1
|
Gopalakrishnan V, Roy U, Srivastava S, Kariya KM, Sharma S, Javedakar SM, Choudhary B, Raghavan SC. Delineating the mechanism of fragility at BCL6 breakpoint region associated with translocations in diffuse large B cell lymphoma. Cell Mol Life Sci 2024; 81:21. [PMID: 38196006 PMCID: PMC11072719 DOI: 10.1007/s00018-023-05042-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 01/11/2024]
Abstract
BCL6 translocation is one of the most common chromosomal translocations in cancer and results in its enhanced expression in germinal center B cells. It involves the fusion of BCL6 with any of its twenty-six Ig and non-Ig translocation partners associated with diffuse large B cell lymphoma (DLBCL). Despite being discovered long back, the mechanism of BCL6 fragility is largely unknown. Analysis of the translocation breakpoints in 5' UTR of BCL6 reveals the clustering of most of the breakpoints around a region termed Cluster II. In silico analysis of the breakpoint cluster sequence identified sequence motifs that could potentially fold into non-B DNA. Results revealed that the Cluster II sequence folded into overlapping hairpin structures and identified sequences that undergo base pairing at the stem region. Further, the formation of cruciform DNA blocked DNA replication. The sodium bisulfite modification assay revealed the single-strandedness of the region corresponding to hairpin DNA in both strands of the genome. Further, we report the formation of intramolecular parallel G4 and triplex DNA, at Cluster II. Taken together, our studies reveal that multiple non-canonical DNA structures exist at the BCL6 cluster II breakpoint region and contribute to the fragility leading to BCL6 translocation in DLBCL patients.
Collapse
Affiliation(s)
- Vidya Gopalakrishnan
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
- Institute of Bioinformatics and Applied Biotechnology, Electronics City, Bangalore, 560 100, India
- Department of Zoology, St. Joseph's College (Autonomous), Irinjalakuda, Kerala, 680121, India
| | - Urbi Roy
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Shikha Srivastava
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan, 304022, India
| | - Khyati M Kariya
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Shivangi Sharma
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Saniya M Javedakar
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Electronics City, Bangalore, 560 100, India.
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India.
| |
Collapse
|
2
|
Szankasi P, Bolia A, Liew M, Schumacher JA, Gee EPS, Matynia AP, Li KD, Patel JL, Xu X, Salama ME, Kelley TW. Comprehensive detection of chromosomal translocations in lymphoproliferative disorders by massively parallel sequencing. J Hematop 2019. [DOI: 10.1007/s12308-019-00360-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
3
|
Perryman LE. Molecular Pathology of Severe Combined Immunodeficiency in Mice, Horses, and Dogs. Vet Pathol 2016; 41:95-100. [PMID: 15017021 DOI: 10.1354/vp.41-2-95] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Severe combined immunodeficiency (SCID) is an inherited disorder of humans, mice, horses, and dogs, in which affected individuals are incapable of generating antigen-specific immune responses. It occurs when lymphocyte precursors fail to differentiate into mature lymphocytes because of mutations within recombinase-activating genes 1 and 2 or within the genes encoding deoxyribonucleic acid (DNA)-dependent protein kinase (DNA-PK). It also occurs when differentiated lymphocytes are incapable of completing signal transduction pathways because of defects in cell surface receptors for interleukins (IL). A spontaneous mutation in DNA-PKcs of BALB/c mice results in SCID, as do experimentally induced mutations in RAG1 and RAG2. SCID in horses results from a spontaneous mutation in DNA-PKcs. Two molecular mechanisms account for SCID in dogs. Jack Russell Terriers have a mutation within the DNA-PKcs gene, whereas Cardigan Welsh Corgi and Basset Hound have different defects in the gene encoding the γ chain that is common to the receptors for IL-2, −4, −7, −9, −15, and −21. The location of the mutation within target genes influences the spectrum of diseases observed in affected animals.
Collapse
Affiliation(s)
- L E Perryman
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1601, USA.
| |
Collapse
|
4
|
Jarosova M, Kriegova E, Schneiderova P, Fillerova R, Prochazka V, Mikesova M, Flodr P, Indrak K, Papajik T. A Novel Non-Immunoglobulin (non-Ig)/BCL6 Translocation in Diffuse Large B-Cell Lymphoma Involving Chromosome 10q11.21 Loci and Review on Clinical Consequences of BCL6 Rearrangements. Pathol Oncol Res 2015; 22:233-43. [DOI: 10.1007/s12253-015-9972-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/19/2015] [Indexed: 11/30/2022]
|
5
|
|
6
|
Klein IA, Resch W, Jankovic M, Oliveira T, Yamane A, Nakahashi H, Di Virgilio M, Bothmer A, Nussenzweig A, Robbiani DF, Casellas R, Nussenzweig MC. Translocation-capture sequencing reveals the extent and nature of chromosomal rearrangements in B lymphocytes. Cell 2011; 147:95-106. [PMID: 21962510 DOI: 10.1016/j.cell.2011.07.048] [Citation(s) in RCA: 288] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 07/14/2011] [Accepted: 07/27/2011] [Indexed: 02/06/2023]
Abstract
Chromosomal rearrangements, including translocations, require formation and joining of DNA double strand breaks (DSBs). These events disrupt the integrity of the genome and are frequently involved in producing leukemias, lymphomas and sarcomas. Despite the importance of these events, current understanding of their genesis is limited. To examine the origins of chromosomal rearrangements we developed Translocation Capture Sequencing (TC-Seq), a method to document chromosomal rearrangements genome-wide, in primary cells. We examined over 180,000 rearrangements obtained from 400 million B lymphocytes, revealing that proximity between DSBs, transcriptional activity and chromosome territories are key determinants of genome rearrangement. Specifically, rearrangements tend to occur in cis and to transcribed genes. Finally, we find that activation-induced cytidine deaminase (AID) induces the rearrangement of many genes found as translocation partners in mature B cell lymphoma.
Collapse
Affiliation(s)
- Isaac A Klein
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
BCL6 is a transcription factor that has essential B-cell and T-cell roles in normal antibody responses. It is involved in chromosomal translocations in diffuse large B-cell lymphoma (DBCL; including primary mediastinal B-cell lymphoma) and nodular lymphocyte predominant Hodgkin lymphoma, and is expressed in follicular lymphoma and Burkitt's lymphoma. The neoplastic T-cells of angioimmunoblastic T-cell lymphoma also express BCL6. BCL6 prevents terminal B-cell differentiation largely through repression of PRDM1. In the "cell of origin" classification of DLBCL BCL6 is associated with the germinal centre subtype, which carries a good response to modern treatments. More recently, specific BCL6 antagonists, including small molecule inhibitors, have been developed. These antagonists have demonstrated that DLBCL cells, in which BCL6 is transcriptionally active, are dependent on this gene for survival. BCL6 antagonists are active against primary DLBCL and may find future application in the treatment of lymphomas.
Collapse
Affiliation(s)
- Simon D Wagner
- Department of Cancer Studies and Molecular Medicine and MRC Toxicology Unit, University of Leicester, Lancaster Road, Leicester, UK.
| | | | | |
Collapse
|
8
|
Clinical features and outcome of MLL gene rearranged acute lymphoblastic leukemia in infants with additional chromosomal abnormalities other than 11q23 translocation. Leuk Res 2008; 32:1523-9. [DOI: 10.1016/j.leukres.2008.03.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 03/03/2008] [Accepted: 03/19/2008] [Indexed: 11/23/2022]
|
9
|
Nakamura Y, Takahashi N, Kakegawa E, Yoshida K, Ito Y, Kayano H, Niitsu N, Jinnai I, Bessho M. The GAS5 (growth arrest-specific transcript 5) gene fuses to BCL6 as a result of t(1;3)(q25;q27) in a patient with B-cell lymphoma. ACTA ACUST UNITED AC 2008; 182:144-9. [DOI: 10.1016/j.cancergencyto.2008.01.013] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Accepted: 01/16/2008] [Indexed: 11/24/2022]
|
10
|
Iqbal J, Greiner TC, Patel K, Dave BJ, Smith L, Ji J, Wright G, Sanger WG, Pickering DL, Jain S, Horsman DE, Shen Y, Fu K, Weisenburger DD, Hans CP, Campo E, Gascoyne RD, Rosenwald A, Jaffe ES, Delabie J, Rimsza L, Ott G, Müller-Hermelink HK, Connors JM, Vose JM, McKeithan T, Staudt LM, Chan WC. Distinctive patterns of BCL6 molecular alterations and their functional consequences in different subgroups of diffuse large B-cell lymphoma. Leukemia 2007; 21:2332-43. [PMID: 17625604 PMCID: PMC2366166 DOI: 10.1038/sj.leu.2404856] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gene expression profiling of diffuse large B-cell lymphoma (DLBCL) has revealed biologically and prognostically distinct subgroups: germinal center B-cell-like (GCB), activated B-cell-like (ABC) and primary mediastinal (PM) DLBCL. The BCL6 gene is often translocated and/or mutated in DLBCL. Therefore, we examined the BCL6 molecular alterations in these DLBCL subgroups, and their impact on BCL6 expression and BCL6 target gene repression. BCL6 translocations at the major breakpoint region (MBR) were detected in 25 (18.8%) of 133 DLBCL cases, with a higher frequency in the PM (33%) and ABC (24%) subgroups than in the GCB (10%) subgroup. Translocations at the alternative breakpoint region (ABR) were detected in five (6.4%) of 78 DLBCL cases, with three cases in ABC and one case each in the GCB and the unclassifiable subgroups. The translocated cases involved IgH and non-IgH partners in about equal frequency and were not associated with different levels of BCL6 mRNA and protein expression. BCL6 mutations were detected in 61% of DLBCL cases, with a significantly higher frequency in the GCB and PM subgroups (>70%) than in the ABC subgroup (44%). Exon-1 mutations were mostly observed in the GCB subgroup. The repression of known BCL6 target genes correlated with the level of BCL6 mRNA and protein expression in GCB and ABC subgroups but not with BCL6 translocation and intronic mutations. No clear inverse correlation between BCL6 expression and p53 expression was observed. Patients with higher BCL6 mRNA or protein expression had a significantly better overall survival. The biological role of BCL6 in translocated cases where repression of known target genes is not demonstrated is intriguing and warrants further investigation.
Collapse
Affiliation(s)
- J Iqbal
- Departments of Pathology and Microbiology, Pediatrics, Internal Medicine, and Preventive and Societal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - TC Greiner
- Departments of Pathology and Microbiology, Pediatrics, Internal Medicine, and Preventive and Societal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - K Patel
- Departments of Pathology and Microbiology, Pediatrics, Internal Medicine, and Preventive and Societal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - BJ Dave
- Departments of Pathology and Microbiology, Pediatrics, Internal Medicine, and Preventive and Societal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - L Smith
- Departments of Pathology and Microbiology, Pediatrics, Internal Medicine, and Preventive and Societal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - J Ji
- Departments of Pathology and Microbiology, Pediatrics, Internal Medicine, and Preventive and Societal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - G Wright
- Metabolism Branch and Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - WG Sanger
- Departments of Pathology and Microbiology, Pediatrics, Internal Medicine, and Preventive and Societal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - DL Pickering
- Departments of Pathology and Microbiology, Pediatrics, Internal Medicine, and Preventive and Societal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - S Jain
- Departments of Pathology and Microbiology, Pediatrics, Internal Medicine, and Preventive and Societal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - DE Horsman
- Departments of Pathology and British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Y Shen
- Departments of Pathology and Microbiology, Pediatrics, Internal Medicine, and Preventive and Societal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - K Fu
- Departments of Pathology and Microbiology, Pediatrics, Internal Medicine, and Preventive and Societal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - DD Weisenburger
- Departments of Pathology and Microbiology, Pediatrics, Internal Medicine, and Preventive and Societal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - CP Hans
- Departments of Pathology and Microbiology, Pediatrics, Internal Medicine, and Preventive and Societal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - E Campo
- Department of Pathology, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - RD Gascoyne
- Departments of Pathology and British Columbia Cancer Agency, Vancouver, BC, Canada
| | - A Rosenwald
- Department of Pathology, University of Würzburg, Würzburg, Germany
| | - ES Jaffe
- Metabolism Branch and Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - J Delabie
- Norwegian Radium Hospital, Oslo, Norway
| | - L Rimsza
- Department of Pathology, University of Arizona, Tucson, Arizona, USA
| | - G Ott
- Department of Pathology, University of Würzburg, Würzburg, Germany
| | | | - JM Connors
- Departments of Pathology and British Columbia Cancer Agency, Vancouver, BC, Canada
| | - JM Vose
- Departments of Pathology and Microbiology, Pediatrics, Internal Medicine, and Preventive and Societal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - T McKeithan
- Departments of Pathology and Microbiology, Pediatrics, Internal Medicine, and Preventive and Societal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - LM Staudt
- Metabolism Branch and Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - WC Chan
- Departments of Pathology and Microbiology, Pediatrics, Internal Medicine, and Preventive and Societal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | | |
Collapse
|
11
|
Schwindt H, Akasaka T, Zühlke-Jenisch R, Hans V, Schaller C, Klapper W, Dyer MJS, Siebert R, Deckert M. Chromosomal Translocations Fusing theBCL6Gene to Different Partner Loci Are Recurrent in Primary Central Nervous System Lymphoma and May Be Associated With Aberrant Somatic Hypermutation or Defective Class Switch Recombination. J Neuropathol Exp Neurol 2006; 65:776-82. [PMID: 16896311 DOI: 10.1097/01.jnen.0000229988.48042.ae] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Primary central nervous system lymphomas (PCNSLs) are diffuse large B cell lymphomas confined to the brain. Only minimal data exist on chromosomal aberrations underlying PCNSLs. We studied 41 PCNSLs by fluorescence in situ hybridization for breakpoints affecting the BCL6 locus in chromosomal band 3q27. Of 37 cases evaluable, 14 (38%) carried a breakpoint in the BCL6 locus. Two of these showed juxtaposition of BCL6 to the IGH locus. In 4 cases, the BCL6 breakpoints were cloned using long-distance inverse polymerase chain reaction. All breakpoints were located within the BCL6 major translocation cluster. The translocation partners were the IGH gene in 14q32.33, the IGL gene in 22q11.22, and the histone 1 H4I gene in 6p22.1. In the fourth case, a deletion in 3q leads to loss of an 837-kb fragment extending from the first intron of BCL6 to the third intron of the lipoma-preferred partner (LPP) gene. This deletion may bring the BCL6 gene under the control of regulatory elements of the LPP gene or the miRNA-28 gene located in intron 4 of LPP. DNA sequence analysis of the junctional sequences provided evidence that aberrant class switch recombination or somatic hypermutation may be involved in the generation of BCL6 translocations.
Collapse
Affiliation(s)
- Heinrich Schwindt
- Department of Neuropathology, University Hospital of Cologne, Köln, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Chen YW, Hu XT, Liang AC, Au WY, So CC, Wong ML, Shen L, Tao Q, Chu KM, Kwong YL, Liang RH, Srivastava G. High BCL6 expression predicts better prognosis, independent of BCL6 translocation status, translocation partner, or BCL6-deregulating mutations, in gastric lymphoma. Blood 2006; 108:2373-83. [PMID: 16772602 DOI: 10.1182/blood-2006-05-022517] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
To investigate the role of BCL6 in the pathogenesis of gastric lymphoma, we analyzed the BCL6 promoter region for BCL6 translocations, somatic hypermutations, and deregulating mutations in 43 gastric lymphomas, including 4 extranodal marginal-zone B-cell lymphomas of mucosa-associated lymphoid tissues (MALT lymphomas), 33 diffuse large B-cell lymphomas (DLBCLs), and 6 composite DLBCLs with residual MALT lymphoma (DLCLMLs). BCL6 promoter substitutions by immunoglobulin (Ig) and non-Ig translocation partners, resulting in its deregulation, were frequently involved in DLBCL (36.4%) and DLCLML (50%). Two novel BCL6 translocation partner genes, 28S rRNA and DMRT1, and a new BCL6 translocation breakpoint in intron 2 were also identified. Deregulating mutations were found only in DLBCL (24.2%), which correlated significantly with high BCL6 protein expression. Significantly, high BCL6 expression correlated strongly with longer overall survival (OS), independent of mechanism in gastric DLBCL and DLCLML. Gastric DLBCLs were further subclassified into germinal center B-cell-like (GCB) and non-GCB subgroups immunohistochemically. High BCL6 expression was detected in all GCB cases, irrespective of BCL6 genetic alterations. In the non-GCB subgroup, BCL6-deregulating mutations correlated significantly with high BCL6 expression level. No significant correlation was found between the BCL6 expression level and OS in the non-GCB subgroup, which had significantly poorer prognosis than the GCB subgroup.
Collapse
Affiliation(s)
- Yun-Wen Chen
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Cytogenetic analysis is now a routine part of the diagnosis and management of a significant number of lymphoid malignancies. Whilst conventional cytogenetics remains the most comprehensive method for assessing chromosome abnormalities, the technical difficulties associated with conventional cytogenetics in most lymphomas has resulted in increased use of fluorescence in situ hybridisation (FISH) to identify specific abnormalities that are useful in either the diagnosis or management of these disorders. The finding of one of the Burkitt's translocations is of major importance in the diagnosis of Burkitt's and Burkitt's-like lymphomas, whereas the t(14;18), although seen in most follicular lymphomas (FL), is not usually required to make a diagnosis. Thus, whilst cytogenetics may be of interest in FL, it is not an essential part of the diagnostic work-up. Conventional cytogenetics may be useful for identifying markers of resistance to Helicobacter pylori therapy in MALT lymphomas. In disorders such as Hodgkin lymphoma, hairy cell leukaemia and lymphoplasmacytoid lymphoma, although many cytogenetic abnormalities have been observed, no consistent or specific abnormalities have been identified and so, at this point in our knowledge of the genetics of these disorders, cytogenetics cannot be considered a useful test for either diagnosis or prognosis. In contrast, the diagnosis of mantle cell lymphoma is now dependent upon the identification of the 11;14 translocation that results in cyclin D1 up-regulation. It is widely acknowledged that FISH is the most consistently useful test to identify the juxtaposition of the CCND1 and IGH genes in mantle cell lymphoma and is regarded as the 'gold standard'. FISH also has a role in identifying genetic abnormalities of prognostic significance in chronic lymphocytic leukaemia. Given the wealth of genetic and cytogenetic abnormalities that are continuing to be found in chronic lymphoid malignancies, it will be some time before the optimal use of both conventional cytogenetics and FISH is established in the diagnosis and management of lymphomas.
Collapse
Affiliation(s)
- Lynda J Campbell
- Victorian Cancer Cytogenetics Service, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia.
| |
Collapse
|
14
|
Ohno H. Pathogenetic and Clinical Implications of Non-Immunoglobulin; BCL6 Translocations in B-Cell Non-Hodgkin's Lymphoma. J Clin Exp Hematop 2006; 46:43-53. [PMID: 17142954 DOI: 10.3960/jslrt.46.43] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Chromosomal translocations affecting band 3q27, where BCL6 gene is located, are among the most common genetic abnormalities in non-Hodgkin's lymphoma of B-cell type (B-NHL). The BCL6 gene encodes a BTB/POZ zinc finger transcription factor, which exerts repressive activity by recruiting corepressor molecules. The 3q27/BCL6 translocation is unique in that it can involve not only immunoglobulin (Ig) genes but also non-Ig chromosomal loci as a partner. To date, around 20 non-Ig partner genes have been identified. As a result of non-Ig ; BCL6 translocations, many types of regulatory sequences of each partner gene substitute for the 5' untranslated region of BCL6, and the rearranged BCL6 comes under the control of the replaced promoter. The introduction of non-Ig ; BCL6 constructs into transformed cells led to high-level Bcl-6 protein expression in the nucleus, while BCL6 mRNA levels in clinical materials of diffuse large B-cell lymphoma (DLBCL) with non-Ig ; BCL6 translocations were unexpectedly low. A comparative study suggested that non-Ig ; BCL6 translocation and a low level of BCL6 mRNA expression are concordant indicators of a poor clinical outcome in cases of DLBCL. The coexistence of a non-Ig ; BCL6 translocation with t(14 ; 18)(q32 ; q21) in a single clone did not significantly affect the clinical features of follicular lymphoma. The pathogenetic and clinical implications of non-Ig ; BCL6 translocations in B-NHL subtypes may not be identical to those of Ig ; BCL6.
Collapse
Affiliation(s)
- Hitoshi Ohno
- Department of Internal Medicine, Takeda General Hospital, Kyoto, Japan
| |
Collapse
|
15
|
Goidts V, Szamalek JM, de Jong PJ, Cooper DN, Chuzhanova N, Hameister H, Kehrer-Sawatzki H. Independent intrachromosomal recombination events underlie the pericentric inversions of chimpanzee and gorilla chromosomes homologous to human chromosome 16. Genome Res 2005; 15:1232-42. [PMID: 16140991 PMCID: PMC1199537 DOI: 10.1101/gr.3732505] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Analyses of chromosomal rearrangements that have occurred during the evolution of the hominoids can reveal much about the mutational mechanisms underlying primate chromosome evolution. We characterized the breakpoints of the pericentric inversion of chimpanzee chromosome 18 (PTR XVI), which is homologous to human chromosome 16 (HSA 16). A conserved 23-kb inverted repeat composed of satellites, LINE and Alu elements was identified near the breakpoints and could have mediated the inversion by bringing the chromosomal arms into close proximity with each other, thereby facilitating intrachromosomal recombination. The exact positions of the breakpoints may then have been determined by local DNA sequence homologies between the inversion breakpoints, including a 22-base pair direct repeat. The similarly located pericentric inversion of gorilla (GGO) chromosome XVI, was studied by FISH and PCR analysis. The p- and q-arm breakpoints of the inversions in PTR XVI and GGO XVI were found to occur at slightly different locations, consistent with their independent origin. Further, FISH studies of the homologous chromosomal regions in macaque and orangutan revealed that the region represented by HSA BAC RP11-696P19, which spans the inversion breakpoint on HSA 16q11-12, was derived from the ancestral primate chromosome homologous to HSA 1. After the divergence of orangutan from the other great apes approximately 12 million years ago (Mya), a duplication of the corresponding region occurred followed by its interchromosomal transposition to the ancestral chromosome 16q. Thus, the most parsimonious interpretation is that the gorilla and chimpanzee homologs exhibit similar but nonidentical derived pericentric inversions, whereas HSA 16 represents the ancestral form among hominoids.
Collapse
Affiliation(s)
- Violaine Goidts
- Department of Human Genetics, University of Ulm, 89081 Ulm, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Interleukin-21 (IL-21) is the newest member of the common gamma-chain family of cytokines, which includes IL-2, IL-4, IL-7, IL-9, IL-13, and IL-15. Its private receptor, IL-21R, has been shown to activate the Janus kinase/signal transducers and activators of transcription signaling pathway upon ligand binding. Initial studies have demonstrated that IL-21 has pleiotropic effects on the proliferation, differentiation, and effector functions of B, T, natural killer, and dendritic cells. More recently, the potential therapeutic capacity of IL-21 in the treatment of cancers has been widely investigated. The biological role of IL-21 in the immune system is complex, as IL-21 has been shown to have the ability to both promote and inhibit immune responses. Overall, the current data point to IL-21 being a novel immunomodulatory cytokine, whose regulation of any given immune response is highly dependent on the surrounding environmental context.
Collapse
Affiliation(s)
- Devangi S Mehta
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | |
Collapse
|
17
|
Lahousse S, Smorowski AL, Denis C, Lantoine D, Kerckaert JP, Galiègue-Zouitina S. Structural features of hematopoiesis-specific RhoH/ARHH gene: high diversity of 5'-UTR in different hematopoietic lineages suggests a complex post-transcriptional regulation. Gene 2005; 343:55-68. [PMID: 15563831 DOI: 10.1016/j.gene.2004.08.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2004] [Revised: 08/09/2004] [Accepted: 08/19/2004] [Indexed: 10/26/2022]
Abstract
The hematopoiesis-specific RhoH gene is thought to be deregulated in B-cell non-Hodgkin's lymphoma (B-NHL), by either a chromosomal translocation or mutations, which affect its 5' regulatory region. The encoded Rho protein, always GTP-bound in vivo, was hypothesized to behave as a Rac antagonist. Extensive expression analysis allowed the detection of RhoH transcripts in all hematopoietic lineages (lymphoid, erythroid, myeloid), with a high level in lymphoid cells. To initiate investigations on the molecular mechanisms that regulate RhoH gene expression, Race-PCR and primer extension were conducted in the B-cell line Raji, which allowed (i) the establishment of RhoH complex intron/exon organization and (ii) the detection of several transcription initiation sites. In addition, a high 5' end heterogeneity of RhoH mRNAs was observed, due to alternative splicing of some 5' exons and to the use of these different transcription start sites. RT-PCR analysis led to the identification of this 5' end heterogeneity in different hematopoietic lineages. Discrepancies were particularly observed between B and T cells, due to an alternative splicing of one 5' exon (1b), which might be an important element in RhoH gene regulation. Such specific features have never been described for any Rho family member gene. They provide a molecular basis to study complex mechanisms involved in the control of RhoH expression.
Collapse
Affiliation(s)
- Sébastien Lahousse
- U. 524 Inserm, Institut de Recherches sur le Cancer de Lille, Place de Verdun, 59045 Lille cedex, France
| | | | | | | | | | | |
Collapse
|
18
|
Ueda M, Imada K, Imura A, Koga H, Hishizawa M, Uchiyama T. Expression of functional interleukin-21 receptor on adult T-cell leukaemia cells. Br J Haematol 2005; 128:169-76. [PMID: 15638850 DOI: 10.1111/j.1365-2141.2004.05255.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adult T-cell leukaemia (ATL) is caused by human T-cell leukaemia virus type I (HTLV-I). It has been suggested that cytokines play a role in the development and in the neoplastic cell growth of ATL. However, the precise mechanism involved in this process still remains unclear. Interleukin-21 (IL-21) and its receptor (IL-21R) have been recently described. In this study, we examined the expression of IL-21R and the effect of IL-21 on ATL cells. Real-time reverse transcription polymerase chain reaction showed that HTLV-I-infected cell lines and primary ATL cells expressed IL-21R mRNA. Cell surface expression of IL-21R on these cells was confirmed by flow cytometric analysis using a newly developed monoclonal antibody against human IL-21R. In contrast to the expression of IL-21R, IL-21 mRNA was scarcely detectable in these cells. Notably, IL-21 induced the proliferation of ATL-43T and ED-40515(+) cells, both of which were derived from leukaemic cell clones of ATL. Concerning the intracellular signalling pathways, IL-21 activated the phosphorylation of the signal transducers and activators of transcription (STAT)3 and STAT5. Taken together, these findings provide the first evidence that ATL cells express functional IL-21R, suggesting that it may contribute to the pathophysiology of ATL. In addition, the IL-21/IL-21R system may represent a new target for the treatment of ATL.
Collapse
Affiliation(s)
- Maki Ueda
- Department of Haematology and Oncology, Graduate School of Medicine, Kyoto University, Shogoin-Kawaharamachi, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Habib T, Nelson A, Kaushansky K. IL-21: a novel IL-2-family lymphokine that modulates B, T, and natural killer cell responses. J Allergy Clin Immunol 2004; 112:1033-45. [PMID: 14657853 DOI: 10.1016/j.jaci.2003.08.039] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
IL-21 is a recently described type I cytokine produced by activated CD4(+) T cells that profoundly affects the growth, survival, and functional activation of B, T, and natural killer lymphocytes in concert with other cytokines or activating stimuli. Structurally, IL-21 is predicted to display a 4-helix-bundle-type fold with significant homology to IL-2, IL-4, and IL-15 and mediates its biologic effects through a novel type I cytokine receptor, IL-21R, in conjunction with the common cytokine receptor gamma chain (gammac) of the IL-2, IL-4, IL-7, IL-9, and IL-15 receptors. As a new member of the gammac-dependent cytokine family, there is significant interest in IL-21, in part because of its potential to provide new insights into the immunologic phenotype caused by gammac deficiency. IL-21R knockout mice have been generated that have normal lymphoid cell development yet exhibit impaired production of the immunoglobulin IgG(1) and increased IgE responses after immunization. As expected for cytokines that use gammac, recent studies indicate that IL-21 induces Janus kinase 1 (JAK1) and JAK3 activation to initiate signal transduction, but unlike these other gammac-dependent cytokines, which predominantly activate signal transducer and activator of transcription 5 (STAT5), IL-21 preferentially activates STAT1 and STAT3. IL-21 potently enhances primary antigen responses and the effector functions of T and natural killer cells and stimulates IFN-gamma production alone or in concert with other cytokines. Thus, on the basis of primary structure, receptor composition, and biologic activities, IL-21 is a new IL-2-family cytokine that participates in both innate and adaptive immunity and might be important for the development of a T(H)1 immune response.
Collapse
Affiliation(s)
- Tania Habib
- Department of Medicine, University of California, San Diego School of Medicine, San Diego, CA 92103-8811, USA
| | | | | |
Collapse
|
20
|
Maesako Y, Uchiyama T, Ohno H. Comparison of gene expression profiles of lymphoma cell lines from transformed follicular lymphoma, Burkitt's lymphoma and de novo diffuse large B-cell lymphoma. Cancer Sci 2003; 94:774-81. [PMID: 12967475 PMCID: PMC11160262 DOI: 10.1111/j.1349-7006.2003.tb01518.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2003] [Revised: 06/26/2003] [Accepted: 07/07/2003] [Indexed: 11/28/2022] Open
Abstract
To determine the specific gene expression in B-cell lymphoma subtypes, we compared expression profiles of cell lines from transformed follicular lymphoma (tFL), Epstein-Barr virus-negative (EBV(-)) Burkitt's lymphoma (BL) and EBV(+)BL. Complementary DNAs were synthesized from these cell lines and hybridized with the Atlas Human 1.2 Array membrane. Hierarchical clustering analysis based upon the levels of 43 genes highlighted characteristic expression patterns of the 3 lymphoma subtypes. Genes expressed at higher levels in tFL than EBV(-)BL and EBV(+)BL included calcium/calmodulin-dependent protein kinase I (CAMK1) and mitogen-activated protein kinase 10 (MAPK10). EBV(-)BL was characterized by high-level expression of amyloid beta precursor protein (APP), heat shock 27 kD protein 1 (HSPB1) and mothers against decapentaplegic homolog 1 (MADH1). Gardner-Rasheed feline sarcoma viral oncogene homolog (FGR) was the most significant gene to delineate EBV(+)BL. A subtype prediction algorithm using 34 genes correctly classified 22 (92%) of 24 lymphomas into FL/tFL, EBV(-)BL or EBV(+)BL. By comparison with normal reference B-cell materials, the expression patterns of the selected genes were characteristic of lymphomas. We extended the clustering analysis to cell lines from de novo diffuse large B-cell lymphoma (DLBCL). The DLBCL cell lines were either separated from the former 3 lymphoma subtypes or segregated with EBV(+)BL, possibly reflecting variable genetic abnormalities. The associations of CAMK1 with tFL, APP and MADH1 with EBV(-)BL, FGR with EBV(+)BL, and BCL2 with tFL and DLBCL were confirmed by real-time quantitative reverse transcriptase-mediated polymerase chain reaction assays. This study has provided new molecular markers, expressions of which are closely associated with B-cell lymphoma subtypes.
Collapse
MESH Headings
- B-Lymphocytes/physiology
- Biomarkers, Tumor/analysis
- Cell Line, Transformed/virology
- Cells, Cultured
- DNA, Complementary/genetics
- Epstein-Barr Virus Infections/virology
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Herpesvirus 4, Human/pathogenicity
- Humans
- Lymphoma, B-Cell/genetics
- Lymphoma, Follicular/genetics
- Lymphoma, Large B-Cell, Diffuse/genetics
- Oligonucleotide Array Sequence Analysis
- RNA, Messenger/analysis
Collapse
Affiliation(s)
- Yoshitomo Maesako
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | |
Collapse
|
21
|
Lossos IS, Akasaka T, Martinez-Climent JA, Siebert R, Levy R. The BCL6 gene in B-cell lymphomas with 3q27 translocations is expressed mainly from the rearranged allele irrespective of the partner gene. Leukemia 2003; 17:1390-7. [PMID: 12835729 DOI: 10.1038/sj.leu.2402997] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The BCL6 gene, which functions as a transcription repressor, is the target of multiple chromosomal translocations in non-Hodgkin's lymphomas (NHL). These translocations occur in the nontranslated region of the BCL6 gene, juxtaposing regulatory sequences of the diverse partner genes to the open reading frame of the BCL6 gene and thus are thought to deregulate BCL6 gene expression. The levels of expression of the BCL6 gene and protein have been demonstrated to predict the clinical outcome of diffuse large B-cell lymphomas. By contrast, the prognostic significance of BCL6 gene translocations is unclear. In this study we have sought an explanation for this apparent discrepancy. We examined tumors with a variety of different BCL6 translocations and therefore with a variety of potentially substituted promoters. We found no increase in total BCL6 mRNA levels in the NHL specimens harboring BCL6 gene translocation. Indeed, some of these tumors expressed relatively low quantities of the BCL6 mRNA. We also sought to determine whether BCL6 transcription occurs from the rearranged or from the normal untranslocated allele in these tumors. We demonstrate that lymphoma cell lines and majority of NHL tumor specimens expressed BCL6 mRNA predominantly from the rearranged allele that may come under the control of various partner gene promoters. However, few NHL tumors with BCL6 gene translocations expressed BCL6 mRNA equally from the rearranged and the nonrearranged alleles. Neither the nature of the substituted promoters nor the presence of activating mutations in the BCL6 regulatory sequences correlated with the allelic expression of the BCL6 gene in these tumors.
Collapse
Affiliation(s)
- I S Lossos
- Division of Oncology, Department of Medicine, Stanford University Medical Center, Stanford, CA 94305-5151, USA
| | | | | | | | | |
Collapse
|
22
|
Nishikori M, Maesako Y, Ueda C, Kurata M, Uchiyama T, Ohno H. High-level expression of BCL3 differentiates t(2;5)(p23;q35)-positive anaplastic large cell lymphoma from Hodgkin disease. Blood 2003; 101:2789-96. [PMID: 12456498 DOI: 10.1182/blood-2002-08-2464] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anaplastic large cell lymphoma (ALCL) with t(2;5)(p23;q35) and Hodgkin disease (HD) share many cellular features, including expression of CD30. We compared gene expression profiles of 4 ALCL (Karpas 299, SU-DHL-1, DEL, SR-786) and 3 HD cell lines and found that BCL3, which encodes a nuclear protein belonging to the I kappa B family of inhibitors of nuclear factor-kappa B (NF-kappa B) transcriptional factors, was expressed at higher levels in ALCL than HD. Northern and Western blotting analyses confirmed the high-level expression of BCL3 in ALCL at both mRNA and protein levels. We established a real-time reverse transcriptase-mediated polymerase chain reaction assay to measure the BCL3 mRNA level and found a predominant level of BCL3 expression in t(2;5)(+) ALCL; the levels of cell lines and clinical materials were comparable to or higher than that of a B-cell chronic lymphocytic leukemia carrying t(14;19)(q32;q13). Southern blotting and fluorescence in situ hybridization disclosed that the BCL3 gene copies were amplified in SU-DHL-1, whereas Karpas 299 carried 4 BCL3 gene loci. The BCL3 gene contains 2 cytosine-guanine dinucleotide (CpG) islands, and the intragenic 3' CpG was entirely demethylated in SU-DHL-1 and DEL. In contrast to HD, in which NF-kappa B was constitutively activated, ALCL cells consistently showed (p50)(2) homodimer binding activity on electrophoretic mobility shift assay. It is suggested that the high-level nuclear Bcl-3 sequesters the (p50)(2) homodimer to the nucleus, which may account for the contradictory effect of CD30 stimulation on ALCL and HD. We propose that BCL3 is overexpressed by genetic and epigenetic modifications, potentially contributing to the development of t(2;5)(+) ALCL.
Collapse
MESH Headings
- B-Cell Lymphoma 3 Protein
- Chromosomes, Human, Pair 2
- Chromosomes, Human, Pair 5
- CpG Islands
- Diagnosis, Differential
- Dimerization
- Gene Amplification
- Gene Dosage
- Gene Expression Profiling
- Hodgkin Disease/diagnosis
- Hodgkin Disease/genetics
- Hodgkin Disease/metabolism
- Humans
- Lymphoma, Large-Cell, Anaplastic/diagnosis
- Lymphoma, Large-Cell, Anaplastic/genetics
- Lymphoma, Large-Cell, Anaplastic/metabolism
- Proto-Oncogene Proteins/analysis
- Proto-Oncogene Proteins/genetics
- RNA, Messenger/analysis
- Transcription Factors
- Translocation, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Momoko Nishikori
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
The BCL6 gene is often structurally altered and probably 'misregulated' in two different types of human B-cell non-Hodgkin lymphomas (BNHL) thought to arise from germinal centre B cells. BCL6 encodes a BTB/POZ and zinc finger protein whose biochemical properties support a role as a DNA-binding transcriptional repressor and disclose, in part, the underlying mechanisms. In contrast, the study of the 'oncogenic' structural alterations of BCL6 in BNHL and of its cellular functions gives rise to much more heterogeneous data with no obvious unifying picture so that how and even whether BCL6 contributes to lymphomagenesis remains unclear. This review will summarize the current knowledge about the 'oncogenic' alterations and cellular functions of BCL6 and, based on some results, will propose the following hypotheses: (1) In various systems, including in memory T cells and also in germinal centre B cells and possibly in certain postmitotic cells, BCL6 may act by stabilizing a particular stage of differentiation. (2) Both its ambivalent effects on cell survival and the heterogeneous consequences of its alterations in BNHL suggest that BCL6 can be oncogenic not only upon overexpression or persistent expression, as often proposed, but also, similar to some of its relatives, upon 'accidental' downregulation.
Collapse
|
24
|
Parrish‐Novak J, Foster DC, Holly RD, Clegg CH. Interleukin‐21 and the IL‐21 receptor: novel effectors of NK and T cell responses. J Leukoc Biol 2002. [DOI: 10.1189/jlb.72.5.856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
| | - Donald C. Foster
- Department of Cytokine Biology and ZymoGenetics, Inc., Seattle, Washington
| | - Richard D. Holly
- Department of Cytokine Biology and ZymoGenetics, Inc., Seattle, Washington
| | | |
Collapse
|
25
|
Ueda C, Akasaka T, Ohno H. Non-immunoglobulin/BCL6 gene fusion in diffuse large B-cell lymphoma: prognostic implications. Leuk Lymphoma 2002; 43:1375-81. [PMID: 12389616 DOI: 10.1080/10428190290033305] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
3q27 translocation affecting the BCL6 gene is one of the most common chromosomal abnormalities in diffuse large B-cell lymphoma (DLBCL). BCL6 translocation can involve not only one of the three immunoglobulin gene (Ig) loci but also another non-Ig chromosomal locus. 5'-rapid amplification of cDNA ends and long-distance inverse polymerase chain reaction (PCR) methods have identified a total of 13 recurrent non-Ig partner genes to date. As the result of non-Ig/BCL6 translocation, many types of regulatory sequences of each partner gene substitute for the 5' untranslated region of the BCL6 and the rearranged BCL6 is presumed to be under the control of the replaced promoter activity. BCL6 translocation occurs more frequently in extranodal DLBCL than in node-based disease. However, the impact of BCL6 translocation on the treatment outcome of DLBCL has been the subject of controversy. We found that survival of DLBCL patients with non-Ig partners was inferior to that of those with Ig/BCL6 translocation, suggesting that non-Ig/BCL6 fusion is a poor prognostic indicator of DLBCL. We next created BCL6 expression plasmids containing a series of non-Ig/BCL6 fusion genes. COS-7 cells transiently transfected with these plasmids expressed high levels of Bcl-6 protein and showed characteristic punctate nuclear staining. These findings suggested that non-Ig/BCL6 translocation plays a pathogenetic role in a proportion of DLBCL.
Collapse
MESH Headings
- Breast Neoplasms/etiology
- Breast Neoplasms/genetics
- Breast Neoplasms/mortality
- DNA-Binding Proteins/genetics
- Female
- Humans
- Lymphoma, B-Cell/etiology
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/mortality
- Lymphoma, Large B-Cell, Diffuse/etiology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/mortality
- Male
- Prognosis
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins c-bcl-6
- Transcription Factors/genetics
- Translocation, Genetic
- Treatment Outcome
Collapse
Affiliation(s)
- Chiyoko Ueda
- Department of Internal Medicine, Faculty of Medicine, Kyoto University, Japan
| | | | | |
Collapse
|
26
|
Ueda C, Uchiyama T, Ohno H. Immunoglobulin (Ig)/BCL6 versus non-Ig/BCL6 gene fusion in diffuse large B-cell lymphoma corresponds to a high- versus low-level expression of BCL6 mRNA. Blood 2002; 99:2624-5. [PMID: 11926184 DOI: 10.1182/blood-2001-11-0117] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|