1
|
A Novel Chalcone Derivative Regulates the Expression and Phosphorylation of ERK1/2 by Inhibiting Fli-1 Promoter Activity for Preventing the Malignant Progression of Erythroleukemia. Catalysts 2022. [DOI: 10.3390/catal13010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Acute erythroleukemia is a rare form of acute myeloid leukemia recognized by its distinct phenotypic attribute of erythroblasts proliferation. In this study, in vitro experiments showed that a newly synthesized chalcone (ZH-254) inhibited cell proliferation, caused apoptosis, arrested the cell cycle in the G1 phase, and downregulated Fli-1 expression by inhibiting Fli-1 promoter activity. In vivo experiments showed that ZH-254 could effectively alleviate splenomegaly and prolong the survival of erythroleukemia mice. RT-PCR and Western blot analysis showed that ZH-254 could regulate the expression of Fli-1 target genes and G1-phase-related cell cycle proteins, including Rb, Bcl-2, Bax, ERK1/2, Gata-1, P110, SHIP-1, p-ERK1, CDK4, C-myc, Cyclin D1, Smad-3, GSK-3, and p21. Among them, the compound most significantly regulated the expression and phosphorylation of ERK1, the target gene of Fli-1 involved in regulating cell proliferation and apoptosis. Thus, ZH-254 restricts the malignancy of erythroleukemia by causing the inactivation of Fli-1 expression via suppressing its promoter activity, further regulating the expression and phosphorylation of ERK1- and G1-phase-related genes. These results reveal the critical role of Fli-1 in the growth and survival of various hematological malignancies and point to chalcone derivatives as lead compounds for the development of anti-Fli-1 drugs for the treatment of erythroleukemia with overexpression of Fli-1.
Collapse
|
2
|
Sinkovics JG. Antileukemia and antitumor effects of the graft-versus-host disease: a new immunovirological approach. Acta Microbiol Immunol Hung 2010; 57:253-347. [PMID: 21183421 DOI: 10.1556/amicr.57.2010.4.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In leukemic mice, the native host's explicit and well-defined immune reactions to the leukemia virus (a strong exogenous antigen) and to leukemia cells (pretending in their native hosts to be protected "self" elements) are extinguished and replaced in GvHD (graft-versus-host disease) by those of the immunocompetent donor cells. In many cases, the GvHD-inducer donors display genetically encoded resistance to the leukemia virus. In human patients only antileukemia and anti-tumor cell immune reactions are mobilized; thus, patients are deprived of immune reactions to a strong exogenous antigen (the elusive human leukemia-sarcoma retroviruses). The innate and adaptive immune systems of mice have to sustain the immunosuppressive effects of leukemia-inducing retroviruses. Human patients due to the lack of leukemiainducing retroviral pathogens (if they exist, they have not as yet been discovered), escape such immunological downgrading. After studying leukemogenic retroviruses in murine and feline (and other mammalian) hosts, it is very difficult to dismiss retroviral etiology for human leukemias and sarcomas. Since no characterized and thus recognized leukemogenic-sarcomagenic retroviral agents are being isolated from the vast majority of human leukemias-sarcomas, the treatment for these conditions in mice and in human patients vastly differ. It is immunological and biological modalities (alpha interferons; vaccines; adoptive lymphocyte therapy) that dominate the treatment of murine leukemias, whereas combination chemotherapy remains the main remission-inducing agent in human leukemias-lymphomas and sarcomas (as humanized monoclonal antibodies and immunotoxins move in). Yet, in this apparently different backgrounds in Mus and Homo, GvHD, as a treatment modality, appears to work well in both hosts, by replacing the hosts' anti-leukemia and anti-tumor immune faculties with those of the donor. The clinical application of GvHD in the treatment of human leukemias-lymphomas and malignant solid tumors remains a force worthy of pursuit, refinement and strengthening. Graft engineering and modifications of the inner immunological environment of the recipient host by the activation or administration of tumor memory T cells, selected Treg cells and natural killer (NKT) cell classes and cytokines, and the improved pharmacotherapy of GvHD without reducing its antitumor efficacy, will raise the value of GvHD to the higher ranks of the effective antitumor immunotherapeutical measures. Clinical interventions of HCT/HSCT (hematopoietic cell/stem cell transplants) are now applicable to an extended spectrum of malignant diseases in human patients, being available to elderly patients, who receive non-myeloablative conditioning, are re-enforced by post-transplant donor lymphocyte (NK cell and immune T cell) infusions and post-transplant vaccinations, and the donor cells may derive from engineered grafts, or from cord blood with reduced GvHD, but increased GvL/GvT-inducing capabilities (graft-versus leukemia/tumor). Post-transplant T cell transfusions are possible only if selected leukemia antigen-specific T cell clones are available. In verbatim quotation: "Ultimately, advances in separation of GvT from GvHD will further enhance the potential of allogeneic HCT as a curative treatment for hematological malignancies" (Rezvani, A.R. and Storb, R.F., Journal of Autoimmunity 30:172-179, 2008 (see in the text)). It may be added: for cure, a combination of the GvL/T effects with new targeted therapeutic modalities, as elaborated on in this article, will be necessary.
Collapse
Affiliation(s)
- Joseph G Sinkovics
- The University of South Florida College of Medicine, St. Joseph Hospital's Cancer Institute, Affiliated with the H. L. Moffitt Comprehensive Cancer Center, Tampa, FL 33607-6307, USA.
| |
Collapse
|
3
|
Harikumar KB, Kuttan G, Kuttan R. Inhibition of viral carcinogenesis by Phyllanthus amarus. Integr Cancer Ther 2010; 8:254-60. [PMID: 19815595 DOI: 10.1177/1534735409340162] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Friend murine leukemia virus (FMuLv) is an acutely oncogenic retrovirus, and its infection leads to erythroblastosis and leukemia in mice. This infection model is used in the search for new antiviral agents. In the present study, the authors have evaluated the potential of an extract of Phyllanthus amarus against FMuLv-induced erythroleukemia in BALB/c mice. Injection of newborn mice with FMuLv resulted in leukemia and animals died due to splenomegaly. Oral administration of P.amarus was found to enhance the life span of leukemia-harboring animals and decrease the incidence of anemia. The authors also performed a series of hematological, biochemical, histopathological, and gene expression analyses to evaluate the effect of P.amarus administration on erythroleukemia initiation and progression. The data obtained indicate that P.amarus administration could significantly decrease the progression of erythroleukemia. Treatment with P.amarus induced the expression of p53 and p45NFE2 and decreased the expression of Bcl-2 in the spleen of infected mice. Histopathological evaluations of the spleen demonstrated that administration of P.amarus decreased the infiltration of leukemic cells into the sinusoidal space when compared with the vehicle treated group. P.amarus is known to inhibit chemically induced neoplasm in different rodent models.The current results indicate that P.amarus has the ability to suppress virally induced cancers as well.
Collapse
|
4
|
Cui JW, Vecchiarelli-Federico LM, Li YJ, Wang GJ, Ben-David Y. Continuous Fli-1 expression plays an essential role in the proliferation and survival of F-MuLV-induced erythroleukemia and human erythroleukemia. Leukemia 2009; 23:1311-9. [PMID: 19282832 DOI: 10.1038/leu.2009.20] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Erythroleukemia induced by Friend Murine Leukemia Virus (F-MuLV) serves as a powerful tool for the study of multistage carcinogenesis and hematological malignancies in mice. Fli-1, a proto-oncogene and member of the Ets family, is activated through viral integration in F-MuLV-induced erythroleukemia, and is the most critical event in the induction of this disease. Fli-1 aberrant regulation is also observed in human malignancies, including Ewing's sarcoma, which is often linked to expression of the EWS/Fli-1 fusion oncoprotein. Here we examined the effects of Fli-1 inhibition to further elucidate its role in these pathological occurrences. The constitutive suppression of Fli-1, through RNA interference (RNAi), inhibits growth and induces death in F-MuLV-induced erythroleukemia cells. Expression of a dominant negative protein Engrailed (En)/Fli-1 reduces proliferation of EWS/Fli-1-transformed NIH-3T3 cells, and both F-MuLV-induced and human erythroleukemia cells. F-MuLV-induced erythroleukemia cells also display increased apoptosis, associated with reduced expression of bcl-2, a known fli-1 target gene. Introduction of En/Fli-1 into an F-MuLV-infected erythroblastic cell line induces differentiation, as shown by increased alpha-globin expression. These results suggest, for the first time, an essential role for continuous Fli-1 overexpression in the maintenance and survival of the malignant phenotype in murine and human erythroleukemias.
Collapse
Affiliation(s)
- J-W Cui
- Department of Molecular and Cellular Biology, Sunnybrook Health Sciences Centre, Toronto, Canada
| | | | | | | | | |
Collapse
|
5
|
Deichman GI, Dyakova NA, Matveeva VA, Kashkina LM. Alternative production of Bcl-2 and Bax by tumor cells determines the rates of in vivo tumor progression: Suggested mechanisms. J Cell Biochem 2007; 101:1148-64. [PMID: 17295204 DOI: 10.1002/jcb.21242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The hypothesis tested in the study suggests that mechanisms of the earlier described delayed or accelerated tumor progression may be regulated by the antiapoptotic and proapoptotic cellular programs activated in stress reactions of transformed cells to the host normal cellular environment. Therefore, spontaneously transformed hamster cell line STHE, its bcl-2-transduced line STHE-Bcl-2, and 64 of their descendant tumor cell variants naturally selected in two in vivo regimes (local tumor growth versus dissemination) were examined. The role of Bcl-2 and the possible activation of endogenous death-signaling Bax, Ras, and HSP90/HSP70 stress proteins in STHE (Bcl-2+/-) tumor cell variants were studied in dynamics of in vivo tumor progression. The data demonstrate: (1) Immediate in vivo activation of Bax and of HSP90/HSP70 stress proteins in disseminated STHE cells on the background of accelerated tumor progression; (2) No immediate activation of Bax and the gradual downregulation of Bcl-2 in STHE-Bcl-2 cells on the background of delayed tumor progression; (3) Alternative and mutually suppressive character of Bcl-2 and Bax expression in both regimes of tumor progression; (4) In the later stages of tumor progression, the regular transit of the initial Bcl-2 antiapoptotic, Bax-suppressing program, and the delayed tumor progression towards Bcl-2 loss, activation of Bax, and acceleration of tumor progression. Thus, the delay of tumor progression is apparently determined by the ability of Bcl-2-expressing tumor cells to extinguish the cell-damaging environmental stress signals and Bax activation, while its acceleration correlates with Bcl-2 loss, activation of proapoptotic Bax, and tumor cells damage.
Collapse
Affiliation(s)
- Galina I Deichman
- Laboratory of Antitumor Immunity, Institute of Carcinogenesis, N. N. Blokchin Cancer Research Center, Russian Academy of Medical Sciences, 115478 Moscow, Russia.
| | | | | | | |
Collapse
|
6
|
Cervi D, Truong AHL, Lee JS, Sukhai N, Li YJ, Koki A, Ben-David Y. Phosphorylation status of c-Kit and Epo receptors, and the presence of wild-type p53 confer in vitro resistance of murine erythroleukemic cells to Celecoxib. Oncogene 2004; 23:2305-14. [PMID: 14743207 DOI: 10.1038/sj.onc.1207400] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It is well established that selective COX-2 inhibitors exhibit potent effects against progression of select solid tumours. However, their effects on liquid tumours have not been fully established. By taking advantage of murine Friend Disease we have shown a strong antileukemic effect of celecoxib by determining novel in vitro targets. Western blot analyses revealed the expression of COX-2 in a panel of Friend Virus-transformed, splenic-derived primary erythroleukemic blasts and established cell lines generated in our laboratory. We have shown that celecoxib at concentrations as low as 20 microM significantly suppresses proliferation of the selected murine erythroleukemia cell line HB60-5. The greatest proliferative inhibition was seen at 40 microM of celecoxib, resulting in apoptosis. Our results also demonstrate that treatment of the established murine erythroleukemia cell line HB60-5 with celecoxib results in suppression of c-Kit and erythropoietin receptor (Epo-R) phosphorylation resulting in apoptosis, likely through decreased levels of survival factors. However, upon overexpression of c-Kit alone in these cells a significant increase in survival and twofold increase in proliferation in the presence of celecoxib were observed (P < 0.05). Finally, since responsiveness of our murine erythroleukemia cell lines to celecoxib is above the reported physiologically achievable levels in vivo, we have provided in vitro evidence to suggest that reduced sensitivity of erythroleukemic cells to lower doses of celecoxib may be a consequence of the loss of wild-type p53. These findings are pivotal in addressing potential discrepancies associated with sensitivity of murine erythroleukemic cells to celecoxib in vitro versus in vivo.
Collapse
Affiliation(s)
- David Cervi
- Department of Medical Biophysics, Sunnybrook and Women's College Health Sciences Centre and Toronto Sunnybrook Regional Cancer Centre, University of Toronto, Ontario M4N 3M5, Canada
| | | | | | | | | | | | | |
Collapse
|
7
|
Ano S, Pereira R, Pironin M, Lesault I, Milley C, Lebigot I, Quang CT, Ghysdael J. Erythroblast transformation by FLI-1 depends upon its specific DNA binding and transcriptional activation properties. J Biol Chem 2003; 279:2993-3002. [PMID: 14570912 DOI: 10.1074/jbc.m303816200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
FLI-1 is a transcriptional regulator of the ETS family of proteins. Insertional activation at the FLI-1 locus is an early event in F-murine leukemia virus-induced erythroleukemia. Consistent with its essential role in erythroid transformation, enforced expression of FLI-1 in primary erythroblasts strongly impairs the response of these cells to erythropoietin (Epo), a cytokine essential to erythropoiesis. We show here that point mutations in the ETS domain that abolished FLI-1 binding to specific DNA elements (ETS-binding sites) suppressed the ability of FLI-1 to transform erythroblasts. The exchange of the entire ETS domain (DNA binding domain) of FLI-1 for that of PU.1 changed the DNA binding specificity of FLI-1 for that of PU.1 and impaired FLI-1 transforming properties. In contrast, ETS domain swapping mutants that maintained the DNA binding specificity of FLI-1 did not affect the ability of FLI-1 to transform erythroblasts. Deletion and swapping mutants that failed to inhibit the DNA binding activity of FLI-1 but impaired its transcriptional activation properties were also transformation-defective. Taken together, these results show that both the ability of FLI-1 to inhibit Epo-induced differentiation of erythroblasts and to confer enhanced cell survival in the absence of Epo critically depend upon FLI-1 ETS-binding site-dependent transcriptional activation properties.
Collapse
Affiliation(s)
- Sabine Ano
- CNRS UMR 146, Institut Curie, Centre Universitaire, Bâatiment 110, 91405 Orsay, France
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Tumors frequently acquire resistance to apoptosis that is expected to contribute to malignant phenotype and reduce sensitivity to treatment. In fact, inactivation of p53 tumor suppressor gene resulting in suppression of apoptosis serves as a negative prognostic marker. Surprisingly, expression of a strong anti-apoptotic protein Bcl-2, another mechanism to avoid apoptosis, was found to be associated with a favorable prognosis. This paradoxical anti-progressor function of Bcl-2 has been explained in literature based on the negative effect of Bcl-2 on cell proliferation. Here, by analyzing accumulated experimental and clinical data, we provide evidence supporting another hypothesis that defines apoptosis as an accelerator of tumor progression. The mechanism of anti-progressor function of Bcl-2 is based on creation of tumors that maintain control of genomic stability by eliminating selective advantages for the cells that acquire resistance to apoptosis through loss of p53. Thus, inhibition of apoptosis does not lead to loss of genomic stability and creates tumor environment that no longer supports further tumor progression and inhibitors of apoptosis can be considered as factors suppressing tumor progression.
Collapse
Affiliation(s)
- Katerina V Gurova
- Department of Molecular Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
9
|
Cataldi A, Centurione L, Di Pietro R, Rapino M, Bosco D, Grifone G, Garaci F, Rana R. Protein kinase C zeta nuclear translocation mediates the occurrence of radioresistance in friend erythroleukemia cells. J Cell Biochem 2003; 88:144-51. [PMID: 12461784 DOI: 10.1002/jcb.10305] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Friend erythroleukemia cells require high doses (15 Gy) of ionizing radiation to display a reduced rate of proliferation and an increased number of dead cells. Since ionizing radiation can activate several signaling pathways at the plasma membrane which can lead to the nuclear translocation of a number of proteins, we looked at the intranuclear signaling system activated by Protein Kinases C, being this family of enzymes involved in the regulation of cell growth and death. Our results show an early and dose-dependent increased activity of zeta and epsilon isoforms, although PKC zeta is the only isoform significantly active and translocated into the nuclear compartment upon low (1.5 Gy) and high (15 Gy) radiation doses. These observations are concomitant and consistent with an increase in the anti-apoptotic protein Bcl-2 level upon both radiation doses. Our results point at the involvement of the PKC pathway in the survival response to ionizing radiation of this peculiar cell line, offering PKC zeta for consideration as a possible target of pharmacological treatments aimed at amplifying the effect of such a genotoxic agent.
Collapse
Affiliation(s)
- A Cataldi
- Dipartimento di Biomorfologia, Università G. D'Annunzio, Chieti, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Lesault I, Tran Quang C, Frampton J, Ghysdael J. Direct regulation of BCL-2 by FLI-1 is involved in the survival of FLI-1-transformed erythroblasts. EMBO J 2002; 21:694-703. [PMID: 11847117 PMCID: PMC125347 DOI: 10.1093/emboj/21.4.694] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Rearrangement of the FLI-1 locus with ensuing overexpression of FLI-1 is an early event in Friend murine leukemia virus-induced disease. When overexpressed in primary erythroblasts, FLI-1 blocks erythropoeitin (Epo)-induced terminal differentiation and inhibits apoptosis normally induced in response to Epo withdrawal. We show here that the survival-inducing property of FLI-1 is associated with increased transcription of BCL-2. We further show that FLI-1 binds BCL-2 promoter sequences in transformed erythroblasts, and in vitro studies identify specific FLI-1-binding sites essential for the transactivation of the BCL-2 promoter by FLI-1. Analysis of FLI-1 mutants showed a correlation between the ability of FLI-1 to transactivate BCL-2 promoter sequences and their ability to inhibit apoptosis in the absence of Epo. Moreover, inhibitor studies confirmed the essential role of BCL-2 for FLI-1-transformed erythroblast survival. Finally, enforced expression of BCL-2 was sufficient to promote survival and terminal differentiation of erythroblasts in the absence of Epo. These results show that BCL-2 is an in vivo target of FLI-1 in FLI-1-transformed erythroblasts and that its deregulated expression is instrumental in the survival of these cells.
Collapse
Affiliation(s)
| | | | - Jon Frampton
- CNRS UMR146, Institut Curie-Section de Recherche, Centre Universitaire, Bat. 110, 91405 Orsay, France and
Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK Corresponding author e-mail: I.Lesault and C.Tran Quang contributed equally to this work
| | - Jacques Ghysdael
- CNRS UMR146, Institut Curie-Section de Recherche, Centre Universitaire, Bat. 110, 91405 Orsay, France and
Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK Corresponding author e-mail: I.Lesault and C.Tran Quang contributed equally to this work
| |
Collapse
|