the preferred state of any organism. The temporal and spatial integrity of the genome ensures continued survival of a cell. DNA breakage is the first step towards creation of chromosomal translocations. In this review, we highlight the factors contributing towards the breakage of chromosomal DNA. It has been well-established that the structure and sequence of DNA play a critical role in selective fragility of the genome. Several non-B-DNA structures such as Z-DNA, cruciform DNA, G-quadruplexes, R loops and triplexes have been implicated in generation of genomic fragility leading to translocations. Similarly, specific sequences targeted by proteins such as Recombination Activating Genes and Activation Induced Cytidine Deaminase are involved in translocations. Processes that ensure the integrity of the genome through repair may lead to persistence of breakage and eventually translocations if their actions are anomalous. An insufficient supply of nucleotides and chromatin architecture may also play a critical role. This review focuses on a range of events with the potential to threaten the genomic integrity of a cell, leading to cancer.
Collapse
Affiliation(s)
- Saniya M Javadekar
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
49
|
Morgensztern D, Campo MJ, Dahlberg SE, Doebele RC, Garon E, Gerber DE, Goldberg SB, Hammerman PS, Heist R, Hensing T, Horn L, Ramalingam SS, Rudin CM, Salgia R, Sequist L, Shaw AT, Simon GR, Somaiah N, Spigel DR, Wrangle J, Johnson D, Herbst RS, Bunn P, Govindan R. Molecularly targeted therapies in non-small-cell lung cancer annual update 2014. J Thorac Oncol 2015; 10:S1-63. [PMID: 25535693 PMCID: PMC4346098 DOI: 10.1097/jto.0000000000000405] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There have been significant advances in the understanding of the biology and treatment of non-small-cell lung cancer (NSCLC) during the past few years. A number of molecularly targeted agents are in the clinic or in development for patients with advanced NSCLC. We are beginning to understand the mechanisms of acquired resistance after exposure to tyrosine kinase inhibitors in patients with oncogene addicted NSCLC. The advent of next-generation sequencing has enabled to study comprehensively genomic alterations in lung cancer. Finally, early results from immune checkpoint inhibitors are very encouraging. This review summarizes recent advances in the area of cancer genomics, targeted therapies, and immunotherapy.
Collapse
Affiliation(s)
- Daniel Morgensztern
- Department of Medical Oncology, Washington University School of Medicine, Saint Louis, MO
| | - Meghan J. Campo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA
| | - Suzanne E. Dahlberg
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston MA
| | - Robert C. Doebele
- Department of Medical Oncology, University of Colorado School of Medicine and University of Colorado Cancer Center, Aurora, CO
| | - Edward Garon
- UCLA Santa Monica Hematology Oncology, Santa Monica, CA
| | - David E. Gerber
- Division of Hematology-Oncology, Harold C. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX
| | - Sarah B. Goldberg
- Department of Medical Oncology, Yale School of Medicine and Cancer Center, New Haven, CT
| | | | - Rebecca Heist
- Department of Oncology, Massachusetts General Hospital, Boston, MA
| | - Thomas Hensing
- Department of Oncology, The University of Chicago Medicine, Chicago, IL
| | - Leora Horn
- Division of Hematology-Oncology, Vanderbilt University Medical Center, Nashville, TN
| | - Suresh S. Ramalingam
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, Atlanta, GA
| | | | - Ravi Salgia
- Department of Oncology, The University of Chicago Medicine, Chicago, IL
| | - Lecia Sequist
- Department of Oncology, Massachusetts General Hospital, Boston, MA
| | - Alice T. Shaw
- Department of Oncology, Massachusetts General Hospital, Boston, MA
| | - George R. Simon
- Division of Hematology-Oncology, Medical University of South Carolina, Charleston, SC
| | - Neeta Somaiah
- Division of Hematology-Oncology, Medical University of South Carolina, Charleston, SC
| | | | - John Wrangle
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD
| | - David Johnson
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas
| | - Roy S. Herbst
- Department of Medical Oncology, Yale School of Medicine and Cancer Center, New Haven, CT
| | - Paul Bunn
- Division of Medical Oncology, University of Colorado Denver School of Medicine, Denver, CO
| | - Ramaswamy Govindan
- Department of Medical Oncology, Washington University School of Medicine, Saint Louis, MO
| |
Collapse
|
50
|
Fusion Transcripts That Characterize Malignancies of Salivary Gland Origin. AJSP-REVIEWS AND REPORTS 2015. [DOI: 10.1097/pcr.0000000000000075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|