1
|
Tong K, Wang Y, Su Z. Phosphotyrosine signalling and the origin of animal multicellularity. Proc Biol Sci 2018; 284:rspb.2017.0681. [PMID: 28768887 DOI: 10.1098/rspb.2017.0681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/26/2017] [Indexed: 12/21/2022] Open
Abstract
The evolution of multicellular animals (i.e. metazoans) from a unicellular ancestor is one of the most important yet least understood evolutionary transitions. Historically, given its indispensable functions in intercellular communication and exclusive presence in metazoans, phosphotyrosine (pTyr) signalling was considered a metazoan-specific evolutionary innovation that might have contributed to the origin of metazoan multicellularity. However, recent studies have led to a new understanding of pTyr signalling evolution and its role in the metazoan origin. Sequence analyses have unravelled a much earlier emergence of pTyr signalling in eukaryotic evolution. Even so, several distinct properties of holozoan pTyr signalling may have paved the way for a hypothesized functional transition of pTyr signalling at the multicellular origin, from environmental sensing to intercellular communication, and for it to evolve as a powerful intercellular signalling system for multicellularity. Biochemical analyses of premetazoan pTyr signalling components have further revealed the premetazoan origin of many key features of metazoan pTyr signalling, and the metazoan establishment of others, including the Csk-mediated negative regulation of the activity of Src, a conserved tyrosine kinase in the Holozoa. Finally, potential future directions are discussed, with a stress on the biological functions of premetazoan pTyr signalling via newly developed gene manipulation tools in non-animal holozoans.
Collapse
Affiliation(s)
- Kai Tong
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - Yuyu Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - Zhixi Su
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
2
|
Taskinen B, Ferrada E, Fowler DM. Early emergence of negative regulation of the tyrosine kinase Src by the C-terminal Src kinase. J Biol Chem 2017; 292:18518-18529. [PMID: 28939764 DOI: 10.1074/jbc.m117.811174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/19/2017] [Indexed: 02/05/2023] Open
Abstract
Stringent regulation of tyrosine kinase activity is essential for normal cellular function. In humans, the tyrosine kinase Src is inhibited via phosphorylation of its C-terminal tail by another kinase, C-terminal Src kinase (Csk). Although Src and Csk orthologs are present across holozoan organisms, including animals and protists, the Csk-Src negative regulatory mechanism appears to have evolved gradually. For example, in choanoflagellates, Src and Csk are both active, but the negative regulatory mechanism is reportedly absent. In filastereans, a protist clade closely related to choanoflagellates, Src is active, but Csk is apparently inactive. In this study, we use a combination of bioinformatics, in vitro kinase assays, and yeast-based growth assays to characterize holozoan Src and Csk orthologs. We show that, despite appreciable differences in domain architecture, Csk from Corallochytrium limacisporum, a highly diverged holozoan marine protist, is active and can inhibit Src. However, in comparison with other Csk orthologs, Corallochytrium Csk displays broad substrate specificity and inhibits Src in an activity-independent manner. Furthermore, in contrast to previous studies, we show that Csk from the filasterean Capsaspora owczarzaki is active and that the Csk-Src negative regulatory mechanism is present in Csk and Src proteins from C. owczarzaki and the choanoflagellate Monosiga brevicollis Our results suggest that negative regulation of Src by Csk is more ancient than previously thought and that it might be conserved across all holozoan species.
Collapse
Affiliation(s)
- Barbara Taskinen
- From the Department of Genome Sciences, University of Washington, Seattle, Washington 98195-5065 and
| | - Evandro Ferrada
- From the Department of Genome Sciences, University of Washington, Seattle, Washington 98195-5065 and
| | - Douglas M Fowler
- From the Department of Genome Sciences, University of Washington, Seattle, Washington 98195-5065 and .,Department of Bioengineering, University of Washington, Seattle, Washington 98195-5065
| |
Collapse
|
3
|
Yao Q, Liu BQ, Li H, McGarrigle D, Xing BW, Zhou MT, Wang Z, Zhang JJ, Huang XY, Guo L. C-terminal Src kinase (Csk)-mediated phosphorylation of eukaryotic elongation factor 2 (eEF2) promotes proteolytic cleavage and nuclear translocation of eEF2. J Biol Chem 2014; 289:12666-78. [PMID: 24648518 DOI: 10.1074/jbc.m113.546481] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein-tyrosine kinase C-terminal Src kinase (Csk) was originally purified as a kinase for phosphorylating Src and other Src family kinases. The phosphorylation of a C-terminal tyrosine residue of Src family kinases suppresses their kinase activity. Therefore, most physiological studies regarding Csk function have been focused on Csk as a negative regulator of Src family tyrosine kinases and as a potential tumor suppressor. Paradoxically, the protein levels of Csk were elevated in some human carcinomas. In this report, we show that eukaryotic elongation factor 2 (eEF2) is a new protein substrate of Csk and could locate in the nucleus. We demonstrate that Csk-mediated phosphorylation of eEF2 has no effect on its cytoplasmic function in regulating protein translation. However, phosphorylation of eEF2 enhances its proteolytic cleavage and the nuclear translocation of the cleaved eEF2 through a SUMOylation-regulated process. Furthermore, we show that cleaved fragments of eEF2 can induce nuclear morphological changes and aneuploidy similar to those in cancer cells, suggesting that there is an additional mechanism for Csk in tumorigenesis through regulation of eEF2 subcellular localization.
Collapse
Affiliation(s)
- Qi Yao
- From the State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China and
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Schultheiss KP, Suga H, Ruiz-Trillo I, Miller WT. Lack of Csk-mediated negative regulation in a unicellular SRC kinase. Biochemistry 2012; 51:8267-77. [PMID: 22998693 DOI: 10.1021/bi300965h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phosphotyrosine-based signaling plays a vital role in cellular communication in multicellular organisms. Unexpectedly, unicellular choanoflagellates (the closest phylogenetic group to metazoans) possess numbers of tyrosine kinases that are comparable to those in complex metazoans. Here, we have characterized tyrosine kinases from the filasterean Capsaspora owczarzaki, a unicellular protist representing the sister group to choanoflagellates and metazoans. Two Src-like tyrosine kinases have been identified in C. owczarzaki (CoSrc1 and CoSrc2), both of which have the arrangement of SH3, SH2, and catalytic domains seen in mammalian Src kinases. In Capsaspora cells, CoSrc1 and CoSrc2 localize to punctate structures in filopodia that may represent primordial focal adhesions. We have cloned, expressed, and purified both enzymes. CoSrc1 and CoSrc2 are active tyrosine kinases. Mammalian Src kinases are normally regulated in a reciprocal fashion by autophosphorylation in the activation loop (which increases activity) and by Csk-mediated phosphorylation of the C-terminal tail (which inhibits activity). Similar to mammalian Src kinases, the enzymatic activities of CoSrc1 and CoSrc2 are increased by autophosphorylation in the activation loop. We have identified a Csk-like kinase (CoCsk) in the genome of C. owczarzaki. We cloned, expressed, and purified CoCsk and found that it has no measurable tyrosine kinase activity. Furthermore, CoCsk does not phosphorylate or regulate CoSrc1 or CoSrc2 in cells or in vitro, and CoSrc1 and CoSrc2 are active in Capsaspora cell lysates. Thus, the function of Csk as a negative regulator of Src family kinases appears to have arisen with the emergence of metazoans.
Collapse
Affiliation(s)
- Kira P Schultheiss
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | | |
Collapse
|
5
|
Karpov PA, Nadezhdina ES, Yemets AI, Matusov VG, Nyporko AY, Shashina NY, Blume YB. Bioinformatic search of plant microtubule-and cell cycle related serine-threonine protein kinases. BMC Genomics 2010; 11 Suppl 1:S14. [PMID: 20158871 PMCID: PMC2822528 DOI: 10.1186/1471-2164-11-s1-s14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A bioinformatic search was carried for plant homologues of human serine-threonine protein kinases involved in regulation of cell division and microtubule protein phosphorylation (SLK, PAK6, PAK7, MARK1, MAST2, TTBK1, TTBK2, AURKA, PLK1, PLK4 and PASK). A number of SLK, MAST2 and AURKA plant homologues were identified. The closest identified homologue of human AURKA kinase was a protein of unknown function, A7PY12/GSVIVT00026259001 from Vitis vinifera (herein named as "STALK", Serine-Threonine Aurora-Like Kinase). Analysis of STALK's three-dimensional structure confirmed its relationship to the subgroup of AURKA-like protein kinases.
Collapse
Affiliation(s)
- Pavel A Karpov
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, 04123 Kyiv, Ukraine
| | - Elena S Nadezhdina
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russian Federation
- AN Belozersky Institute of Physical-Chemical Biology, Moscow State University, Leninsky Gory, 119992 Moscow, Russian Federation
| | - Alla I Yemets
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, 04123 Kyiv, Ukraine
| | - Vadym G Matusov
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, 04123 Kyiv, Ukraine
| | - Alexey Yu Nyporko
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, 04123 Kyiv, Ukraine
| | - Nadezhda Yu Shashina
- AN Belozersky Institute of Physical-Chemical Biology, Moscow State University, Leninsky Gory, 119992 Moscow, Russian Federation
| | - Yaroslav B Blume
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, 04123 Kyiv, Ukraine
| |
Collapse
|
6
|
Yang G, Li Q, Ren S, Lu X, Fang L, Zhou W, Zhang F, Xu F, Zhang Z, Zeng R, Lottspeich F, Chen Z. Proteomic, functional and motif-based analysis of C-terminal Src kinase-interacting proteins. Proteomics 2009; 9:4944-61. [PMID: 19743411 DOI: 10.1002/pmic.200800762] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
C-terminal Src kinase (Csk) that functions as an essential negative regulator of Src family tyrosine kinases (SFKs) interacts with tyrosine-phosphorylated molecules through its Src homology 2 (SH2) domain, allowing it targeting to the sites of SFKs and concomitantly enhancing its kinase activity. Identification of additional Csk-interacting proteins is expected to reveal potential signaling targets and previously undescribed functions of Csk. In this study, using a direct proteomic approach, we identified 151 novel potential Csk-binding partners, which are associated with a wide range of biological functions. Bioinformatics analysis showed that the majority of identified proteins contain one or several Csk-SH2 domain-binding motifs, indicating a potentially direct interaction with Csk. The interactions of Csk with four proteins (partitioning defective 3 (Par3), DDR1, SYK and protein kinase C iota) were confirmed using biochemical approaches and phosphotyrosine 1127 of Par3 C-terminus was proved to directly bind to Csk-SH2 domain, which was consistent with predictions from in silico analysis. Finally, immunofluorescence experiments revealed co-localization of Csk with Par3 in tight junction (TJ) in a tyrosine phosphorylation-dependent manner and overexpression of Csk, but not its SH2-domain mutant lacking binding to phosphotyrosine, promoted the TJ assembly in Madin-Darby canine kidney cells, implying the involvement of Csk-SH2 domain in regulating cellular TJs. In conclusion, the newly identified potential interacting partners of Csk provided new insights into its functional diversity in regulation of numerous cellular events, in addition to controlling the SFK activity.
Collapse
Affiliation(s)
- Guang Yang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Karpov PA, Nadezhdina ES, Emets AI, Matusov VG, Nyporko AY, Shashina NY, Blume YB. Bioinformatic search of plant protein kinases involved in the phosphorylation of microtubular proteins and the regulation of the cell cycle. CYTOL GENET+ 2009. [DOI: 10.3103/s0095452709030104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Takata N, Itoh B, Misaki K, Hirose T, Yonemura S, Okada M. Non-receptor tyrosine kinase CSK-1 controls pharyngeal muscle organization in Caenorhabditis elegans. Genes Cells 2009; 14:381-93. [PMID: 19210548 DOI: 10.1111/j.1365-2443.2008.01275.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
C-terminal Src kinase (Csk) is a non-receptor type of tyrosine kinase, and serves as an essential negative regulator of Src family tyrosine kinases (SFKs) in vertebrates. However, analyses of Csk and SFKs from primitive animals suggest that the Csk-mediated mechanisms regulating SFK activity might diverge between evolutional branches, different tissues or SFK family members. We examined in vivo roles of CSK-1, a Caenorhabditis elegans orthologue of Csk, by generating animals lacking csk-1 function. Although some csk-1 mutants died during embryogenesis, the majority of mutants died during the first stage of larval development. In csk-1 mutants, the function of pharyngeal muscles, the major site of CSK-1 expression, was severely damaged. The pumping of pharyngeal grinder cells became arrhythmic, causing disabled feeding. Electron microscopy showed that pharyngeal muscle filaments were disorientated in the csk-1 mutants. These indicate that CSK-1 is crucial for proper organization of pharyngeal muscles. However, the growth arrest phenotype in csk-1 mutants could not be suppressed by src-1 and/or src-2 mutation, and SRC-1 was not significantly activated in the csk-1 mutants. These results suggest that CSK-1 has an essential function in organization of pharyngeal muscle filaments that does not require C. elegans SFKs.
Collapse
Affiliation(s)
- Nozomu Takata
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Li W, Young SL, King N, Miller WT. Signaling properties of a non-metazoan Src kinase and the evolutionary history of Src negative regulation. J Biol Chem 2008; 283:15491-501. [PMID: 18390552 DOI: 10.1074/jbc.m800002200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Choanoflagellates, unicellular organisms that are closely related to metazoans, possess cell adhesion and signaling proteins previously thought to be unique to animals, suggesting that these components may have played roles in the evolution of metazoan multicellularity. We have cloned, expressed, and purified the nonreceptor tyrosine kinase MbSrc1 from the choanoflagellate Monosiga brevicollis. The kinase has the same domain arrangement as mammalian Src kinases, and we find that the individual Src homology 3 (SH3), SH2, and catalytic domains have similar functions to their mammalian counterparts. In contrast to mammalian c-Src, the SH2 and catalytic domains of MbSrc1 do not appear to be functionally coupled. We cloned and expressed the M. brevicollis homolog of c-Src C-terminal kinase (MbCsk) and showed that it phosphorylates the C terminus of MbSrc1, yet this phosphorylation does not inhibit MbSrc to the same degree seen in the mammalian Src/Csk pair. Thus, Src autoinhibition likely evolved more recently within the metazoan lineage, and it may have played a role in the establishment of intercellular signaling in metazoans.
Collapse
Affiliation(s)
- Wanqing Li
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | | |
Collapse
|
10
|
Vidal M, Warner S, Read R, Cagan RL. Differing Src signaling levels have distinct outcomes in Drosophila. Cancer Res 2007; 67:10278-85. [PMID: 17974969 DOI: 10.1158/0008-5472.can-07-1376] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
High levels of Src activity are found in a broad spectrum of cancers. The roles of Src and its negative regulator Csk have been extensively studied, although results have often proved contradictory or the relevance to whole organisms is unclear. In Drosophila, overexpression of either Src orthologue resulted in apoptotic cell death, but paradoxically, reducing dCsk activity led to over-proliferation and tissue overgrowth. Here, we show that in Drosophila epithelia in situ, the levels of Src signaling determine the cellular outcome of Src activation. Apoptotic cell death was triggered specifically at high Src signaling levels; lower levels directed antiapoptotic signals while promoting proliferation. Furthermore, our data indicate that expression of kinase-dead Src isoforms do not necessarily act as dominant-negative factors, but can instead increase Src pathway activity, most likely by titrating Csk activity away from endogenous Src. The importance of Src activity levels was emphasized when we examined oncogenic cooperation between Src and Ras: malignant overgrowth was observed specifically when high Src signaling levels were achieved. We propose a model in which low levels of Src signaling promote survival and proliferation during early stages of tumorigenesis, whereas strong Src signaling, coupled with antiapoptotic signals, directs invasive migration and metastasis during advanced tumor stages.
Collapse
Affiliation(s)
- Marcos Vidal
- Brookdale Department of Molecular, Cell, and Developmental Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | |
Collapse
|
11
|
Bradham CA, Foltz KR, Beane WS, Arnone MI, Rizzo F, Coffman JA, Mushegian A, Goel M, Morales J, Geneviere AM, Lapraz F, Robertson AJ, Kelkar H, Loza-Coll M, Townley IK, Raisch M, Roux MM, Lepage T, Gache C, McClay DR, Manning G. The sea urchin kinome: a first look. Dev Biol 2006; 300:180-93. [PMID: 17027740 DOI: 10.1016/j.ydbio.2006.08.074] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 08/19/2006] [Accepted: 08/22/2006] [Indexed: 12/31/2022]
Abstract
This paper reports a preliminary in silico analysis of the sea urchin kinome. The predicted protein kinases in the sea urchin genome were identified, annotated and classified, according to both function and kinase domain taxonomy. The results show that the sea urchin kinome, consisting of 353 protein kinases, is closer to the Drosophila kinome (239) than the human kinome (518) with respect to total kinase number. However, the diversity of sea urchin kinases is surprisingly similar to humans, since the urchin kinome is missing only 4 of 186 human subfamilies, while Drosophila lacks 24. Thus, the sea urchin kinome combines the simplicity of a non-duplicated genome with the diversity of function and signaling previously considered to be vertebrate-specific. More than half of the sea urchin kinases are involved with signal transduction, and approximately 88% of the signaling kinases are expressed in the developing embryo. These results support the strength of this nonchordate deuterostome as a pivotal developmental and evolutionary model organism.
Collapse
|
12
|
Roux MM, Townley IK, Raisch M, Reade A, Bradham C, Humphreys G, Gunaratne HJ, Killian CE, Moy G, Su YH, Ettensohn CA, Wilt F, Vacquier VD, Burke RD, Wessel G, Foltz KR. A functional genomic and proteomic perspective of sea urchin calcium signaling and egg activation. Dev Biol 2006; 300:416-33. [PMID: 17054939 DOI: 10.1016/j.ydbio.2006.09.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 09/01/2006] [Accepted: 09/02/2006] [Indexed: 01/02/2023]
Abstract
The sea urchin egg has a rich history of contributions to our understanding of fundamental questions of egg activation at fertilization. Within seconds of sperm-egg interaction, calcium is released from the egg endoplasmic reticulum, launching the zygote into the mitotic cell cycle and the developmental program. The sequence of the Strongylocentrotus purpuratus genome offers unique opportunities to apply functional genomic and proteomic approaches to investigate the repertoire and regulation of Ca(2+) signaling and homeostasis modules present in the egg and zygote. The sea urchin "calcium toolkit" as predicted by the genome is described. Emphasis is on the Ca(2+) signaling modules operating during egg activation, but the Ca(2+) signaling repertoire has ramifications for later developmental events and adult physiology as well. Presented here are the mechanisms that control the initial release of Ca(2+) at fertilization and additional signaling components predicted by the genome and found to be expressed and operating in eggs at fertilization. The initial release of Ca(2+) serves to coordinate egg activation, which is largely a phenomenon of post-translational modifications, especially dynamic protein phosphorylation. Functional proteomics can now be used to identify the phosphoproteome in general and specific kinase targets in particular. This approach is described along with findings to date. Key outstanding questions regarding the activation of the developmental program are framed in the context of what has been learned from the genome and how this knowledge can be applied to functional studies.
Collapse
Affiliation(s)
- Michelle M Roux
- Department MCD Biology and Marine Science Institute, University of California, Santa Barbara, CA 93106-9610, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Galliot B, Miljkovic-Licina M, de Rosa R, Chera S. Hydra, a niche for cell and developmental plasticity. Semin Cell Dev Biol 2006; 17:492-502. [PMID: 16807002 DOI: 10.1016/j.semcdb.2006.05.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The silencing of genes whose expression is restricted to specific cell types and/or specific regeneration stages opens avenues to decipher the molecular control of the cellular plasticity underlying head regeneration in hydra. In this review, we highlight recent studies that identified genes involved in the immediate cytoprotective function played by gland cells after amputation; the early dedifferentiation of digestive cells into blastema-like cells during head regeneration, and the early late proliferation of neuronal progenitors required for head patterning. Hence, developmental plasticity in hydra relies on spatially restricted and timely orchestrated cellular modifications, where the functions played by stem cells remain to be characterized.
Collapse
Affiliation(s)
- Brigitte Galliot
- Department of Zoology and Animal Biology, University of Geneva, Sciences III, 30 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland.
| | | | | | | |
Collapse
|
14
|
Segawa Y, Suga H, Iwabe N, Oneyama C, Akagi T, Miyata T, Okada M. Functional development of Src tyrosine kinases during evolution from a unicellular ancestor to multicellular animals. Proc Natl Acad Sci U S A 2006; 103:12021-6. [PMID: 16873552 PMCID: PMC1567691 DOI: 10.1073/pnas.0600021103] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The Src family of tyrosine kinases play pivotal roles in regulating cellular functions characteristic of multicellular animals, including cell-cell interactions, cell-substrate adhesion, and cell migration. To investigate the functional alteration of Src kinases during evolution from a unicellular ancestor to multicellular animals, we characterized Src orthologs from the unicellular choanoflagellate Monosiga ovata and the primitive multicellular sponge Ephydatia fluviatilis. Here, we show that the src gene family and its C-terminal Src kinase (Csk)-mediated regulatory system already were established in the unicellular M. ovata and that unicellular Src has unique features relative to multicellular Src: It can be phosphorylated by Csk at the negative regulatory site but still exhibits substantial activity even in the phosphorylated form. Analyses of chimera molecules between M. ovata and E. fluviatilis Src orthologs reveal that structural alterations in the kinase domain are responsible for the unstable negative regulation of M. ovata Src. When expressed in vertebrate fibroblasts, M. ovata Src can induce cell transformation irrespective of the presence of Csk. These findings suggest that a structure of Src required for the stable Csk-mediated negative regulation still is immature in the unicellular M. ovata and that the development of stable negative regulation of Src may correlate with the evolution of multicellularity in animals.
Collapse
Affiliation(s)
- Yuko Segawa
- *Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Hiroshi Suga
- Department of Cell Biology, Biozentrum University of Basel, CH-4056 Basel, Switzerland
| | - Naoyuki Iwabe
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Chitose Oneyama
- *Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Tsuyoshi Akagi
- Laboratory of Molecular Oncology, Osaka Bioscience Institute, Osaka 567-0085, Japan
| | - Takashi Miyata
- JT Biohistory Research Hall, Takatsuki, Osaka 569-1125, Japan; and
- **Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Masato Okada
- *Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
15
|
Madhusoodanan KS, Guo D, McGarrigle DK, Maack T, Huang XY. Csk mediates G-protein-coupled lysophosphatidic acid receptor-induced inhibition of membrane-bound guanylyl cyclase activity. Biochemistry 2006; 45:3396-403. [PMID: 16519534 PMCID: PMC2519153 DOI: 10.1021/bi052513u] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Natriuretic peptides (NPs) are involved in many physiological processes, including the regulation of vascular tone, sodium excretion, pressure-volume homeostasis, inflammatory responses, and cellular growth. The two main receptors of NP, membrane-bound guanylyl cyclases A and B (GC-A and GC-B), mediate the effects of NPs via the generation of cGMP. NP-stimulated generation of cGMP can be modulated by intracellular processes, whose exact nature remains to be elucidated. Thus, serum and lysophosphatidic acid (LPA), by unknown pathways, have been shown to inhibit the NP-induced generation of cGMP. Here we report that the nonreceptor-tyrosine-kinase Csk is an essential component of the intracellular modulation of atrial natriuretic peptide (ANP)-stimulated activation of GC-A. The genetic deletion of Csk (Csk(-)(/)(-)) in mouse embryonic fibroblasts blocked the inhibitory effect of both serum and LPA on the ANP-stimulated generation of cGMP. Moreover, using a chemical rescue approach, we also demonstrate that the catalytic activity of Csk is required for its modulatory function. Our data demonstrate that Csk is involved in the control of cGMP levels and that membrane-bound guanylyl cyclases can be critically modulated by other receptor-initiated intracellular signaling pathways.
Collapse
Affiliation(s)
| | | | | | | | - Xin-Yun Huang
- *X.-Y. H.: To whom correspondence should be addressed, Tel: (212) 746-6362; Fax: (212) 746-8690, E-mail:
| |
Collapse
|
16
|
McGarrigle D, Shan D, Yang S, Huang XY. Role of Tyrosine Kinase Csk in G Protein-coupled Receptor- and Receptor Tyrosine Kinase-induced Fibroblast Cell Migration. J Biol Chem 2006; 281:10583-8. [PMID: 16501257 DOI: 10.1074/jbc.m513002200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tyrosine kinase Csk is essential for mouse embryonic development. Csk knock-out mice died at early stages of embryogenesis (around embryonic day 10). The molecular mechanism for this defect is not completely understood. Here we report that Csk deficiency in mouse embryonic fibroblast cells blocked cell migration induced by lysophosphatidic acid through G protein-coupled receptors, by platelet-derived growth factor and epidermal growth factor through receptor tyrosine kinases, and by serum. Re-expression of Csk in these Csk-deficient cells rescued the migratory phenotype. Furthermore, deletion of Csk did not interfere with Rac activation and lamellipodia formation, but impaired the focal adhesions. Our data demonstrate a critical role for Csk in cell migration.
Collapse
Affiliation(s)
- Deirdre McGarrigle
- Department of Physiology, Cornell University Weill Medical College, New York, NY 10021, USA
| | | | | | | |
Collapse
|
17
|
Vidal M, Larson DE, Cagan RL. Csk-deficient boundary cells are eliminated from normal Drosophila epithelia by exclusion, migration, and apoptosis. Dev Cell 2006; 10:33-44. [PMID: 16399076 DOI: 10.1016/j.devcel.2005.11.007] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Revised: 08/18/2005] [Accepted: 11/10/2005] [Indexed: 01/11/2023]
Abstract
The construction and maintenance of normal epithelia relies on local signals that guide cells into their proper niches and remove unwanted cells. Failure to execute this process properly may result in aberrant development or diseases, including cancer and associated metastasis. Here, we show that local environment influences the behavior of dCsk-deficient cells. Broad loss of dCsk led to enlarged and mispatterned tissues due to overproliferation, a block in apoptosis, and decreased cadherin-mediated adhesion. Loss of dCsk in discrete patches led to a different outcome: epithelial exclusion, invasive migration, and apoptotic death. These latter phenotypes required sharp differences in dCsk activity between neighbors; dE-cadherin, P120-catenin, Rho1, JNK, and MMP2 mediated this signal. Together, our data demonstrate how the cellular microenvironment plays a central role in determining the outcome of altered dCsk activity, and reveal a role for P120-catenin in a mechanism that protects epithelial integrity by removing abnormal cells.
Collapse
Affiliation(s)
- Marcos Vidal
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, Missouri 63110, USA
| | | | | |
Collapse
|
18
|
Aracena J, González M, Zuñiga A, Mendez MA, Cambiazo V. Regulatory network for cell shape changes during Drosophila ventral furrow formation. J Theor Biol 2006; 239:49-62. [PMID: 16139845 DOI: 10.1016/j.jtbi.2005.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Revised: 07/15/2005] [Accepted: 07/18/2005] [Indexed: 01/04/2023]
Abstract
Rapid and sequential cell shape changes take place during the formation of the ventral furrow (VF) at the beginning of Drosophila gastrulation. At the cellular level, this morphogenetic event demands close coordination of the proteins involved in actin cytoskeletal reorganization. In order to construct a regulatory network that describes these cell shape changes, we have used published genetic and molecular data for 18 genes encoding transcriptional regulators and signaling pathway components. Based on the dynamic behavior of this network we explored the hypothesis that the combination of three recognizable phenotypes describing wild type or mutant cell types, during VF invagination, correspond to different activation states of a specific set of these gene products, which are point attractors of the regulatory network. From our results, we recognize missing components in the regulatory network and suggest alternative pathways in the regulation of cell shape changes during VF formation.
Collapse
Affiliation(s)
- Julio Aracena
- Centro de Modelamiento Matemático, UMR-CNRS 2071, Universidad de Chile, Casilla 170-3, Santiago, Chile
| | | | | | | | | |
Collapse
|
19
|
O'Neill FJ, Gillett J, Foltz KR. Distinct roles for multiple Src family kinases at fertilization. J Cell Sci 2005; 117:6227-38. [PMID: 15564383 DOI: 10.1242/jcs.01547] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Egg activation at fertilization requires the release of Ca2+ from the endoplasmic reticulum of the egg. Recent evidence indicates that Src family kinases (SFKs) function in the signaling pathway that initiates this Ca2+ release in the eggs of many deuterostomes. We have identified three SFKs expressed in starfish (Asterina miniata) eggs, designated AmSFK1, AmSFK2 and AmSFK3. Antibodies made against the unique domains of each AmSFK protein revealed that all three are expressed in eggs and localized primarily to the membrane fraction. Both AmSFK1 and AmSFK3 (but not AmSFK2) are necessary for egg activation, as determined by injection of starfish oocytes with dominant-interfering Src homology 2 (SH2) domains, which specifically delay and reduce the initial release of Ca2+ at fertilization. AmSFK3 exhibits a very rapid and transient kinase activity in response to fertilization, peaking at 30 seconds post sperm addition. AmSFK1 kinase activity also increases transiently at fertilization, but peaks later, at 2 minutes. These results indicate that there are multiple SFKs present in starfish eggs with distinct, perhaps sequential, signaling roles.
Collapse
Affiliation(s)
- Forest J O'Neill
- Department of Molecular, Cellular and Developmental Biology and the Marine Science Institute, University of California, Santa Barbara, CA 93106-9610, USA
| | | | | |
Collapse
|
20
|
Gye MC, Choi JK, Ahn HS, Kim YS. Expression of p50 C-terminal Src kinase (Csk) in mouse testis. ACTA ACUST UNITED AC 2005; 50:287-93. [PMID: 15277007 DOI: 10.1080/01485010490448714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
C-terminal Src Kinase (Csk) is a cytoplasmic tyrosine kinase that phosphorylates a critical tyrosine residue in each of the Src family kinases to inhibit their activities. To investigate the possible regulation of spermatogenesis by Src-Csk loop, the postnatal changes in the expression of Csk were examined in mouse testes. Semiquantitative RT-PCR analysis revealed that Csk mRNA increased during neonatal development and peaked at 2 weeks of age. Following the decrease during pubertal development, Csk expression re-increased in adult testes. In Western blot, immature testes showed higher expression of Csk protein than the pubertal or adult testes. In immature testis, Csk immunoreactivity was largely found in the Sertoli cell and there was no visible difference in the Csk immunoreactivity among the seminiferous tubules. In adult testis, however, a differential Csk immunoreactivity was found among the seminiferous tubules. Intense signal was found in the adluminal cytoplasm of the Sertoli cells bearing the post-meiotic differentiating germ cells, suggesting that Csk may participate in the remodeling of seminiferous tubule during late phase of spermatogenesis. Csk immunoreactivity was also found in the Leydig cells, suggesting the possible regulation of Leydig cell function. Src-Csk loop may participate in the differentiation of the seminiferous epithelia and Leydig cells in mouse testis.
Collapse
Affiliation(s)
- M C Gye
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Korea.
| | | | | | | |
Collapse
|
21
|
Cardenas MM, Salgado LM. STK, the src homologue, is responsible for the initial commitment to develop head structures in Hydra. Dev Biol 2003; 264:495-505. [PMID: 14651933 DOI: 10.1016/j.ydbio.2003.08.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
STK, the Src tyrosine kinase homologous of the fresh water polyp hydra, is a key component of the signal transduction system for cell differentiation in this organism. Its activity is strongly increased 6 h after decapitation, and the inhibition of its activity with PP2/AG1879 prevents head development. We generated STK(-) polyps by using double-stranded RNA interference; STK activity of those polyps is blocked through time. STK RNAi silenced animals could not regenerate the head, but the foot, and could not reproduce asexually. The silencing of STK causes the development of ectopic heads in decapitated polyps in the first third of their body. Some head-specific genes, like Ks1, HyTcf, and Hybra1, seem to be regulated by the signaling pathway mediated by STK because their expression is modified in the STK(-) polyps. These findings support an important function for STK in the initial commitment of cells to develop head structures in hydra.
Collapse
|
22
|
Hirose T, Koga M, Ohshima Y, Okada M. Distinct roles of the Src family kinases, SRC-1 and KIN-22, that are negatively regulated by CSK-1 in C. elegans. FEBS Lett 2003; 534:133-8. [PMID: 12527374 DOI: 10.1016/s0014-5793(02)03819-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To elucidate the primitive roles of the Src family kinases (SFKs), here we characterized Caenorhabditis elegans orthologues of SFKs (src-1 and kin-22) and their regulator kinase Csk (csk-1). SRC-1 and KIN-22 possess the C-terminal regulatory tyrosines characteristic of SFKs, and their activities are negatively regulated by CSK-1 in a yeast expression system. The src-1 and csk-1 genes are co-expressed in some head neurons, the anchor cell and the tail region, while kin-22 and csk-1 genes are co-expressed in pharyngeal muscles and tail region. Expression of KIN-22 induced morphological defects in the pharynx, whereas expression of SRC-1 did not show any overt phenotype in adult. RNA interference of src-1, but not that of kin-22, caused a developmental arrest in early development. These results suggest that SRC-1 and KIN-22 play distinct roles under the control of CSK-1.
Collapse
Affiliation(s)
- Takashi Hirose
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | |
Collapse
|
23
|
Abstract
Developmental processes in multicellular animals depend on an array of signal transduction pathways. Studies of model organisms have identified a number of such pathways and dissected them in detail. However, these model organisms are all bilaterians. Investigations of the roles of signal transduction pathways in the early-diverging metazoan Hydra have revealed that a number of the well-known developmental signaling pathways were already in place in the last common ancestor of Hydra and bilaterians. In addition to these shared pathways, it appears that developmental processes in Hydra make use of pathways involving a variety of peptides. Such pathways have not yet been identified as developmental regulators in more recently diverged animals. In this review I will summarize work to date on developmental signaling pathways in Hydra and discuss the future directions in which such work will need to proceed to realize the potential that lies in this simple animal.
Collapse
Affiliation(s)
- Robert E Steele
- Department of Biological Chemistry, University of California-Irvine, Irvine, CA 92627-1700, USA.
| |
Collapse
|
24
|
Lowry WE, Huang J, Ma YC, Ali S, Wang D, Williams DM, Okada M, Cole PA, Huang XY. Csk, a critical link of g protein signals to actin cytoskeletal reorganization. Dev Cell 2002; 2:733-44. [PMID: 12062086 DOI: 10.1016/s1534-5807(02)00175-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Heterotrimeric G proteins can signal to reorganize the actin cytoskeleton, but the mechanism is unclear. Here we report that, in tyrosine kinase Csk-deficient mouse embryonic fibroblast cells, G protein (Gbetagamma, Galpha(12), Galpha(13), and Galpha(q))-induced, and G protein-coupled receptor-induced, actin stress fiber formation was completely blocked. Reintroduction of Csk into Csk-deficent cells restored the G protein-induced actin stress fiber formation. Chemical rescue experiments with catalytic mutants of Csk demonstrated that the catalytic activity of Csk was required for this process. Furthermore, we uncovered that Gbetagamma can both translocate Csk to the plasma membrane and directly increase Csk kinase activity. Our genetic and biochemical studies demonstrate that Csk plays a critical role in mediating G protein signals to actin cytoskeletal reorganization.
Collapse
Affiliation(s)
- William E Lowry
- Department of Physiology, Cornell University, Weill Medical College, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Song Y, Cohler AN, Weinstein DC. Regulation of Laloo by the Xenopus C-terminal Src kinase (Xcsk) during early vertebrate development. Oncogene 2001; 20:5210-4. [PMID: 11526510 DOI: 10.1038/sj.onc.1204672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2001] [Revised: 05/04/2001] [Accepted: 05/30/2001] [Indexed: 11/09/2022]
Abstract
Mesoderm formation in the frog, Xenopus laevis, is dependent on the activity of one or more members of the Src family kinases; the molecular interactions underlying this requirement are not well understood. The C-terminal Src Kinase (Csk) is a potent inhibitor of Src activity, and is required for normal mammalian development; here we report the characterization of Xenopus Csk (Xcsk). Xcsk is widely expressed during early development, physically interacts with the Src kinase Laloo, and inhibits the generation of mesoderm by the Src kinases. Xcsk activity requires a functional kinase domain; furthermore, a kinase-inactive Xcsk mutant potently synergizes with Laloo during early vertebrate development, suggesting a fundamental role for the Src kinase-Csk regulatory circuit during mesoderm induction, in vivo.
Collapse
Affiliation(s)
- Y Song
- Department of Pharmacology, Mount Sinai School of Medicine, New York, NY, USA
| | | | | |
Collapse
|
26
|
Abstract
As the sequencing of the human genome is completed by the Human Genome Project, the analysis of this rich source of information will illuminate many areas in medicine and biology. The protein tyrosine kinases are a large multigene family with particular relevance to many human diseases, including cancer. A search of the human genome for tyrosine kinase coding elements identified several novel genes and enabled the creation of a nonredundant catalog of tyrosine kinase genes. Ninety unique kinase genes can be identified in the human genome, along with five pseudogenes. Of the 90 tyrosine kinases, 58 are receptor type, distributed into 20 subfamilies. The 32 nonreceptor tyrosine kinases can be placed in 10 subfamilies. Additionally, mouse orthologs can be identified for nearly all the human tyrosine kinases. The completion of the human tyrosine kinase family tree provides a framework for further advances in biomedical science.
Collapse
Affiliation(s)
- D R Robinson
- Department of Biological Chemistry, UC Davis School of Medicine, UC Davis Cancer Center, Sacramento, California, CA 95817, USA
| | | | | |
Collapse
|