1
|
Kulikov EI, Malakheeva LI, Komarchev AS. The role of BTG1 and BTG2 genes and their effects on insulin in poultry. Front Physiol 2024; 15:1315346. [PMID: 38357499 PMCID: PMC10864570 DOI: 10.3389/fphys.2024.1315346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Affiliation(s)
- Egor Igorevich Kulikov
- Federal Scientific Center, All-Russian Research and Technological Poultry Institute, RAS, Sergiyev Posad, Russia
| | | | | |
Collapse
|
2
|
Mlynarczyk C, Teater M, Pae J, Chin CR, Wang L, Arulraj T, Barisic D, Papin A, Hoehn KB, Kots E, Ersching J, Bandyopadhyay A, Barin E, Poh HX, Evans CM, Chadburn A, Chen Z, Shen H, Isles HM, Pelzer B, Tsialta I, Doane AS, Geng H, Rehman MH, Melnick J, Morgan W, Nguyen DTT, Elemento O, Kharas MG, Jaffrey SR, Scott DW, Khelashvili G, Meyer-Hermann M, Victora GD, Melnick A. BTG1 mutation yields supercompetitive B cells primed for malignant transformation. Science 2023; 379:eabj7412. [PMID: 36656933 PMCID: PMC10515739 DOI: 10.1126/science.abj7412] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 12/12/2022] [Indexed: 01/21/2023]
Abstract
Multicellular life requires altruistic cooperation between cells. The adaptive immune system is a notable exception, wherein germinal center B cells compete vigorously for limiting positive selection signals. Studying primary human lymphomas and developing new mouse models, we found that mutations affecting BTG1 disrupt a critical immune gatekeeper mechanism that strictly limits B cell fitness during antibody affinity maturation. This mechanism converted germinal center B cells into supercompetitors that rapidly outstrip their normal counterparts. This effect was conferred by a small shift in MYC protein induction kinetics but resulted in aggressive invasive lymphomas, which in humans are linked to dire clinical outcomes. Our findings reveal a delicate evolutionary trade-off between natural selection of B cells to provide immunity and potentially dangerous features that recall the more competitive nature of unicellular organisms.
Collapse
Affiliation(s)
- Coraline Mlynarczyk
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Matt Teater
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Juhee Pae
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Christopher R. Chin
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Tri-Institutional PhD Program in Computational Biomedicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Ling Wang
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Theinmozhi Arulraj
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology (BRICS), Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Darko Barisic
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Antonin Papin
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Kenneth B. Hoehn
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Ekaterina Kots
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Jonatan Ersching
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Arnab Bandyopadhyay
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology (BRICS), Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ersilia Barin
- Department of Pharmacology and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Hui Xian Poh
- Department of Pharmacology and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Chiara M. Evans
- Molecular Pharmacology Program and Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Amy Chadburn
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Zhengming Chen
- Division of Biostatistics, Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Hao Shen
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Hannah M. Isles
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Benedikt Pelzer
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Ioanna Tsialta
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Ashley S. Doane
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Huimin Geng
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Muhammad Hassan Rehman
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Medicine–Qatar, Doha, Qatar
| | - Jonah Melnick
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Wyatt Morgan
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Diu T. T. Nguyen
- Molecular Pharmacology Program and Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Olivier Elemento
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine and Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Michael G. Kharas
- Molecular Pharmacology Program and Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samie R. Jaffrey
- Department of Pharmacology and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - David W. Scott
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC, Canada
| | - George Khelashvili
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology (BRICS), Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Gabriel D. Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Ari Melnick
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
3
|
Kots E, Mlynarczyk C, Melnick A, Khelashvili G. Conformational transitions in BTG1 antiproliferative protein and their modulation by disease mutants. Biophys J 2022; 121:3753-3764. [PMID: 35459639 PMCID: PMC9617077 DOI: 10.1016/j.bpj.2022.04.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/01/2022] [Accepted: 04/15/2022] [Indexed: 12/01/2022] Open
Abstract
B cell translocation gene 1 (BTG1) protein belongs to the BTG/transducer of ERBB2 (TOB) family of antiproliferative proteins whose members regulate various key cellular processes such as cell cycle progression, apoptosis, and differentiation. Somatic missense mutations in BTG1 are found in ∼70% of a particularly malignant and disseminated subtype of diffuse large B cell lymphoma (DLBCL). Antiproliferative activity of BTG1 has been linked to its ability to associate with transcriptional cofactors and various enzymes. However, molecular mechanisms underlying these functional interactions and how the disease-linked mutations in BTG1 affect these mechanisms are currently unknown. To start filling these knowledge gaps, here, using atomistic molecular dynamics (MD) simulations, we explored structural, dynamic, and kinetic characteristics of BTG1 protein, and studied how various DLBCL mutations affect these characteristics. We focused on the protein region formed by α2 and α4 helices, as this interface has been reported not only to serve as a binding hotspot for several cellular partners but also to harbor sites for the majority of known DLBCL mutations. Markov state modeling analysis of extensive MD simulations revealed that the α2-α4 interface in the wild-type (WT) BTG1 undergoes conformational transitions between closed and open metastable states. Importantly, we show that some of the mutations in this region that are observed in DLBCL, such as Q36H, F40C, Q45P, E50K (in α2), and A83T and A84E (in α4), either overstabilize one of these two metastable states or give rise to new conformations in which these helices are distorted (i.e., kinked or unfolded). Based on these results, we conclude that the rapid interconversion between the closed and open conformations of the α2-α4 interface is an essential component of the BTG1 functional dynamics that can prime the protein for functional associations with its binding partners. Disruption of the native dynamic equilibrium by DLBCL mutants leads to the ensemble of conformations in BTG1 that are unlikely structurally and/or kinetically to enable productive functional interactions with the binding proteins.
Collapse
Affiliation(s)
- Ekaterina Kots
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - Coraline Mlynarczyk
- Division of Hematology/Oncology, Department of Medicine, Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Ari Melnick
- Division of Hematology/Oncology, Department of Medicine, Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - George Khelashvili
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
4
|
Key Genes Regulating Skeletal Muscle Development and Growth in Farm Animals. Animals (Basel) 2021; 11:ani11030835. [PMID: 33809500 PMCID: PMC7999090 DOI: 10.3390/ani11030835] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Skeletal muscle mass is an important economic trait, and muscle development and growth is a crucial factor to supply enough meat for human consumption. Thus, understanding (candidate) genes regulating skeletal muscle development is crucial for understanding molecular genetic regulation of muscle growth and can be benefit the meat industry toward the goal of increasing meat yields. During the past years, significant progress has been made for understanding these mechanisms, and thus, we decided to write a comprehensive review covering regulators and (candidate) genes crucial for muscle development and growth in farm animals. Detection of these genes and factors increases our understanding of muscle growth and development and is a great help for breeders to satisfy demands for meat production on a global scale. Abstract Farm-animal species play crucial roles in satisfying demands for meat on a global scale, and they are genetically being developed to enhance the efficiency of meat production. In particular, one of the important breeders’ aims is to increase skeletal muscle growth in farm animals. The enhancement of muscle development and growth is crucial to meet consumers’ demands regarding meat quality. Fetal skeletal muscle development involves myogenesis (with myoblast proliferation, differentiation, and fusion), fibrogenesis, and adipogenesis. Typically, myogenesis is regulated by a convoluted network of intrinsic and extrinsic factors monitored by myogenic regulatory factor genes in two or three phases, as well as genes that code for kinases. Marker-assisted selection relies on candidate genes related positively or negatively to muscle development and can be a strong supplement to classical selection strategies in farm animals. This comprehensive review covers important (candidate) genes that regulate muscle development and growth in farm animals (cattle, sheep, chicken, and pig). The identification of these genes is an important step toward the goal of increasing meat yields and improves meat quality.
Collapse
|
5
|
Yang L, Niu Q, Zhang T, Zhao G, Zhu B, Chen Y, Zhang L, Gao X, Gao H, Liu GE, Li J, Xu L. Genomic sequencing analysis reveals copy number variations and their associations with economically important traits in beef cattle. Genomics 2020; 113:812-820. [PMID: 33080318 DOI: 10.1016/j.ygeno.2020.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/21/2020] [Accepted: 10/05/2020] [Indexed: 11/25/2022]
Abstract
Copy number variation (CNV) represents a major source of genetic variation, which may have potentially large effects, including alternating gene regulation and dosage, as well as contributing to gene expression and risk for normal phenotypic variability. We carried out a comprehensive analysis of CNV based on whole genome sequencing in Chinese Simmental beef cattle. Totally, we found 9313 deletion and 234 duplication events, covering 147.5 Mb autosomal regions. Within them, 257 deletion events of high frequency overlapped with 193 known RefGenes. Among these genes, we observed several genes were related to economically important traits, like residual feed intake, immune responding, pregnancy rate and muscle differentiation. Using a locus-based analysis, we identified 11 deletions and 1 duplication, which were significantly associated with three traits including carcass weight, tenderloin and longissimus muscle area. Our sequencing-based study provided important insights into investigating the association of CNVs with important traits in beef cattle.
Collapse
Affiliation(s)
- Liu Yang
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Qunhao Niu
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tianliu Zhang
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guoyao Zhao
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bo Zhu
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yan Chen
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lupei Zhang
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xue Gao
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huijiang Gao
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - George E Liu
- Animal Genomics and Improvement Laboratory, United States Department of Agriculture-Agricultural Research Service, Beltsville, MD 20705, USA.
| | - Junya Li
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Lingyang Xu
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
6
|
Yuniati L, Scheijen B, van der Meer LT, van Leeuwen FN. Tumor suppressors BTG1 and BTG2: Beyond growth control. J Cell Physiol 2018; 234:5379-5389. [PMID: 30350856 PMCID: PMC6587536 DOI: 10.1002/jcp.27407] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 08/22/2018] [Indexed: 01/21/2023]
Abstract
Since the identification of B‐cell translocation gene 1 (BTG1) and BTG2 as antiproliferation genes more than two decades ago, their protein products have been implicated in a variety of cellular processes including cell division, DNA repair, transcriptional regulation and messenger RNA stability. In addition to affecting differentiation during development and in the adult, BTG proteins play an important role in maintaining homeostasis under conditions of cellular stress. Genomic profiling of B‐cell leukemia and lymphoma has put BTG1 and BTG2 in the spotlight, since both genes are frequently deleted or mutated in these malignancies, pointing towards a role as tumor suppressors. Moreover, in solid tumors, reduced expression of BTG1 or BTG2 is often correlated with malignant cell behavior and poor treatment outcome. Recent studies have uncovered novel roles for BTG1 and BTG2 in genotoxic and integrated stress responses, as well as during hematopoiesis. This review summarizes what is currently known about the roles of BTG1 and BTG2 in these and other cellular processes. In addition, we will highlight the molecular mechanisms and biological consequences of BTG1 and BTG2 deregulation during cancer progression and elaborate on the potential clinical implications of these findings.
Collapse
Affiliation(s)
- Laurensia Yuniati
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands.,Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Blanca Scheijen
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laurens T van der Meer
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frank N van Leeuwen
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Iung LHDS, Mulder HA, Neves HHDR, Carvalheiro R. Genomic regions underlying uniformity of yearling weight in Nellore cattle evaluated under different response variables. BMC Genomics 2018; 19:619. [PMID: 30115034 PMCID: PMC6097312 DOI: 10.1186/s12864-018-5003-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 08/08/2018] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND In livestock, residual variance has been studied because of the interest to improve uniformity of production. Several studies have provided evidence that residual variance is partially under genetic control; however, few investigations have elucidated genes that control it. The aim of this study was to identify genomic regions associated with within-family residual variance of yearling weight (YW; N = 423) in Nellore bulls with high density SNP data, using different response variables. For this, solutions from double hierarchical generalized linear models (DHGLM) were used to provide the response variables, as follows: a DGHLM assuming non-null genetic correlation between mean and residual variance (rmv ≠ 0) to obtain deregressed EBV for mean (dEBVm) and residual variance (dEBVv); and a DHGLM assuming rmv = 0 to obtain two alternative response variables for residual variance, dEBVv_r0 and log-transformed variance of estimated residuals (ln_[Formula: see text]). RESULTS The dEBVm and dEBVv were highly correlated, resulting in common regions associated with mean and residual variance of YW. However, higher effects on variance than the mean showed that these regions had effects on the variance beyond scale effects. More independent association results between mean and residual variance were obtained when null rmv was assumed. While 13 and 4 single nucleotide polymorphisms (SNPs) showed a strong association (Bayes Factor > 20) with dEBVv and ln_[Formula: see text], respectively, only suggestive signals were found for dEBVv_r0. All overlapping 1-Mb windows among top 20 between dEBVm and dEBVv were previously associated with growth traits. The potential candidate genes for uniformity are involved in metabolism, stress, inflammatory and immune responses, mineralization, neuronal activity and bone formation. CONCLUSIONS It is necessary to use a strategy like assuming null rmv to obtain genomic regions associated with uniformity that are not associated with the mean. Genes involved not only in metabolism, but also stress, inflammatory and immune responses, mineralization, neuronal activity and bone formation were the most promising biological candidates for uniformity of YW. Although no clear evidence of using a specific response variable was found, we recommend consider different response variables to study uniformity to increase evidence on candidate regions and biological mechanisms behind it.
Collapse
Affiliation(s)
- Laiza Helena de Souza Iung
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Via de Acesso Prof. Paulo Donato Castelane, S/N, Vila Industrial, FCAV/UNESP, Jaboticabal, São Paulo, 14884-900 Brazil
| | - Herman Arend Mulder
- Wageningen University & Research Animal Breeding and Genomics, P.O. Box 338, 6700 AH Wageningen, The Netherlands
| | | | - Roberto Carvalheiro
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Via de Acesso Prof. Paulo Donato Castelane, S/N, Vila Industrial, FCAV/UNESP, Jaboticabal, São Paulo, 14884-900 Brazil
| |
Collapse
|
8
|
Zhao S, Chen SR, Yang XF, Shen DF, Takano Y, Su RJ, Zheng HC. BTG1 might be employed as a biomarker for carcinogenesis and a target for gene therapy in colorectal cancers. Oncotarget 2018; 8:7502-7520. [PMID: 27447746 PMCID: PMC5352338 DOI: 10.18632/oncotarget.10649] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 06/03/2016] [Indexed: 12/17/2022] Open
Abstract
Here, BTG1 overexpression inhibited proliferation, induced differentiation, autophagy, and apoptosis in colorectal cancer cells (p2 arrest might be related to Cyclin B1 and Cdc25B hypoexpression in HCT-15 transfectants, while G1 arrest in HCT-116 transfectants overexpressing p21 and p27. BTG1 overexpression decreased the expression of Bcl-2, Bcl-xL, XIAP, Akt1 or survivin and increased the expression of Bax or p53 in colorectal cancer cells. BTG1-induced autophagy was dependent on Beclin-1 expression. BTG1 overexpression might weaken β-catenin pathway in colorectal cancer cells. The chemosensitivity of BTG1 transfectants to paclitaxel, cisplatin, MG132 or SAHA was positively correlated with its apoptotic induction. There was a lower expression level of BTG1 in cancer than matched non-neoplastic mucosa by RT-PCR (p
Collapse
Affiliation(s)
- Shuang Zhao
- Cancer Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Animal Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Shu-Rui Chen
- Department of Science and Technology, Jinzhou Medical University, Jinzhou, China
| | - Xue-Feng Yang
- Cancer Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Animal Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Dao-Fu Shen
- Cancer Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Animal Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yasuo Takano
- School of Health Science, Tokyo University of Technology, Nishi-Kamata, Ohta-ku, Tokyo, Japan
| | - Rong-Jian Su
- Life Science Institute of Jinzhou Medical University, Jinzhou, China
| | - Hua-Chuan Zheng
- Cancer Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Animal Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.,Life Science Institute of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
9
|
Liu R, Cheng Q, Wang X, Chen H, Wang W, Zhang H, Wang L, Song L. The B-cell translocation gene 1 (CgBTG1) identified in oyster Crassostrea gigas exhibit multiple functions in immune response. FISH & SHELLFISH IMMUNOLOGY 2017; 61:68-78. [PMID: 27940367 DOI: 10.1016/j.fsi.2016.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 11/26/2016] [Accepted: 12/02/2016] [Indexed: 06/06/2023]
Abstract
B-cell translocation gene 1 (BTG1) is a member of the anti-proliferative gene family, which plays important roles in regulation of cell cycle. In the present study, a B-cell translocation gene 1 molecule homologue (designed CgBTG1) are identified and characterized in oyster Crassostrea gigas. CgBTG1 contains a conserved BTG domain with Box A and Box B motifs, and it shares high similarities with both BTG1 and BTG2 proteins in vertebrates. CgBTG1 mRNA is predominantly expressed in hemocytes, and its expression level in hemocytes is significantly up-regulated at 6 h (5.40-fold, p < 0.01) post Vibrio splendidus stimulation. The apoptosis rate of oyster hemocytes is significantly decreased (p < 0.05) after CgBTG1 interfered by dsRNA (dsCgBTG1). This is indicated that CgBTG1 participated in the regulation of oyster hemocytes apoptosis. Furthermore, CgBTG1 could also induce the apoptosis of cancer cells (HeLa, A549 and BEL7402) in vitro. Compared with normal oysters, both vessel-like structures and muscle fibers in CgBTG1 interfered oysters are severely damaged after V. splendidus challenge in paraffin section, considering that CgBTG1 possessed an analogous feature of angiogenesis for maintenance of vessel-like structures in adductor muscle of oyster. The results suggests that CgBTG1 is a multi-functional molecule involved in the immune response of C. gigas against pathogen infection, which provides more clues for intensive studies of BTG family proteins in invertebrates.
Collapse
Affiliation(s)
- Rui Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Qi Cheng
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiudan Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weilin Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingling Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
10
|
Crispim AC, Kelly MJ, Guimarães SEF, e Silva FF, Fortes MRS, Wenceslau RR, Moore S. Multi-Trait GWAS and New Candidate Genes Annotation for Growth Curve Parameters in Brahman Cattle. PLoS One 2015; 10:e0139906. [PMID: 26445451 PMCID: PMC4622042 DOI: 10.1371/journal.pone.0139906] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 09/18/2015] [Indexed: 12/16/2022] Open
Abstract
Understanding the genetic architecture of beef cattle growth cannot be limited simply to the genome-wide association study (GWAS) for body weight at any specific ages, but should be extended to a more general purpose by considering the whole growth trajectory over time using a growth curve approach. For such an approach, the parameters that are used to describe growth curves were treated as phenotypes under a GWAS model. Data from 1,255 Brahman cattle that were weighed at birth, 6, 12, 15, 18, and 24 months of age were analyzed. Parameter estimates, such as mature weight (A) and maturity rate (K) from nonlinear models are utilized as substitutes for the original body weights for the GWAS analysis. We chose the best nonlinear model to describe the weight-age data, and the estimated parameters were used as phenotypes in a multi-trait GWAS. Our aims were to identify and characterize associated SNP markers to indicate SNP-derived candidate genes and annotate their function as related to growth processes in beef cattle. The Brody model presented the best goodness of fit, and the heritability values for the parameter estimates for mature weight (A) and maturity rate (K) were 0.23 and 0.32, respectively, proving that these traits can be a feasible alternative when the objective is to change the shape of growth curves within genetic improvement programs. The genetic correlation between A and K was -0.84, indicating that animals with lower mature body weights reached that weight at younger ages. One hundred and sixty seven (167) and two hundred and sixty two (262) significant SNPs were associated with A and K, respectively. The annotated genes closest to the most significant SNPs for A had direct biological functions related to muscle development (RAB28), myogenic induction (BTG1), fetal growth (IL2), and body weights (APEX2); K genes were functionally associated with body weight, body height, average daily gain (TMEM18), and skeletal muscle development (SMN1). Candidate genes emerging from this GWAS may inform the search for causative mutations that could underpin genomic breeding for improved growth rates.
Collapse
Affiliation(s)
- Aline Camporez Crispim
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Matthew John Kelly
- Queensland Alliance for Agriculture & Food Innovation University of Queensland, Brisbane, Queensland, Australia
| | | | | | | | - Raphael Rocha Wenceslau
- Animal Science Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Stephen Moore
- Queensland Alliance for Agriculture & Food Innovation University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
11
|
Diversity of clinical implication of B-cell translocation gene 1 expression by histopathologic and anatomic subtypes of gastric cancer. Dig Dis Sci 2015; 60:1256-64. [PMID: 25487193 DOI: 10.1007/s10620-014-3477-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/28/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND Genetic signatures may differ by histopathologic and anatomic subtypes of gastric cancer (GC). B-cell translocation gene 1 (BTG1) was identified as one of genes downregulated in GC tissues from our microarray data. AIMS To evaluate the clinical implications of BTG1 expression in GC and the genetic diversity among GC subtypes. METHODS BTG1 mRNA expression was analyzed in GC cell lines and 233 pairs of surgical specimens. The mutational and methylation status of BTG1 in GC cell lines was analyzed, and immunohistochemistry was conducted to determine the distribution of BTG1. The pattern and prognostic significance of BTG1 expression were correlated with the three proposed GC subtypes. RESULTS BTG1 mRNA was downregulated in 82 % of GC cell lines and in 88 % of clinical GC tissues. Promoter hypermethylation events or sequence mutations were not detected in GC cell lines. The pattern of BTG1 expression as observed by immunohistochemistry was consistent with that of its mRNA. Downregulation of BTG1 mRNA in GCs was significantly associated with shorter disease-specific and recurrence-free survival. Multivariate analysis of disease-specific survival identified downregulation of BTG1 transcription as an independent prognostic factor. BTG1 mRNA expression was more strongly suppressed in proximal nondiffuse and diffuse GC compared with distal nondiffuse GC, and subgroup analysis revealed that BTG1 downregulation led to adverse prognosis, specifically in patients with proximal nondiffuse and diffuse GC. CONCLUSIONS Altered expression of BTG1 is a potential biomarker for carcinogenesis and progression of GC, particularly for proximal nondiffuse and diffuse GC.
Collapse
|
12
|
Peng K, Wang CY, Wang JH, Sheng JQ, Shi JW, Li J, Hong YJ. Molecular cloning, sequence analysis, and cadmium stress-rated expression changes of BTG1 in freshwater pearl mussel (Hyriopsis schlegelii). DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2015; 35:389-97. [PMID: 25297078 DOI: 10.13918/j.issn.2095-8137.2014.5.389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The B cells translocation gene 1 (BTG1) is a member of the BTG/TOB family of anti-proliferative genes, which have recently emerged as important regulators of cell growth and differentiation among verteates. Here, for the first time we cloned the full-length cDNA sequence of Hyriopsis schlegelii (Hs-BTG1), an economically important freshwater shellfish and potential indicator of environmental heavy metal pollution, for the first time. Using rapid amplification of cDNA ends (RACE) together with splicing the EST sequence from a haemocyte cDNA liary, we found that Hs-BTG1 contains a 525 bp open reading frame (ORF) encoding a 174 amino-acid polypeptide, a 306 bp 5' untranslated region (5' UTR), and a 571 bp 3' UTR with a Poly(A) tail as well as a transcription termination signal (AATAAA). Homologue searching against GenBank revealed that Hs-BTG1 was closest to Crassostrea gigas BTG1, sharing 50.57% of protein identities. Hs-BTG1 also shares some typical features of the BTG/TOB family, possessing two well-conserved A and B boxes. Clustering analysis of Hs-BTG1 and other known BTGs showed that Hs-BTG1 was also closely related to BTG1 of C. gigas from the inverteate BTG1 clade. Function prediction via homology modeling showed that both Hs-BTG1 and C. gigas BTG1 share a similar three-dimensional structure with Homo sapiens BTG1. Tissue-specific expression analysis of the Hs-BTG1 via real-time PCR showed that the transcripts were constitutively expressed, with the highest levels in the hepatopancreas and gills, and the lowest in both haemocyte and muscle tissue. Expression levels of Hs-BTG1 in hepatopancreas (2.03-fold), mantle (2.07-fold), kidney (2.2-fold) and haemocyte (2.5-fold) were enhanced by cadmium (Cd²⁺) stress, suggesting that Hs-BTG1 may have played a significant role in H. schlegelii adaptation to adverse environmental conditions.
Collapse
Affiliation(s)
- Kou Peng
- School of Life Sciences and Food Engineering, Nanchang University, Nanchang 330031, China
| | - Cheng-Yuan Wang
- School of Life Sciences and Food Engineering, Nanchang University, Nanchang 330031, China
| | - Jun-Hua Wang
- School of Life Sciences and Food Engineering, Nanchang University, Nanchang 330031, China
| | - Jun-Qing Sheng
- School of Life Sciences and Food Engineering, Nanchang University, Nanchang 330031, China
| | - Jian-Wu Shi
- School of Life Sciences and Food Engineering, Nanchang University, Nanchang 330031, China
| | - Jian Li
- School of Life Sciences and Food Engineering, Nanchang University, Nanchang 330031, China
| | - Yi-Jiang Hong
- School of Life Sciences and Food Engineering, Nanchang University, Nanchang 330031, China; Institute of Life Science, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
13
|
Kanda M, Sugimoto H, Nomoto S, Oya H, Hibino S, Shimizu D, Takami H, Hashimoto R, Okamura Y, Yamada S, Fujii T, Nakayama G, Koike M, Fujiwara M, Kodera Y. B‑cell translocation gene 1 serves as a novel prognostic indicator of hepatocellular carcinoma. Int J Oncol 2014; 46:641-8. [PMID: 25405901 DOI: 10.3892/ijo.2014.2762] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 10/30/2014] [Indexed: 12/29/2022] Open
Abstract
Although the B‑cell translocation gene 1 (BTG1) plays an important role in apoptosis and negatively regulates cell proliferation, BTG1 expression in hepatocellular carcinoma (HCC) has not been evaluated. In this study expression analysis of BTG1 was conducted to clarify the role of BTG1 in the initiation of HCC carcinogenesis and progression. BTG1 mRNA expression levels were determined for HCC cell lines and 151 surgical specimen pairs using quantitative real‑time reverse transcription polymerase chain reaction (RT‑qPCR) assay. The mutational and methylation status of HCC cell lines were analyzed via high resolution melting (HRM) analysis and direct sequencing analysis to elucidate the regulatory mechanisms of BTG1 expression. The expression and distribution of the BTG1 protein in liver tissues were evaluated using immunohistochemistry (IHC). Decreased expression of BTG1 mRNA was confirmed in the majority of HCC cell lines (89%) and clinical HCC tissues (85%) compared with non‑cancerous liver tissues. Mutations or promoter hypermethylation were not identified in HCC cell lines. BTG1 mRNA expression levels were not influenced by background liver status. The pattern of BTG1 protein expression was consistent with that of BTG1 mRNA. Downregulation of BTG1 mRNA in HCC was significantly associated with shorter disease‑specific and recurrence‑free survival rates. Multivariate analysis of disease‑specific survival rates identified BTG1 mRNA downregulation as an independent prognostic factor for HCC (hazard ratio 2.12, 95% confidence interval 1.12‑4.04, P=0.022). Our results indicate that altered BTG1 expression might affect hepatocarcinogenesis and may represent a novel biomarker for HCC carcinogenesis and progression.
Collapse
Affiliation(s)
- Mitsuro Kanda
- Department of Gastroenterological Surgery (Surgery Ⅱ), Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Hiroyuki Sugimoto
- Department of Gastroenterological Surgery (Surgery Ⅱ), Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Shuji Nomoto
- Department of Gastroenterological Surgery (Surgery Ⅱ), Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Hisaharu Oya
- Department of Gastroenterological Surgery (Surgery Ⅱ), Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Soki Hibino
- Department of Gastroenterological Surgery (Surgery Ⅱ), Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Dai Shimizu
- Department of Gastroenterological Surgery (Surgery Ⅱ), Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Hideki Takami
- Department of Gastroenterological Surgery (Surgery Ⅱ), Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Ryoji Hashimoto
- Department of Gastroenterological Surgery (Surgery Ⅱ), Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Yukiyasu Okamura
- Division of Hepato‑Biliary‑Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka 411‑8777, Japan
| | - Suguru Yamada
- Department of Gastroenterological Surgery (Surgery Ⅱ), Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Tsutomu Fujii
- Department of Gastroenterological Surgery (Surgery Ⅱ), Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Goro Nakayama
- Department of Gastroenterological Surgery (Surgery Ⅱ), Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Masahiko Koike
- Department of Gastroenterological Surgery (Surgery Ⅱ), Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Michitaka Fujiwara
- Department of Gastroenterological Surgery (Surgery Ⅱ), Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery (Surgery Ⅱ), Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| |
Collapse
|
14
|
Zhao Y, Gou WF, Chen S, Takano Y, Xiu YL, Zheng HC. BTG1 expression correlates with the pathogenesis and progression of ovarian carcinomas. Int J Mol Sci 2013; 14:19670-80. [PMID: 24084718 PMCID: PMC3821579 DOI: 10.3390/ijms141019670] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 09/05/2013] [Accepted: 09/06/2013] [Indexed: 12/22/2022] Open
Abstract
BTG (B-cell translocation gene) can inhibit cell proliferation, metastasis, and angiogenesis and regulate cell cycle progression and differentiation in a variety of cell types. We aimed to clarify the role of BTG1 in ovarian carcinogenesis and progression. A BTG1-expressing plasmid was transfected into ovarian carcinoma cells and their phenotypes and related proteins were examined. BTG1 mRNA expression was detected in ovarian normal tissue (n = 17), ovarian benign tumors (n = 12), and ovarian carcinoma (n = 64) using real-time RT-PCR. Ectopic BTG1 expression resulted in lower growth rate, high cisplatin sensitivity, G1 arrest, apoptosis, and decreased migration and invasion. Phosphoinositide 3-kinase, protein kinase B, Bcl-xL, survivin, vascular endothelial growth factor, and matrix metalloproteinase-2 mRNA and protein expression was reduced in transfectants as compared to control cells. There was higher expression of BTG1 mRNA in normal tissue than in carcinoma tissue (p = 0.001) and in benign tumors than in carcinoma tissue (p = 0.027). BTG1 mRNA expression in International Federation of Gynecology and Obstetrics (FIGO) stage I/II ovarian carcinomas was higher than that in FIGO stage III/IV ovarian carcinomas (p = 0.038). Altered BTG1 expression might play a role in the pathogenesis and progression of ovarian carcinoma by modulating proliferation, migration, invasion, the cell cycle, and apoptosis.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang 110001, China; E-Mails: (Y.Z.); (S.C.); (Y.-L.X.)
| | - Wen-Feng Gou
- Department of Biochemistry and Molecular Biology, Institute of Pathology and Pathophysiology, College of Basic Medicine, China Medical University, Shenyang 110001, China; E-Mail:
| | - Shuo Chen
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang 110001, China; E-Mails: (Y.Z.); (S.C.); (Y.-L.X.)
| | - Yasuo Takano
- Clinical Cancer Institute, Kanagawa Cancer Center, Yokohama 241-0815, Japan; E-Mail:
| | - Yin-Ling Xiu
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang 110001, China; E-Mails: (Y.Z.); (S.C.); (Y.-L.X.)
| | - Hua-Chuan Zheng
- Department of Biochemistry and Molecular Biology, Institute of Pathology and Pathophysiology, College of Basic Medicine, China Medical University, Shenyang 110001, China; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-187-0406-7718
| |
Collapse
|
15
|
Snow JJ, Lee MH, Verheyden J, Kroll-Conner PL, Kimble J. C. elegans FOG-3/Tob can either promote or inhibit germline proliferation, depending on gene dosage and genetic context. Oncogene 2013; 32:2614-21. [PMID: 22797076 PMCID: PMC3475796 DOI: 10.1038/onc.2012.291] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 05/30/2012] [Accepted: 05/31/2012] [Indexed: 12/28/2022]
Abstract
Vertebrate Tob/BTG proteins inhibit cell proliferation when overexpressed in tissue-culture cells, and they can function as tumor suppressors in mice. The single Caenorhabditis elegans Tob/BTG ortholog, FOG-3, by contrast, was identified from its loss-of-function phenotype as a regulator of sperm fate specification. Here we report that FOG-3 also regulates proliferation in the germline tissue. We first demonstrate that FOG-3 is a positive regulator of germline proliferation. Thus, fog-3 null mutants possess fewer germ cells than normal, a modest but reproducible decrease observed for each of two distinct fog-3 null alleles. A similar decrease also occurred in fog-3/+ heterozygotes, again for both fog-3 alleles, revealing a haplo-insufficient effect on proliferation. Therefore, FOG-3 normally promotes proliferation, and two copies of the fog-3 gene are required for this function. We next overexpressed FOG-3 by removal of FBF, the collective term for FBF-1 and FBF-2, two nearly identical PUF RNA-binding proteins. We find that overexpressed FOG-3 blocks proliferation in fbf-1 fbf-2 mutants; whereas germ cells stop dividing and instead differentiate in fbf-1 fbf-2 double mutants, they continue to proliferate in fog-3; fbf-1 fbf-2 triple mutants. Therefore, like its vertebrate Tob/BTG cousins, overexpressed FOG-3 is 'antiproliferative'. Indeed, some fog-3; fbf-1 fbf-2 mutants possess small tumors, suggesting that FOG-3 can act as a tumor suppressor. Finally, we show that FOG-3 and FBF work together to promote tumor formation in animals carrying oncogenic Notch mutations. A similar effect was not observed when germline tumors were induced by manipulation of other regulators; therefore, this FOG-3 tumor-promoting effect is context dependent. We conclude that FOG-3 can either promote or inhibit proliferation in a manner that is sensitive to both genetic context and gene dosage. The discovery of these FOG-3 effects on proliferation has implications for our understanding of vertebrate Tob/BTG proteins and their influence on normal development and tumorigenesis.
Collapse
Affiliation(s)
- Joshua J. Snow
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706
| | - Myon-Hee Lee
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI 53706
| | - Jamie Verheyden
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | | | - Judith Kimble
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI 53706
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
16
|
PC3 is involved in the shift from proliferation to differentiation and maturation in spiral ganglion neurons. Neuroreport 2010; 21:90-3. [PMID: 19997037 DOI: 10.1097/wnr.0b013e328332c4d7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PC3 is a member of the BTG/Tob family of antiproliferative genes. Here, we report the results of an analysis of PC3 protein expression in spiral ganglion neurons of the rat cochlea at embryonic days 16 (E16) and 20 (E20), and postnatal days 4 (P4) and 7 (P7). PC3 expression was observed in the cytoplasm of ganglion neurons at E16 and E20, and this protein had translocated to the nucleus by P4. The expression of Ki-67, a nuclear antigen expressed by dividing cells, was detected in ganglion neurons at E16 and E20, but not at P4 or P7. These results suggest that PC3 is involved in the shift from proliferation to differentiation and maturation in the ganglion neurons of the rat cochlea.
Collapse
|
17
|
Feng Z, Tang ZL, Li K, Liu B, Yu M, Zhao SH. Molecular characterization of the BTG2 and BTG3 genes in fetal muscle development of pigs. Gene 2007; 403:170-7. [PMID: 17890019 DOI: 10.1016/j.gene.2007.08.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 07/03/2007] [Accepted: 08/10/2007] [Indexed: 11/19/2022]
Abstract
BTG2 and BTG3 are two members of the B-cell translocation gene family with anti-proliferative properties. BTG1 gene in this gene family has been reported to play a key role in muscle growth. In this study, we identified and characterized the porcine BTG2 and BTG3 genes, mapped the two genes to porcine chromosomes, and analyzed their expression differences in the longissimus dorci muscle of 33 dpc (day postconception), 65 dpc and 90 dpc in the lean Landrace and fatty Chinese Tongcheng pig breeds. Expression changes in differentiated C2C12 cells were also investigated with myogenin as internal control. The results showed that the porcine BTG2 and BTG3 genes were mapped on SSC9q21-25 and SSC13q47, respectively. BTG2 gene expressed at high levels in skeletal muscle and heart in both Tongcheng and Landrace pigs whereas BTG3 gene expressed at lower levels in skeletal muscle and heart than in other tissues. Furthermore, BTG3 expressed at higher levels in skeletal muscle of Tonghceng compared with Landrace pig. The expression of BTG2 and BTG3 was significantly different in skeletal muscle among different developmental stages and between the two breeds. Expression analysis in murine myoblast cells showed that both genes were induced in differentiated C2C12 cells, suggesting a role of them in myogenic differentiation. Our study indicated that BTG2 and BTG3, especially BTG3 gene, may be important genes for skeletal muscle growth.
Collapse
Affiliation(s)
- Zheng Feng
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, PR China
| | | | | | | | | | | |
Collapse
|
18
|
Nahta R, Yuan LXH, Fiterman DJ, Zhang L, Symmans WF, Ueno NT, Esteva FJ. B cell translocation gene 1 contributes to antisense Bcl-2-mediated apoptosis in breast cancer cells. Mol Cancer Ther 2006; 5:1593-601. [PMID: 16818519 DOI: 10.1158/1535-7163.mct-06-0133] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The antiapoptotic protein Bcl-2 is overexpressed in a majority of breast cancers, and is associated with a diminished apoptotic response and resistance to various antitumor agents. Bcl-2 inhibition is currently being explored as a possible strategy for sensitizing breast cancer cells to standard chemotherapeutic agents. Antisense Bcl-2 oligonucleotides represent one method for blocking the antiapoptotic effects of Bcl-2. In this study, we show that antisense Bcl-2 efficiently blocks Bcl-2 expression, resulting in the apoptosis of breast cancer cells. Antisense Bcl-2-mediated cytotoxicity was associated with the induction of the B cell translocation gene 1 (BTG1). Importantly, knockdown of BTG1 reduced antisense Bcl-2-mediated cytotoxicity in breast cancer cells. Furthermore, BTG1 expression seems to be negatively regulated by Bcl-2, and exogenous expression of BTG1 induced apoptosis. These results suggest that BTG1 is a Bcl-2-regulated mediator of apoptosis in breast cancer cells, and that its induction contributes to antisense Bcl-2-mediated cytotoxic effects.
Collapse
Affiliation(s)
- Rita Nahta
- Department of Breast Medical Oncology, Unit 1354, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Kawakubo H, Brachtel E, Hayashida T, Yeo G, Kish J, Muzikansky A, Walden PD, Maheswaran S. Loss of B-cell translocation gene-2 in estrogen receptor-positive breast carcinoma is associated with tumor grade and overexpression of cyclin d1 protein. Cancer Res 2006; 66:7075-82. [PMID: 16849553 DOI: 10.1158/0008-5472.can-06-0379] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The B-cell translocation gene-2 (BTG2) is present in the nuclei of epithelial cells in many tissues, including the mammary gland where its expression is regulated during glandular proliferation and differentiation in pregnancy. In immortalized mammary epithelial cells and breast cancer cells, BTG2 protein localized predominantly to the nucleus and cytoplasm, respectively. The highly conserved domains (BTG boxes A, B, and C) were required for regulating localization, suppression of cyclin D1 and growth inhibitory function of BTG2. Expression analysis of BTG2 protein in human breast carcinoma (n = 148) revealed the loss of nuclear expression in 46% of tumors, whereas it was readily detectable in the nuclei of adjacent normal glands. Loss of nuclear BTG2 expression in estrogen receptor-alpha (ERalpha)-positive breast tumors correlated significantly with increased histologic grade and tumor size. Consistent with its ability to suppress cyclin D1 transcription, loss of nuclear BTG2 expression in ER-positive breast carcinomas showed a significant correlation with cyclin D1 protein overexpression, suggesting that loss of BTG2 may be a factor involved in deregulating cyclin D1 expression in human breast cancer.
Collapse
Affiliation(s)
- Hirofumi Kawakubo
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Passeri D, Marcucci A, Rizzo G, Billi M, Panigada M, Leonardi L, Tirone F, Grignani F. Btg2 enhances retinoic acid-induced differentiation by modulating histone H4 methylation and acetylation. Mol Cell Biol 2006; 26:5023-32. [PMID: 16782888 PMCID: PMC1489145 DOI: 10.1128/mcb.01360-05] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retinoic acid controls hematopoietic differentiation through the transcription factor activity of its receptors. They act on specific target genes by recruiting protein complexes that deacetylate or acetylate histones and modify chromatin status. The regulation of this process is affected by histone methyltransferases, which can inhibit or activate transcription depending on their amino acid target. We show here that retinoic acid treatment of hematopoietic cells induces the expression of BTG2. Overexpression of this protein increases RARalpha transcriptional activity and the differentiation response to retinoic acid of myeloid leukemia cells and CD34+ hematopoietic progenitors. In the absence of retinoic acid, BTG2 is present in the RARalpha transcriptional complex, together with the arginine methyltransferase PRMT1 and Sin3A. Overexpressed BTG2 increases PRMT1 participation in the RARalpha protein complex on the RARbeta promoter, a target gene model, and enhances gene-specific histone H4 arginine methylation. Upon RA treatment Sin3A, BTG2, and PRMT1 detach from RARalpha and thereafter BGT2 and PRMT1 are driven to the cytoplasm. These events prime histone H4 demethylation and acetylation. Overall, our data show that BTG2 contributes to retinoic acid activity by favoring differentiation through a gene-specific modification of histone H4 arginine methylation and acetylation levels.
Collapse
Affiliation(s)
- Daniela Passeri
- Patologia Generale and Medicina Interna e Scienze Oncologiche, Dipartimento di Medicina Clinica e Sperimentale, Perugia University, Policlinico Monteluce, Perugia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Busson M, Carazo A, Seyer P, Grandemange S, Casas F, Pessemesse L, Rouault JP, Wrutniak-Cabello C, Cabello G. Coactivation of nuclear receptors and myogenic factors induces the major BTG1 influence on muscle differentiation. Oncogene 2005; 24:1698-710. [PMID: 15674337 DOI: 10.1038/sj.onc.1208373] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The btg1 (B-cell translocation gene 1) gene coding sequence was isolated from a translocation break point in a case of B-cell chronic lymphocytic leukaemia. We have already shown that BTG1, considered as an antiproliferative protein, strongly stimulates myoblast differentiation. However, the mechanisms involved in this influence remained unknown. In cultured myoblasts, we found that BTG1 stimulates the transcriptional activity of nuclear receptors (T3 and all-trans retinoic acid receptors but not RXRalpha and PPARgamma), c-Jun and myogenic factors (CMD1, Myf5, myogenin). Immunoprecipitation experiments performed in cells or using in vitro-synthesized proteins and GST pull-down assays established that BTG1 directly interacts with T3 and all-trans retinoic acid receptors and with avian MyoD (CMD1). These interactions are mediated by the transactivation domain of each transcription factor and the A box and C-terminal part of BTG1. NCoR presence induces the ligand dependency of the interaction with nuclear receptors. Lastly, deletion of BTG1 interacting domains abrogates its ability to stimulate nuclear receptors and CMD1 activity, and its myogenic influence. In conclusion, BTG1 is a novel important coactivator involved in the regulation of myoblast differentiation. It not only stimulates the activity of myogenic factors, but also of nuclear receptors already known as positive myogenic regulators.
Collapse
Affiliation(s)
- Muriel Busson
- UMR 866 Différenciation Cellulaire et Croissance, INRA, 2 place Viala, 34060 Montpellier Cedex 1, France
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kawamura-Tsuzuku J, Suzuki T, Yoshida Y, Yamamoto T. Nuclear localization of Tob is important for regulation of its antiproliferative activity. Oncogene 2004; 23:6630-8. [PMID: 15235587 DOI: 10.1038/sj.onc.1207890] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
TOB: is a member of an antiproliferative gene family that includes btg1, pc3/tis21/btg2, pc3b, ana/btg3, and tob2. Exogenous overexpression of the family proteins suppresses cell proliferation. These proteins participate in transcriptional regulation of several genes. Here, we show that Tob is a nuclear protein that is imported into the nucleus through a nuclear localization signal (NLS)-mediated mechanism. Mutation in the NLS sequence of Tob affects its nuclear localization and impairs antiproliferative activity. Additionally, Tob contains a nuclear export signal (NES). In oncogenic ErbB2-transformed cells, nuclear export of Tob is facilitated by NES-mediated mechanism, resulting in decrease of its antiproliferative activity. These results indicate that regulation of nuclear localization of Tob is important for its antiproliferative activity.
Collapse
Affiliation(s)
- Junko Kawamura-Tsuzuku
- Division of Oncology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-Ku, Tokyo 108-8639, Japan
| | | | | | | |
Collapse
|
23
|
Bakker WJ, Blázquez-Domingo M, Kolbus A, Besooyen J, Steinlein P, Beug H, Coffer PJ, Löwenberg B, von Lindern M, van Dijk TB. FoxO3a regulates erythroid differentiation and induces BTG1, an activator of protein arginine methyl transferase 1. ACTA ACUST UNITED AC 2004; 164:175-84. [PMID: 14734530 PMCID: PMC2172323 DOI: 10.1083/jcb.200307056] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Erythropoiesis requires tight control of expansion, maturation, and survival of erythroid progenitors. Because activation of phosphatidylinositol-3-kinase (PI3K) is required for erythropoietin/stem cell factor-induced expansion of erythroid progenitors, we examined the role of the PI3K-controlled Forkhead box, class O (FoxO) subfamily of Forkhead transcription factors. FoxO3a expression and nuclear accumulation increased during erythroid differentiation, whereas untimely induction of FoxO3a activity accelerated differentiation of erythroid progenitors to erythrocytes. We identified B cell translocation gene 1 (BTG1)/antiproliferative protein 2 as a FoxO3a target gene in erythroid progenitors. Promoter studies indicated BTG1 as a direct target of FoxO3a. Expression of BTG1 in primary mouse bone marrow cells blocked the outgrowth of erythroid colonies, which required a domain of BTG1 that binds protein arginine methyl transferase 1. During erythroid differentiation, increased arginine methylation coincided with BTG1 expression. Concordantly, inhibition of methyl transferase activity blocked erythroid maturation without affecting expansion of progenitor cells. We propose FoxO3a-controlled expression of BTG1 and subsequent regulation of protein arginine methyl transferase activity as a novel mechanism controlling erythroid expansion and differentiation.
Collapse
Affiliation(s)
- Walbert J Bakker
- Dept. of Hematology, Erasmus MC, PO Box 1738, 3000 DR Rotterdam, Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|