1
|
Sheth AI, Althoff MJ, Tolison H, Engel K, Amaya ML, Krug AE, Young TN, Minhajuddin M, Pei S, Patel SB, Winters A, Miller R, Shelton IT, St-Germain J, Ling T, Jones CL, Raught B, Gillen AE, Ransom M, Staggs S, Smith CA, Pollyea DA, Stevens BM, Jordan CT. Targeting Acute Myeloid Leukemia Stem Cells through Perturbation of Mitochondrial Calcium. Cancer Discov 2024; 14:1922-1939. [PMID: 38787341 PMCID: PMC11452272 DOI: 10.1158/2159-8290.cd-23-1145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 04/19/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
Acute myeloid leukemia stem cells (LSCs) are uniquely reliant on oxidative phosphorylation (OXPHOS) for survival. Moreover, maintenance of OXPHOS is dependent on BCL-2, creating a therapeutic opportunity to target LSCs using the BCL-2 inhibitor venetoclax. Although venetoclax-based regimens have shown promising clinical activity, the emergence of drug resistance is prevalent. Thus, in the present study, we investigated how mitochondrial properties may influence venetoclax responsiveness. Our data show that utilization of mitochondrial calcium is fundamentally different between drug-responsive and nonresponsive LSCs. By comparison, venetoclax-resistant LSCs demonstrate an active metabolic (i.e., OXPHOS) status with relatively high levels of calcium. Consequently, we tested genetic and pharmacological approaches to target the mitochondrial calcium uniporter. We demonstrate that inhibition of calcium uptake reduces OXPHOS and leads to eradication of venetoclax-resistant LSCs. These findings demonstrate a central role for calcium signaling in LSCs and provide an avenue for clinical management of venetoclax resistance. Significance: We identify increased utilization of mitochondrial calcium as a distinct metabolic requirement of venetoclax-resistant LSCs and demonstrate the potential of targeting mitochondrial calcium uptake as a therapeutic strategy.
Collapse
Affiliation(s)
- Anagha Inguva Sheth
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Mark J Althoff
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
- These authors contributed equally
| | - Hunter Tolison
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
- These authors contributed equally
| | - Krysta Engel
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Maria L. Amaya
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Anna E. Krug
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Tracy N. Young
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Mohammad Minhajuddin
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Shanshan Pei
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine
| | - Sweta B. Patel
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Amanda Winters
- Division of Pediatric Hematology and Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Regan Miller
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ian T. Shelton
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jonathan St-Germain
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Tianyi Ling
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Courtney L. Jones
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center; Cincinnati, OH, USA
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Austin E. Gillen
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Monica Ransom
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sarah Staggs
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Clayton A. Smith
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Daniel A. Pollyea
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Brett M. Stevens
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Craig T. Jordan
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
2
|
Sheth AI, Engel K, Tolison H, Althoff MJ, Amaya ML, Krug A, Young T, Pei S, Patel SB, Minhajuddin M, Winters A, Miller R, Shelton I, St-Germain J, Ling T, Jones C, Raught B, Gillen A, Ransom M, Staggs S, Smith CA, Pollyea DA, Stevens BM, Jordan CT. Targeting Acute Myeloid Leukemia Stem Cells Through Perturbation of Mitochondrial Calcium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560330. [PMID: 37873284 PMCID: PMC10592899 DOI: 10.1101/2023.10.02.560330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
We previously reported that acute myeloid leukemia stem cells (LSCs) are uniquely reliant on oxidative phosphorylation (OXPHOS) for survival. Moreover, maintenance of OXPHOS is dependent on BCL2, creating a therapeutic opportunity to target LSCs using the BCL2 inhibitor drug venetoclax. While venetoclax-based regimens have indeed shown promising clinical activity, the emergence of drug resistance is prevalent. Thus, in the present study, we investigated how mitochondrial properties may influence mechanisms that dictate venetoclax responsiveness. Our data show that utilization of mitochondrial calcium is fundamentally different between drug responsive and non-responsive LSCs. By comparison, venetoclax-resistant LSCs demonstrate a more active metabolic (i.e., OXPHOS) status with relatively high steady-state levels of calcium. Consequently, we tested genetic and pharmacological approaches to target the mitochondrial calcium uniporter, MCU. We demonstrate that inhibition of calcium uptake sharply reduces OXPHOS and leads to eradication of venetoclax-resistant LSCs. These findings demonstrate a central role for calcium signaling in the biology of LSCs and provide a therapeutic avenue for clinical management of venetoclax resistance.
Collapse
Affiliation(s)
- Anagha Inguva Sheth
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Krysta Engel
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
- These authors contributed equally
| | - Hunter Tolison
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
- These authors contributed equally
| | - Mark J Althoff
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Maria L. Amaya
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Anna Krug
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Tracy Young
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Shanshan Pei
- Liangzhu Laboratory, Zhejiang University Medical Center, Bone Marrow Transplantation Center, Hangzhou, China
| | - Sweta B. Patel
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Mohammad Minhajuddin
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Amanda Winters
- Division of Pediatric Hematology and Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Regan Miller
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ian Shelton
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jonathan St-Germain
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Tianyi Ling
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Courtney Jones
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Austin Gillen
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Monica Ransom
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sarah Staggs
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Clayton A. Smith
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Daniel A. Pollyea
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Brett M. Stevens
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Craig T. Jordan
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
3
|
Bcl-2 proteins and calcium signaling: complexity beneath the surface. Oncogene 2016; 35:5079-92. [DOI: 10.1038/onc.2016.31] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 01/12/2016] [Accepted: 01/12/2016] [Indexed: 12/12/2022]
|
4
|
Monaco G, Vervliet T, Akl H, Bultynck G. The selective BH4-domain biology of Bcl-2-family members: IP3Rs and beyond. Cell Mol Life Sci 2013; 70:1171-83. [PMID: 22955373 PMCID: PMC11113329 DOI: 10.1007/s00018-012-1118-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 08/01/2012] [Accepted: 08/02/2012] [Indexed: 01/08/2023]
Abstract
Anti-apoptotic Bcl-2-family members not only neutralize pro-apoptotic proteins but also directly regulate intracellular Ca(2+) signaling from the endoplasmic reticulum (ER), critically controlling cellular health, survival, and death initiation. Furthermore, distinct Bcl-2-family members may selectively regulate inositol 1,4,5-trisphosphate receptor (IP3R): Bcl-2 likely acts as an endogenous inhibitor of the IP3R, preventing pro-apoptotic Ca(2+) transients, while Bcl-XL likely acts as an endogenous IP3R-sensitizing protein promoting pro-survival Ca(2+) oscillations. Furthermore, distinct functional domains in Bcl-2 and Bcl-XL may underlie the divergence in IP3R regulation. The Bcl-2 homology (BH) 4 domain, which targets the central modulatory domain of the IP3R, is likely to be Bcl-2's determining factor. In contrast, the hydrophobic cleft targets the C-terminal Ca(2+)-channel tail and might be more crucial for Bcl-XL's function. Furthermore, one amino acid critically different in the sequence of Bcl-2's and Bcl-XL's BH4 domains underpins their selective effect on Ca(2+) signaling and distinct biological properties of Bcl-2 versus Bcl-XL. This difference is evolutionary conserved across five classes of vertebrates and may represent a fundamental divergence in their biological function. Moreover, these insights open novel avenues to selectively suppress malignant Bcl-2 function in cancer cells by targeting its BH4 domain, while maintaining essential Bcl-XL functions in normal cells. Thus, IP3R-derived molecules that mimic the BH4 domain's binding site on the IP3R may function synergistically with BH3-mimetic molecules selectivity suppressing Bcl-2's proto-oncogenic activity. Finally, a more general role for the BH4 domain on IP3Rs, rather than solely anti-apoptotic, may not be excluded as part of a complex network of molecular interactions.
Collapse
MESH Headings
- Animals
- Calcium Signaling/genetics
- Calcium Signaling/physiology
- Humans
- Inositol 1,4,5-Trisphosphate Receptors/chemistry
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Inositol 1,4,5-Trisphosphate Receptors/physiology
- Models, Biological
- Multigene Family/genetics
- Multigene Family/physiology
- Protein Binding/genetics
- Protein Binding/physiology
- Protein Structure, Tertiary/genetics
- Protein Structure, Tertiary/physiology
- Proto-Oncogene Proteins c-bcl-2/chemistry
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Proto-Oncogene Proteins c-bcl-2/physiology
- Substrate Specificity
Collapse
Affiliation(s)
- Giovanni Monaco
- Laboratory of Molecular and Cellular Signaling, Department Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O/N-1 bus 802, 3000 Leuven, Belgium
| | - Tim Vervliet
- Laboratory of Molecular and Cellular Signaling, Department Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O/N-1 bus 802, 3000 Leuven, Belgium
| | - Haidar Akl
- Laboratory of Molecular and Cellular Signaling, Department Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O/N-1 bus 802, 3000 Leuven, Belgium
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O/N-1 bus 802, 3000 Leuven, Belgium
| |
Collapse
|
5
|
Bonneau B, Prudent J, Popgeorgiev N, Gillet G. Non-apoptotic roles of Bcl-2 family: the calcium connection. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1755-65. [PMID: 23360981 DOI: 10.1016/j.bbamcr.2013.01.021] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 01/11/2013] [Accepted: 01/12/2013] [Indexed: 01/06/2023]
Abstract
The existence of the bcl-2 (B-cell lymphoma-2) gene was reported nearly 30 years ago. Yet, Bcl-2 family group of proteins still surprises us with their structural and functional diversity. Since the discovery of the Bcl-2 family of proteins as one of the main apoptosis judges, the precise mechanism of their action remains a hot topic of intensive scientific research and debates. Although extensive work has been performed on the role of mitochondria in apoptosis, more and more studies point out an implication of the endoplasmic reticulum in this process. Interestingly, Bcl-2 family proteins could be localized to both the mitochondria and the endoplasmic reticulum highlighting their crucial role in apoptosis control. In particular, in these organelles Bcl-2 proteins seem to be involved in calcium homeostasis regulation although the mechanisms underlying this function are still misunderstood. We now assume with high degree of certainty that the majority of Bcl-2 family members take part not only in apoptosis regulation but also in other processes important for the cell physiology briefly denominated as "non-apoptotic" functions. Drawing a complete and comprehensive image of Bcl-2 family requires the understanding of their implications in all cellular processes. Here, we review the current knowledge on the control of calcium homeostasis by the Bcl-2 family at the endoplasmic reticulum and at the mitochondria. Then we focus on the non-apoptotic functions of the Bcl-2 proteins in relation with the regulation of this versatile intracellular messenger. This article is part of a Special Issue entitled: 12th European Symposium on Calcium.
Collapse
|
6
|
Marin M. Calcium Signaling in Xenopus oocyte. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:1073-94. [DOI: 10.1007/978-94-007-2888-2_49] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
7
|
Subcellular localization of calcium and Ca-ATPase activity during nuclear maturation in Bufo arenarum oocytes. ZYGOTE 2009; 17:253-60. [PMID: 19397840 DOI: 10.1017/s0967199409005334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The localization of calcium and Ca-ATPase activity in Bufo arenarum oocytes was investigated by ultracytochemical techniques during progesterone-induced nuclear maturation, under in vitro conditions. No Ca2+ deposits were detected in either control oocytes or progesterone-treated ones for 1-2 h. At the time when nuclear migration started, electron dense deposits of Ca2+ were visible in vesicles, endoplasmic reticulum cisternae and in the space between the annulate lamellae membranes. Furthermore, Ca-ATPase activity was also detected in these membrane structures. As maturation progressed, the cation deposits were observed in the cytomembrane structures, which underwent an important reorganization and redistribution. Thus, they moved from the subcortex and became located predominantly in the oocyte cortex area when nuclear maturation ended. Ca2+ stores were observed in vesicles surrounding or between the cortical granules, which are aligned close to the plasma membrane. The positive Ca-ATPase reaction in these membrane structures could indicate that the calcium deposit is an ATP-dependent process. Our results suggest that during oocyte maturation calcium would be stored in membrane structures where it remains available for release at the time of fertilization. Data obtained under our experimental conditions indicate that calcium from the extracellular medium would be important for the oocyte maturation process.
Collapse
|
8
|
El-Jouni W, Jang B, Haun S, Machaca K. Calcium signaling differentiation during Xenopus oocyte maturation. Dev Biol 2005; 288:514-25. [PMID: 16330019 DOI: 10.1016/j.ydbio.2005.10.034] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 10/06/2005] [Accepted: 10/26/2005] [Indexed: 11/24/2022]
Abstract
Ca(2+) is the universal signal for egg activation at fertilization in all sexually reproducing species. The Ca(2+) signal at fertilization is necessary for egg activation and exhibits specialized spatial and temporal dynamics. Eggs acquire the ability to produce the fertilization-specific Ca(2+) signal during oocyte maturation. However, the mechanisms regulating Ca(2+) signaling differentiation during oocyte maturation remain largely unknown. At fertilization, Xenopus eggs produce a cytoplasmic Ca(2+) (Ca(2+)(cyt)) rise that lasts for several minutes, and is required for egg activation. Here, we show that during oocyte maturation Ca(2+) transport effectors are tightly modulated. The plasma membrane Ca(2+) ATPase (PMCA) is completely internalized during maturation, and is therefore unable to extrude Ca(2+) out of the cell. Furthermore, IP(3)-dependent Ca(2+) release is required for the sustained Ca(2+)(cyt) rise in eggs, showing that Ca(2+) that is pumped into the ER leaks back out through IP(3) receptors. This apparent futile cycle allows eggs to maintain elevated cytoplasmic Ca(2+) despite the limited available Ca(2+) in intracellular stores. Therefore, Ca(2+) signaling differentiates in a highly orchestrated fashion during Xenopus oocyte maturation endowing the egg with the capacity to produce a sustained Ca(2+)(cyt) transient at fertilization, which defines the egg's competence to activate and initiate embryonic development.
Collapse
Affiliation(s)
- Wassim El-Jouni
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, 4301 West Markham St. Slot 505, Little Rock, AR 72205, USA
| | | | | | | |
Collapse
|
9
|
Pattacini L, Mancini M, Mazzacurati L, Brusa G, Benvenuti M, Martinelli G, Baccarani M, Santucci MA. Endoplasmic reticulum stress initiates apoptotic death induced by STI571 inhibition of p210 bcr–abl tyrosine kinase. Leuk Res 2004; 28:191-202. [PMID: 14654084 DOI: 10.1016/s0145-2126(03)00218-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The endoplasmic reticulum (ER) is the site where proteins destined to either secretion or different subcellular compartments assemble and the major storage of intracellular Ca(2+). The ER stress resulting from a variety of toxic insults leads to apoptosis. Here, we showed that the apoptotic death triggered by STI571, an inhibitor of the p210 bcr-abl tyrosine kinase, in murine myeloid progenitors transducing the p210 bcr-abl tyrosine kinase of Chronic Myeloid Leukemia (CML) proceeds from ER stress. The Bcl-2 dowmodulation and inactivation induced by the binding to its antagonist: Bad, the release of caspase 12 from the ER membranes in its active form and of Ca(2+) from the ER pool addressed towards ER a sensor of STI571-induced pro-apoptotic signal.
Collapse
Affiliation(s)
- Laura Pattacini
- Istituto di Ematologia e Oncologia Medica, Lorenzo e Ariosto Seràgnoli, Università di Bologna-Medical School, S. Orsola Hospital, Via Massarenti 9, Bologna 40138, Italy
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Sohn J, Khaoustov VI, Xie Q, Chung CC, Krishnan B, Yoffe B. The effect of ursodeoxycholic acid on the survivin in thapsigargin-induced apoptosis. Cancer Lett 2003; 191:83-92. [PMID: 12609713 DOI: 10.1016/s0304-3835(02)00624-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Endoplasmic reticulum (ER) was recently suggested as a third subcellular compartment in apoptotic execution. Survivin is a member of inhibitors of apoptosis and ursodeoxycholic acid (UDCA) prevents apoptosis from various apoptotic stimuli. To assess the activity of survivin and the effect of UDCA on the survivin in ER stress-mediated apoptosis, we treated hepatoma cell lines with thapsigargin (TG). TG-induced apoptosis was assessed by morphological changes, DNA fragmentation, cleavages of poly(ADP-ribose)polymerase (PARP), and activation of calpain and caspase-12. The level of survivin was decreased after TG treatment in hepatoma cell lines indicating that survivin play an important role in ER stress-mediated apoptosis. UDCA prevented decrease in survivin levels and inhibited TG-induced apoptosis and caspase-12 activation suggesting an anti-apoptotic effect of UDCA.
Collapse
Affiliation(s)
- Joohyun Sohn
- Department of Medicine, Baylor College of Medicine and Veterans Affairs Medical Center (151B), 2002 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|