1
|
Deng Y, Hahn Q, Yu L, Zhu Z, Boyer JA, Wang J, Kong D, Carey LM, Hepperla AJ, Simon JM, Temple B, Zhang Z, Zhang Y, Santos C, Frank JE, Herring LE, Wang X, Dokholyan NV, Campbell SL, Baldwin AS, Damania B, Zhang Q, Liu P. 2'3'-cGAMP interactome identifies 2'3'-cGAMP/Rab18/FosB signaling in cell migration control independent of innate immunity. SCIENCE ADVANCES 2024; 10:eado7024. [PMID: 39413198 PMCID: PMC11482326 DOI: 10.1126/sciadv.ado7024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 09/11/2024] [Indexed: 10/18/2024]
Abstract
c-di-GAMP was first identified in bacteria to promote colonization, while mammalian 2'3'-cGAMP is synthesized by cGAS to activate STING for innate immune stimulation. However, 2'3'-cGAMP function beyond innate immunity remains elusive. Here, we report that 2'3'-cGAMP promotes cell migration independent of innate immunity. 2'3'-cGAMP interactome analysis identifies the small GTPase Rab18 as a 2'3'-cGAMP binding partner and effector in cell migration control. Mechanistically, 2'3'-cGAMP binds Rab18 to facilitate GTP loading and subsequent Rab18 activation, which further promotes FosB transcription in facilitating cell migration. Induced synthesis of endogenous 2'3'-cGAMP by intrabreast tumor bacterium S. aureus infection or low-dose doxorubicin treatment facilitates cell migration depending on the cGAS/cGAMP/Rab18/FosB signaling. We find that lovastatin induces Rab18 deprenylation that abolishes 2'3'-cGAMP recognition therefore suppressing cell migration. Together, our study reveals a previously unidentified 2'3'-cGAMP function in cell migration control via the 2'3'-cGAMP/Rab18/FosB signaling that provides additional insights into clinical applications of 2'3'-cGAMP.
Collapse
Affiliation(s)
- Yu Deng
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Quentin Hahn
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Le Yu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zhichuan Zhu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joshua A. Boyer
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jian Wang
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 17033, USA
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Deyu Kong
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Leiah M. Carey
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Austin J. Hepperla
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeremy M. Simon
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Data Science, Dana-Farber Cancer Institute Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Brenda Temple
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zhigang Zhang
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- University of North Carolina Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yanqiong Zhang
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Charlene Santos
- UNC Animal Studies Core Facility, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jonathan E. Frank
- UNC Small Animal Imaging Core Facility, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura E. Herring
- UNC Proteomics Core Facility, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xiaodong Wang
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nikolay V. Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 17033, USA
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Sharon L. Campbell
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Albert S. Baldwin
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- University of North Carolina Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Qi Zhang
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
2
|
Wang WH, Yuan T, Qian MJ, Yan FJ, Yang L, He QJ, Yang B, Lu JJ, Zhu H. Post-translational modification of KRAS: potential targets for cancer therapy. Acta Pharmacol Sin 2021; 42:1201-1211. [PMID: 33087838 PMCID: PMC8285426 DOI: 10.1038/s41401-020-00542-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/16/2020] [Indexed: 02/02/2023] Open
Abstract
Aberrant activation of the RAS superfamily is one of the critical factors in carcinogenesis. Among them, KRAS is the most frequently mutated one which has inspired extensive studies for developing approaches to intervention. Although the cognition toward KRAS remains far from complete, mounting evidence suggests that a variety of post-translational modifications regulate its activation and localization. In this review, we summarize the regulatory mode of post-translational modifications on KRAS including prenylation, post-prenylation, palmitoylation, ubiquitination, phosphorylation, SUMOylation, acetylation, nitrosylation, etc. We also highlight the recent studies targeting these modifications having exhibited potent anti-tumor activities.
Collapse
Affiliation(s)
- Wei-Hua Wang
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tao Yuan
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Mei-Jia Qian
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fang-Jie Yan
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Liu Yang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Qiao-Jun He
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Hong Zhu
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Yu S, Zhang C, Xie KP. Therapeutic resistance of pancreatic cancer: Roadmap to its reversal. Biochim Biophys Acta Rev Cancer 2020; 1875:188461. [PMID: 33157162 DOI: 10.1016/j.bbcan.2020.188461] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/20/2020] [Accepted: 10/24/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer is a lethal disease with limited opportunity for resectable surgery as the first choice for cure due to its late diagnosis and early metastasis. The desmoplastic stroma and cellular genetic or epigenetic alterations of pancreatic cancer impose physical and biological barriers to effective therapies, including chemotherapy, radiotherapy, targeted therapy, and immunotherapy. Here, we review the current therapeutic options for pancreatic cancer, and underlying mechanisms and potential reversal of therapeutic resistance, a hallmark of this deadly disease.
Collapse
Affiliation(s)
- Sen Yu
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital Affiliated to the South China University of Technology, School of Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Chunyu Zhang
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital Affiliated to the South China University of Technology, School of Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Ke-Ping Xie
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital Affiliated to the South China University of Technology, School of Medicine, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
4
|
Targets for improving tumor response to radiotherapy. Int Immunopharmacol 2019; 76:105847. [DOI: 10.1016/j.intimp.2019.105847] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023]
|
5
|
Martín‐Sánchez P, Luengo A, Griera M, Orea MJ, López‐Olañeta M, Chiloeches A, Lara‐Pezzi E, Frutos S, Rodríguez–Puyol M, Calleros L, Rodríguez–Puyol D. H‐
ras
deletion protects against angiotensin II–induced arterial hypertension and cardiac remodeling through protein kinase G‐Iβ pathway activation. FASEB J 2018; 32:920-934. [DOI: 10.1096/fj.201700134rrrr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Paloma Martín‐Sánchez
- Department of Systems BiologyUniversidad de AlcaláMadridSpain
- Instituto Reina Sofía de Investigación en Neurológica (IRSIN)MadridSpain
- Red de Investigación Renal (REDinREN)Instituto de Salud Carlos IIIMadridSpain
| | - Alicia Luengo
- Department of Systems BiologyUniversidad de AlcaláMadridSpain
- Instituto Reina Sofía de Investigación en Neurológica (IRSIN)MadridSpain
- Red de Investigación Renal (REDinREN)Instituto de Salud Carlos IIIMadridSpain
| | - Mercedes Griera
- Department of Systems BiologyUniversidad de AlcaláMadridSpain
- Instituto Reina Sofía de Investigación en Neurológica (IRSIN)MadridSpain
- Red de Investigación Renal (REDinREN)Instituto de Salud Carlos IIIMadridSpain
| | | | - Marina López‐Olañeta
- Myocardial Pathophysiology AreaCentro Nacional de Investigaciones CardiovascularesMadridSpain
| | | | - Enrique Lara‐Pezzi
- Myocardial Pathophysiology AreaCentro Nacional de Investigaciones CardiovascularesMadridSpain
| | - Sergio Frutos
- Department of Systems BiologyUniversidad de AlcaláMadridSpain
- Instituto Reina Sofía de Investigación en Neurológica (IRSIN)MadridSpain
- Red de Investigación Renal (REDinREN)Instituto de Salud Carlos IIIMadridSpain
| | - Manuel Rodríguez–Puyol
- Department of Systems BiologyUniversidad de AlcaláMadridSpain
- Instituto Reina Sofía de Investigación en Neurológica (IRSIN)MadridSpain
- Red de Investigación Renal (REDinREN)Instituto de Salud Carlos IIIMadridSpain
| | - Laura Calleros
- Department of Systems BiologyUniversidad de AlcaláMadridSpain
- Instituto Reina Sofía de Investigación en Neurológica (IRSIN)MadridSpain
- Red de Investigación Renal (REDinREN)Instituto de Salud Carlos IIIMadridSpain
| | - Diego Rodríguez–Puyol
- Department of MedicineUniversidad de AlcaláMadridSpain
- Instituto Reina Sofía de Investigación en Neurológica (IRSIN)MadridSpain
- Red de Investigación Renal (REDinREN)Instituto de Salud Carlos IIIMadridSpain
- Nephrology SectionResearch Unit FoundationHospital Universitario Príncipe de AsturiasAlcalá de HenaresMadridSpain
| |
Collapse
|
6
|
Kirouac L, Rajic AJ, Cribbs DH, Padmanabhan J. Activation of Ras-ERK Signaling and GSK-3 by Amyloid Precursor Protein and Amyloid Beta Facilitates Neurodegeneration in Alzheimer's Disease. eNeuro 2017; 4:ENEURO.0149-16.2017. [PMID: 28374012 PMCID: PMC5367084 DOI: 10.1523/eneuro.0149-16.2017] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 02/23/2017] [Accepted: 02/26/2017] [Indexed: 02/01/2023] Open
Abstract
It is widely accepted that amyloid β (Aβ) generated from amyloid precursor protein (APP) oligomerizes and fibrillizes to form neuritic plaques in Alzheimer's disease (AD), yet little is known about the contribution of APP to intracellular signaling events preceding AD pathogenesis. The data presented here demonstrate that APP expression and neuronal exposure to oligomeric Aβ42 enhance Ras/ERK signaling cascade and glycogen synthase kinase 3 (GSK-3) activation. We find that RNA interference (RNAi)-directed knockdown of APP in B103 rat neuroblastoma cells expressing APP inhibits Ras-ERK signaling and GSK-3 activation, indicating that APP acts upstream of these signal transduction events. Both ERK and GSK-3 are known to induce hyperphosphorylation of tau and APP at Thr668, and our findings suggest that aberrant signaling by APP facilitates these events. Supporting this notion, analysis of human AD brain samples showed increased expression of Ras, activation of GSK-3, and phosphorylation of APP and tau, which correlated with Aβ levels in the AD brains. Furthermore, treatment of primary rat neurons with Aβ recapitulated these events and showed enhanced Ras-ERK signaling, GSK-3 activation, upregulation of cyclin D1, and phosphorylation of APP and tau. The finding that Aβ induces Thr668 phosphorylation on APP, which enhances APP proteolysis and Aβ generation, denotes a vicious feedforward mechanism by which APP and Aβ promote tau hyperphosphorylation and neurodegeneration in AD. Based on these results, we hypothesize that aberrant proliferative signaling by APP plays a fundamental role in AD neurodegeneration and that inhibition of this would impede cell cycle deregulation and neurodegeneration observed in AD.
Collapse
Affiliation(s)
- Lisa Kirouac
- Department of Molecular Medicine, USF Health Byrd Alzheimer’s Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
| | - Alexander J. Rajic
- Institute for Memory Impairment and Neurological Disorders, Department of Neurology, University of California, Irvine, Irvine, CA 92697-4540
| | - David H. Cribbs
- Institute for Memory Impairment and Neurological Disorders, Department of Neurology, University of California, Irvine, Irvine, CA 92697-4540
| | - Jaya Padmanabhan
- Department of Molecular Medicine, USF Health Byrd Alzheimer’s Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
| |
Collapse
|
7
|
Concomitant underexpression of TGFBR2 and overexpression of hTERT are associated with poor prognosis in cervical cancer. Sci Rep 2017; 7:41670. [PMID: 28195144 PMCID: PMC5307321 DOI: 10.1038/srep41670] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/28/2016] [Indexed: 12/26/2022] Open
Abstract
The human telomerase reverse transcriptase (hTERT) is highly expressed in a variety of tumors. The transforming growth factor beta receptor type II (TGFBR2) is a downstream protein of transforming growth factor beta (TGF-β) which suppresses telomerase activity. However, the relevance of survival to the expression of TGFBR2, hTERT or TGFBR2/hTERT has not been previously investigated in cervical cancer tissues. Our study showed that patients with low level of TGFBR2 were associated with poor prognosis (HR = 1.704, P = 0.021), but no significant relevance between hTERT expression and survival (HR = 1.390, P = 0.181). However, a combination of low level of TGFBR2 and high level of hTERT was associated with a worse survival (HR = 1.892, P = 0.020), which had higher impact of hazard ratio (HR) on the overall survival (OS) than the low TGFBR2 expression alone. Knockdown of TGFBR2 expression by shRNA in Hela cells increased cell proliferation, cell invasion, G1/S transition and telomere homeostasis but decreased cell apoptosis. Overexpressing TGFBR2 and inhibiting hTERT suppressed Hela cell growth. These results would lead us to further explore whether a phenotype of TGFBR2low/hTERThigh could be considered as a predictor of poor prognosis, and whether simultaneous use of TGFBR2 agonist and hTERT inhibitor could be developed as a therapeutic strategy.
Collapse
|
8
|
Prime SS, Davies M, Pring M, Paterson IC. The Role of TGF-β in Epithelial Malignancy and its Relevance to the Pathogenesis of Oral Cancer (Part II). ACTA ACUST UNITED AC 2016; 15:337-47. [PMID: 15574678 DOI: 10.1177/154411130401500603] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The role of transforming growth factor-β (TGF-β) in epithelial malignancy is complex, but it is becoming clear that, in the early stages of carcinogenesis, the protein acts as a potent tumor suppressor, while later, TGF-β can function to advance tumor progression. We review the evidence to show that the pro-oncogenic functions of TGF-β are associated with (1) a partial loss of response to the ligand, (2) defects of components of the TGF-β signal transduction pathway, (3) over-expression and/or activation of the latent complex, (4) epithelial-mesenchymal transition, and (5) recruitment of signaling pathways which act in concert with TGF-β to facilitate the metastatic phenotype. These changes are viewed in the context of what is known about the pathogenesis of oral cancer and whether this knowledge can be translated into the development of new therapeutic modalities.
Collapse
Affiliation(s)
- S S Prime
- Department of Oral and Dental Science, Division of Oral Medicine, Pathology and Microbiology, Bristol Dental Hospital and School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, United Kingdom.
| | | | | | | |
Collapse
|
9
|
Muñoz-Félix JM, Fuentes-Calvo I, Cuesta C, Eleno N, Crespo P, López-Novoa JM, Martínez-Salgado C. Absence of K-Ras Reduces Proliferation and Migration But Increases Extracellular Matrix Synthesis in Fibroblasts. J Cell Physiol 2016; 231:2224-35. [PMID: 26873620 DOI: 10.1002/jcp.25340] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/10/2016] [Indexed: 02/06/2023]
Abstract
The involvement of Ras-GTPases in the development of renal fibrosis has been addressed in the last decade. We have previously shown that H- and N-Ras isoforms participate in the regulation of fibrosis. Herein, we assessed the role of K-Ras in cellular processes involved in the development of fibrosis: proliferation, migration, and extracellular matrix (ECM) proteins synthesis. K-Ras knockout (KO) mouse embryonic fibroblasts (K-ras(-/-) ) stimulated with transforming growth factor-β1 (TGF-β1) exhibited reduced proliferation and impaired mobility than wild-type fibroblasts. Moreover, an increase on ECM production was observed in K-Ras KO fibroblasts in basal conditions. The absence of K-Ras was accompanied by reduced Ras activation and ERK phosphorylation, and increased AKT phosphorylation, but no differences were observed in TGF-β1-induced Smad signaling. The MEK inhibitor U0126 decreased cell proliferation independently of the presence of K-ras but reduced migration and ECM proteins expression only in wild-type fibroblasts, while the PI3K-AKT inhibitor LY294002 decreased cell proliferation, migration, and ECM synthesis in both types of fibroblasts. Thus, our data unveil that K-Ras and its downstream effector pathways distinctively regulate key biological processes in the development of fibrosis. Moreover, we show that K-Ras may be a crucial mediator in TGF-β1-mediated effects in this cell type. J. Cell. Physiol. 231: 2224-2235, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- José M Muñoz-Félix
- Unidad de Fisiopatología Renal y Cardiovascular, Departamento de Fisiología y Farmacología, Instituto "Reina Sofía" de Investigación Nefrológica, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Isabel Fuentes-Calvo
- Unidad de Fisiopatología Renal y Cardiovascular, Departamento de Fisiología y Farmacología, Instituto "Reina Sofía" de Investigación Nefrológica, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Cristina Cuesta
- Unidad de Fisiopatología Renal y Cardiovascular, Departamento de Fisiología y Farmacología, Instituto "Reina Sofía" de Investigación Nefrológica, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Nélida Eleno
- Unidad de Fisiopatología Renal y Cardiovascular, Departamento de Fisiología y Farmacología, Instituto "Reina Sofía" de Investigación Nefrológica, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Piero Crespo
- Facultad de Medicina, Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas-IDICAN-Universidad de Cantabria, Santander, Spain
| | - José M López-Novoa
- Unidad de Fisiopatología Renal y Cardiovascular, Departamento de Fisiología y Farmacología, Instituto "Reina Sofía" de Investigación Nefrológica, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Carlos Martínez-Salgado
- Unidad de Fisiopatología Renal y Cardiovascular, Departamento de Fisiología y Farmacología, Instituto "Reina Sofía" de Investigación Nefrológica, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.,Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Unidad de Investigación, Hospital Universitario de Salamanca, Salamanca, Spain
| |
Collapse
|
10
|
Rasfonin, a novel 2-pyrone derivative, induces ras-mutated Panc-1 pancreatic tumor cell death in nude mice. Cell Death Dis 2014; 5:e1241. [PMID: 24853419 PMCID: PMC4047882 DOI: 10.1038/cddis.2014.213] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 03/31/2014] [Accepted: 03/31/2014] [Indexed: 12/27/2022]
Abstract
Rasfonin is a novel 2-pyrone derivative reported to induce apoptosis in ras-dependent cells. In this study, its effects on ras-mutated pancreatic cancer cells were investigated in vitro and in vivo. Two human pancreatic cancer cell lines Panc-1 (mutated K-ras) and BxPC-3 (wild-type K-ras) were selected to test the effects of rasfonin on cell proliferation, clone formation, migration and invasion in vitro. Immunoblotting was used to detect the expressions of EGFR-Ras-Raf-MEK-ERK signaling pathway proteins. Ras activity was measured using a pull-down ELISA kit and guanine exchange factor (GEF)/GTPase-activating proteins (GAP) activity was measured by [(3)H]-GDP radiometric ligand binding. For an in vivo study, CD1 nude mice bearing Panc-1 cells were treated with rasfonin or Salirasib (FTS). We found that rasfonin suppressed proliferation more strongly in Panc-1 cells (IC50=5.5 μM) than BxPC-3 cells (IC50=10 μM) in vitro. Clone formation, migration and invasion by Panc-1 cells were also reduced by rasfonin. Rasfonin had little effect on the farnesylation of Ras, but it strongly downregulated Ras activity and consequently phosphorylation of c-Raf/MEK/ERK. Further experiments indicated that rasfonin reduced Son of sevenless (Sos1) expression but did not alter GEF and GAP activities. The in vivo experiments also revealed that rasfonin (30 mg/kg) delayed the growth of xenograft tumors originating from Panc-1 cells. Tumor weight was ultimately decreased after 20 days of treatment of rasfonin. Rasfonin is a robust inhibitor of pancreatic cancers with the K-ras mutation. The reduction of Sos1 expression and the consequently depressed Ras-MAPK activity could be important in its anticancer activity.
Collapse
|
11
|
Mabanglo MF, Hast MA, Lubock NB, Hellinga HW, Beese LS. Crystal structures of the fungal pathogen Aspergillus fumigatus protein farnesyltransferase complexed with substrates and inhibitors reveal features for antifungal drug design. Protein Sci 2014; 23:289-301. [PMID: 24347326 PMCID: PMC3945837 DOI: 10.1002/pro.2411] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/11/2013] [Accepted: 12/11/2013] [Indexed: 11/07/2022]
Abstract
Species of the fungal genus Aspergillus are significant human and agricultural pathogens that are often refractory to existing antifungal treatments. Protein farnesyltransferase (FTase), a critical enzyme in eukaryotes, is an attractive potential target for antifungal drug discovery. We report high-resolution structures of A. fumigatus FTase (AfFTase) in complex with substrates and inhibitors. Comparison of structures with farnesyldiphosphate (FPP) bound in the absence or presence of peptide substrate, corresponding to successive steps in ordered substrate binding, revealed that the second substrate-binding step is accompanied by motions of a loop in the catalytic site. Re-examination of other FTase structures showed that this motion is conserved. The substrate- and product-binding clefts in the AfFTase active site are wider than in human FTase (hFTase). Widening is a consequence of small shifts in the α-helices that comprise the majority of the FTase structure, which in turn arise from sequence variation in the hydrophobic core of the protein. These structural effects are key features that distinguish fungal FTases from hFTase. Their variation results in differences in steady-state enzyme kinetics and inhibitor interactions and presents opportunities for developing selective anti-fungal drugs by exploiting size differences in the active sites. We illustrate the latter by comparing the interaction of ED5 and Tipifarnib with hFTase and AfFTase. In AfFTase, the wider groove enables ED5 to bind in the presence of FPP, whereas in hFTase it binds only in the absence of substrate. Tipifarnib binds similarly to both enzymes but makes less extensive contacts in AfFTase with consequently weaker binding.
Collapse
Affiliation(s)
- Mark F Mabanglo
- Department of Biochemistry, Duke University Medical CenterDurham, North Carolina, 27710
| | - Michael A Hast
- Department of Biochemistry, Duke University Medical CenterDurham, North Carolina, 27710
| | - Nathan B Lubock
- Department of Biochemistry, Duke University Medical CenterDurham, North Carolina, 27710
| | - Homme W Hellinga
- Department of Biochemistry, Duke University Medical CenterDurham, North Carolina, 27710
| | - Lorena S Beese
- Department of Biochemistry, Duke University Medical CenterDurham, North Carolina, 27710
| |
Collapse
|
12
|
Fuentes-Calvo I, Crespo P, Santos E, López-Novoa JM, Martínez-Salgado C. The small GTPase N-Ras regulates extracellular matrix synthesis, proliferation and migration in fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2734-2744. [DOI: 10.1016/j.bbamcr.2013.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 07/09/2013] [Accepted: 07/10/2013] [Indexed: 01/22/2023]
|
13
|
Hasanali Z, Stuart A, Yee N, Sharma K, Epner E. The Epigenetics of Gastrointestinal Malignancies. CURRENT COLORECTAL CANCER REPORTS 2012. [DOI: 10.1007/s11888-012-0147-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Li Y, Karagöz GE, Seo YH, Zhang T, Jiang Y, Yu Y, Duarte AMS, Schwartz SJ, Boelens R, Carroll K, Rüdiger SGD, Sun D. Sulforaphane inhibits pancreatic cancer through disrupting Hsp90-p50(Cdc37) complex and direct interactions with amino acids residues of Hsp90. J Nutr Biochem 2012; 23:1617-26. [PMID: 22444872 DOI: 10.1016/j.jnutbio.2011.11.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 11/09/2011] [Accepted: 11/14/2011] [Indexed: 12/15/2022]
Abstract
Sulforaphane [1-isothiocyanato-4-(methyl-sulfinyl) butane)], an isothiocyanate derived from cruciferous vegetables, has been shown to possess potent chemopreventive activity. We analyzed the effect of sulforaphane on the proliferation of pancreatic cancer cells. Sulforaphane inhibited pancreatic cancer cell growth in vitro with IC(50)s of around 10-15 μM and induced apoptosis. In pancreatic cancer xenograft mouse model, administration of sulforaphane showed remarkable inhibition of tumor growth without apparent toxicity noticed. We found that sulforaphane induced the degradation of heat shock protein 90 (Hsp90) client proteins and blocked the interaction of Hsp90 with its cochaperone p50(Cdc37) in pancreatic cancer cells. Using nuclear magnetic resonance spectroscopy (NMR) with an isoleucine-specific labeling strategy, we overcame the protein size limit of conventional NMR and studied the interaction of sulforaphane with full-length Hsp90 dimer (170 kDa) in solution. NMR revealed multiple chemical shifts in sheet 2 and the adjacent loop in Hsp90 N-terminal domain after incubation of Hsp90 with sulforaphane. Liquid chromatography coupled to mass spectrometry further mapped a short peptide in this region that was tagged with sulforaphane. These data suggest a new mechanism of sulforaphane that disrupts protein-protein interaction in Hsp90 complex for its chemopreventive activity.
Collapse
Affiliation(s)
- Yanyan Li
- Department of Pharmaceutical Sciences, University of Michigan, MI, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Fuentes-Calvo I, Blázquez-Medela AM, Eleno N, Santos E, López-Novoa JM, Martínez-Salgado C. H-Ras isoform modulates extracellular matrix synthesis, proliferation, and migration in fibroblasts. Am J Physiol Cell Physiol 2011; 302:C686-97. [PMID: 22094331 DOI: 10.1152/ajpcell.00103.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ras GTPases are ubiquitous plasma membrane transducers of extracellular stimuli. In addition to their role as oncogenes, Ras GTPases are key regulators of cell function. Each of the Ras isoforms exhibits specific modulatory activity on different cellular pathways. This has prompted researchers to determine the pathophysiological roles of each isoform. There is a proven relationship between the signaling pathways of transforming growth factor-β1 (TGF-β1) and Ras GTPases. To assess the individual role of H-Ras oncogene in basal and TGF-β1-mediated extracellular matrix (ECM) synthesis, proliferation, and migration in fibroblasts, we analyzed these processes in embryonic fibroblasts obtained from H-Ras knockout mice (H-ras(-/-)). We found that H-ras(-/-) fibroblasts exhibited a higher basal phosphatidylinositol-3-kinase (PI3K)/Akt activation than wild-type (WT) fibroblasts, whereas MEK/ERK 1/2 activation was similar in both types of cells. Fibronectin and collagen synthesis were higher in H-ras(-/-) fibroblasts and proliferation was lower in H-ras(-/-) than in WT fibroblasts. Moreover, H-Ras appeared indispensable to maintain normal fibroblast motility, which was highly restricted in H-ras(-/-) cells. These results suggest that H-Ras (through downregulation of PI3K/Akt activation) could modulate fibroblast activity by reducing ECM synthesis and upregulating both proliferation and migration. TGF-β1 strongly increased ERK and Akt activation in WT but not in H-ras(-/-) fibroblasts, suggesting that H-Ras is necessary to increase ERK 1/2 activation and to maintain PI3K downregulation in TGF-β1-stimulated fibroblasts. TGF-β1 stimulated ECM synthesis and proliferation, although ECM synthesis was higher and proliferation lower in H-ras(-/-) than in WT fibroblasts. Hence, H-Ras activation seems to play a key role in the regulation of these effects.
Collapse
Affiliation(s)
- Isabel Fuentes-Calvo
- Unidad de Fisiopatología Renal y Cardiovascular, Instituto “Reina Sofía” de Investigación Nefrológica, Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
16
|
Tili E, Michaille JJ, Liu CG, Alder H, Taccioli C, Volinia S, Calin GA, Croce CM. GAM/ZFp/ZNF512B is central to a gene sensor circuitry involving cell-cycle regulators, TGF{beta} effectors, Drosha and microRNAs with opposite oncogenic potentials. Nucleic Acids Res 2010; 38:7673-88. [PMID: 20639536 PMCID: PMC2995059 DOI: 10.1093/nar/gkq637] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are small regulatory RNAs targeting multiple effectors of cell homeostasis and development, whose malfunctions are associated with major pathologies such as cancer. Herein we show that GAM/ZFp/ZNF512B works within an intricate gene regulatory network involving cell-cycle regulators, TGFβ effectors and oncogenic miRNAs of the miR-17-92 cluster. Thus, GAM impairs the transcriptional activation of the miR-17-92 promoter by c-Myc, downregulates miR-17-92 miRNAs differentially, and limits the activation of genes responsive to TGFβ canonical pathway. In contrast, TGFβ decreases GAM transcripts levels while differentially upregulating miR-17-92 miRNAs. In turn, miR-17, miR-20a and miR-92a-1 target GAM transcripts, thus establishing a feedback autoregulatory loop. GAM transcripts are also targeted by miRNAs of the let-7 family. GAM downregulates Drosha, the main effector of miRNA maturation in the nucleus, and interacts with it in a RNA-dependent manner. Finally, GAM modulates the levels of E2F1 and Ras, and increases apoptosis while reducing cell proliferation. We propose that GAM represents a new kind of vertebrate regulator aimed at balancing the opposite effects of regulators of cell homeostasis by increasing the robustness of gene circuitries controlling cell proliferation, differentiation and development.
Collapse
Affiliation(s)
- Esmerina Tili
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, Ohio State University, Biological Research Tower, Columbus, OH 43210, USA, LBMN-INSERM U866, Université de Bourgogne, Faculté Gabriel, 6 Bd. Gabriel 21000 Dijon, France and Department of Experimental Therapeutics and Department of Cancer Genetics, University of Texas, MD Anderson Cancer Center, Houston TX 77030, USA
| | - Jean-Jacques Michaille
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, Ohio State University, Biological Research Tower, Columbus, OH 43210, USA, LBMN-INSERM U866, Université de Bourgogne, Faculté Gabriel, 6 Bd. Gabriel 21000 Dijon, France and Department of Experimental Therapeutics and Department of Cancer Genetics, University of Texas, MD Anderson Cancer Center, Houston TX 77030, USA
- *To whom correspondence should be addressed. Tel: +33 380 39 62 11; Fax: +33 380 39 62 50;
| | - Chang-Gong Liu
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, Ohio State University, Biological Research Tower, Columbus, OH 43210, USA, LBMN-INSERM U866, Université de Bourgogne, Faculté Gabriel, 6 Bd. Gabriel 21000 Dijon, France and Department of Experimental Therapeutics and Department of Cancer Genetics, University of Texas, MD Anderson Cancer Center, Houston TX 77030, USA
| | - Hansjuerg Alder
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, Ohio State University, Biological Research Tower, Columbus, OH 43210, USA, LBMN-INSERM U866, Université de Bourgogne, Faculté Gabriel, 6 Bd. Gabriel 21000 Dijon, France and Department of Experimental Therapeutics and Department of Cancer Genetics, University of Texas, MD Anderson Cancer Center, Houston TX 77030, USA
| | - Cristian Taccioli
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, Ohio State University, Biological Research Tower, Columbus, OH 43210, USA, LBMN-INSERM U866, Université de Bourgogne, Faculté Gabriel, 6 Bd. Gabriel 21000 Dijon, France and Department of Experimental Therapeutics and Department of Cancer Genetics, University of Texas, MD Anderson Cancer Center, Houston TX 77030, USA
| | - Stefano Volinia
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, Ohio State University, Biological Research Tower, Columbus, OH 43210, USA, LBMN-INSERM U866, Université de Bourgogne, Faculté Gabriel, 6 Bd. Gabriel 21000 Dijon, France and Department of Experimental Therapeutics and Department of Cancer Genetics, University of Texas, MD Anderson Cancer Center, Houston TX 77030, USA
| | - George A. Calin
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, Ohio State University, Biological Research Tower, Columbus, OH 43210, USA, LBMN-INSERM U866, Université de Bourgogne, Faculté Gabriel, 6 Bd. Gabriel 21000 Dijon, France and Department of Experimental Therapeutics and Department of Cancer Genetics, University of Texas, MD Anderson Cancer Center, Houston TX 77030, USA
| | - Carlo M. Croce
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, Ohio State University, Biological Research Tower, Columbus, OH 43210, USA, LBMN-INSERM U866, Université de Bourgogne, Faculté Gabriel, 6 Bd. Gabriel 21000 Dijon, France and Department of Experimental Therapeutics and Department of Cancer Genetics, University of Texas, MD Anderson Cancer Center, Houston TX 77030, USA
- Correspondence may also be addressed to Carlo M. Croce. Tel: +614 292 4930; Fax: +614 292 3063;
| |
Collapse
|
17
|
Radiosensitization effect of STI-571 on pancreatic cancer cells in vitro. Int J Radiat Oncol Biol Phys 2009; 75:862-9. [PMID: 19801102 DOI: 10.1016/j.ijrobp.2009.06.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 04/07/2009] [Accepted: 06/11/2009] [Indexed: 11/21/2022]
Abstract
PURPOSE To examine STI-571-induced radiosensitivity in human pancreatic cancer cells in vitro. METHODS AND MATERIALS Three human pancreatic cancer cell lines (Bxpc-3, Capan-1, and MiaPaCa-2) exhibiting different expression levels of c-Kit and platelet-derived growth factor receptor beta (PDGFRbeta) and showing different K-ras mutation types were used. For evaluation of the antitumor activity of STI-571 in combination with radiation, clonogenic survival assays, Western blot analysis, and the annexin V/propidium iodide assay with microscopic evaluation by 4',6-diamidino-2-phenylindole were conducted. RESULTS Dramatic phosphorylated (p)-c-Kit and p-PDGFRbeta attenuation, a modest dose- and time-dependent growth inhibition, and significant radiosensitization were observed after STI-571 treatment in view of apoptosis, although the levels of growth inhibition and increased radiosensitization were different according to cell lines. The grades of radiosensitivity corresponded to the attenuation levels of p-c-Kit and p-PDGFRbeta by STI-571, particularly to those of p-c-Kit, and the radiosensitivity was partially affected by K-ras mutation in pancreatic cancer cells. Among downstream pathways associated with c-Kit or PDGFRbeta, p-PLCgamma was more closely related to radiosensitivity compared with p-Akt1 or p-extracellular signal-regulated kinase 1. CONCLUSION STI-571 enhances radiation response in pancreatic cancer cells. This effect is affected by the attenuation levels of p-c-Kit or p-PDGFRbeta, and K-ras mutation status. Among them, p-c-Kit plays more important roles in the radiosensitivity in pancreatic cancer compared with p-PDGFRbeta or K-ras mutation status.
Collapse
|
18
|
Udayakumar TS, Hachem P, Ahmed MM, Agrawal S, Pollack A. Antisense MDM2 enhances E2F1-induced apoptosis and the combination sensitizes androgen-sensitive [corrected] and androgen-insensitive [corrected] prostate cancer cells to radiation. Mol Cancer Res 2009; 6:1742-54. [PMID: 19010821 DOI: 10.1158/1541-7786.mcr-08-0102] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have previously shown in separate studies that MDM2 knockdown via antisense MDM2 (AS-MDM2) and E2F1 overexpression via adenoviral-mediated E2F1 (Ad-E2F1) sensitized prostate cancer cells to radiation. Because E2F1 and MDM2 affect apoptosis through both common and independent pathways, we hypothesized that coupling these two treatments would result in increased killing of prostate cancer cells. In this study, the effect of Ad-E2F1 and AS-MDM2 in combination with radiation was investigated in three prostate cancer cell lines: LNCaP cells, LNCaP-Res cells [androgen insensitive with functional p53 and androgen receptor (AR)], and PC3 cells (androgen insensitive, p53(null), and AR(null)). A supra-additive radiosensitizing effect was observed in terms of clonogenic inhibition and induction of apoptosis (caspase-3 + caspase-7 activity) in response to Ad-E2F1 plus AS-MDM2 treatments in all three cell lines. In LNCaP and LNCaP-Res, these combination treatments elevated the levels of phospho-Ser(15) p53 with significant induction of p21(waf1/cip1), phospho-gammaH2AX, PUMA, and Bax levels and reduction of AR and bcl-2 expression. Similarly, AR(null) and p53(null) PC-3 cells showed elevated levels of Bax and phospho-gammaH2AX expression. These findings show that the combination of Ad-E2F1 and AS-MDM2 significantly increases cell death in prostate cancer cells exposed to radiation and that this effect occurs in the presence or absence of AR and p53.
Collapse
|
19
|
Dancea HC, Shareef MM, Ahmed MM. Role of Radiation-induced TGF-beta Signaling in Cancer Therapy. ACTA ACUST UNITED AC 2009; 1:44-56. [PMID: 20336170 DOI: 10.4255/mcpharmacol.09.06] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
TGF-β signaling regulates several different biological processes involving cell-growth, differentiation, apoptosis, motility, angiogenesis, epithelial mesenchymal transition and extracellular matrix production that affects embryonic development and pathogenesis of various diseases, including cancer, its effects depending on the cellular context and physiological environment. Growth suppression mediated by TGF-β signaling often associated with inhibition of c-myc, cdks and induction of p15, p27, Bax and p21. Despite its growth inhibitory effect, in certain conditions TGF-β may act as a promoter of cell proliferation and invasion. Loss of responsiveness to growth suppression by TGF-β due to mutation or loss of TGF-beta type II receptor (TβRII) and Smad4 in several different cancer cells are reported. In addition, TGF-β binding to its receptor activates many non-canonical signaling pathways. Radiation induced TGF-β is primarily involved in normal tissue injury and fibrosis. Seminal studies from our group have used radio-adjuvant therapies, involving classical components of the pathway such as TβRII and SMAD4 to overcome the growth promoting effects of TGF-β. The main impediment in the radiation-induced TGF-β signaling is the induction of SMAD7 that blocks TGF-β signaling in a negative feedback manner. It is well demonstrated from our studies that the use of neutralizing antibodies against TGF- β can render a robust radio-resistant effect. Thus, understanding the functional interactions of TGF-β signaling components of the pathway with other molecules may help tailor appropriate adjuvant radio-therapeutic strategies for treatment of solid tumors.
Collapse
Affiliation(s)
- Horatiu C Dancea
- Department of General Surgery, Geisinger Clinic, Danville, Pennsylvania
| | | | | |
Collapse
|
20
|
Cheng X. Silent assassin: oncogenic ras directs epigenetic inactivation of target genes. Sci Signal 2008; 1:pe14. [PMID: 18385037 DOI: 10.1126/stke.113pe14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Oncogenic transformation is associated with genetic changes and epigenetic alterations. A study now shows that oncogenic Ras uses a complex and elaborate epigenetic silencing program to specifically repress the expression of multiple unrelated cancer-suppressing genes through a common pathway. These results suggest that cancer-related epigenetic modifications may arise through a specific and instructive mechanism and that genetic changes and epigenetic alterations are intimately connected and contribute to tumorigenesis cooperatively.
Collapse
Affiliation(s)
- Xiaodong Cheng
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555-1031, USA.
| |
Collapse
|
21
|
Reeves A, Zagurovskaya M, Gupta S, Shareef MM, Mohiuddin M, Ahmed MM. Inhibition of transforming growth factor-beta signaling in normal lung epithelial cells confers resistance to ionizing radiation. Int J Radiat Oncol Biol Phys 2007; 68:187-95. [PMID: 17448872 PMCID: PMC1948025 DOI: 10.1016/j.ijrobp.2006.12.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 12/27/2006] [Accepted: 12/27/2006] [Indexed: 11/20/2022]
Abstract
PURPOSE To address the functional role of radiation-induced transforming growth factor-beta (TGF-beta) signaling in a normal epithelial background, we selected a spontaneously immortalized lung epithelial cell line derived from the normal lung tissue of a dominant-negative mutant of the TGF-beta RII (DeltaRII) transgenic mouse that conditionally expressed DeltaRII under the control of the metallothionein promoter (MT-1), and assessed this cell line's response to radiation. METHODS AND MATERIALS A spontaneously immortalized lung epithelial cell culture (SILECC) was established and all analyses were performed within 50 passages. Colony-forming and terminal transferase dUPT nick end labeling (TUNEL) assays were used to assess clonogenic inhibition and apoptosis, respectively. Western-blot analysis was performed to assess the kinetics of p21, bax, and RII proteins. Transforming growth factor-beta-responsive promoter activity was measured using dual-luciferase reporter assay. RESULTS Exposure to ZnSO(4) inhibited TGF-beta signaling induced either by recombinant TGF-beta1 or ionizing radiation. The SILECC, treated with either ZnSO(4) or neutralizing antibody against TGF-beta, showed a significant increase in radio-resistance compared to untreated cells. Furthermore, the expression of DeltaRII inhibited the radiation-induced up-regulation of the TGF-beta effector gene p21(waf1/cip1). CONCLUSIONS Our findings imply that inhibition of radiation-induced TGF-beta signaling via abrogation of the RII function enhances the radio-resistance of normal lung epithelial cells, and this can be directly attributed to the loss of TGF-beta signaling function.
Collapse
Affiliation(s)
- Anna Reeves
- Weis Center for Research, Geisinger Clinic, Danville, PA, USA
| | | | - Seema Gupta
- Weis Center for Research, Geisinger Clinic, Danville, PA, USA
| | | | - Mohammed Mohiuddin
- Geisinger-Fox Chase Cancer Center, Geisinger Clinic, Wilkes-Barre, PA, USA
| | - Mansoor M. Ahmed
- Weis Center for Research, Geisinger Clinic, Danville, PA, USA
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA
- * Corresponding Author: Mansoor M. Ahmed PhD, Weis Center for Research, Geisinger Clinic, Office 121A, 100 N. Academy Avenue, Danville, PA, USA 17822-2616. Tel: (570) 214-3972 (Office), (570) 271-8660, Fax: (570) 214-9861, E-mail:
| |
Collapse
|
22
|
Martínez-Salgado C, Fuentes-Calvo I, García-Cenador B, Santos E, López-Novoa JM. Involvement of H- and N-Ras isoforms in transforming growth factor-beta1-induced proliferation and in collagen and fibronectin synthesis. Exp Cell Res 2006; 312:2093-106. [PMID: 16624289 DOI: 10.1016/j.yexcr.2006.03.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 03/10/2006] [Accepted: 03/10/2006] [Indexed: 11/16/2022]
Abstract
Transforming growth factor beta1 (TGF-beta1) has a relevant role in the origin and maintenance of glomerulosclerosis and tubule-interstitial fibrosis. TGF-beta and Ras signaling pathways are closely related: TGF-beta1 overcomes Ras mitogenic effects and Ras counteracts TGF-beta signaling. Tubule-interstitial fibrosis is associated to increases in Ras, Erk, and Akt activation in a renal fibrosis model. We study the role of N- and H-Ras isoforms, and the involvement of the Ras effectors Erk and Akt, in TGF-beta1-mediated extracellular matrix (ECM) synthesis and proliferation, using embrionary fibroblasts from double knockout (KO) mice for H- and N-Ras (H-ras(-/-)/N-ras(-/-)) isoforms and from heterozygote mice (H-ras(+/-)/N-ras(+/-)). ECM synthesis is increased in basal conditions in H-ras(-/-)/N-ras(-/-) fibroblasts, this increase being higher after stimulation with TGF-beta1. TGF-beta1-induced fibroblast proliferation is smaller in H-ras(-/-)/N-ras(-/-) than in H-ras(+/-)/N-ras(+/-) fibroblasts. Erk activation is decreased in H-ras(-/-)/N-ras(-/-) fibroblasts; inhibition of Erk activation reduces fibroblast proliferation. Akt activation is higher in double KO fibroblasts than in heterozygotes; inhibition of Akt activation also inhibits ECM synthesis. We suggest that H- and N-Ras isoforms downregulate ECM synthesis, and mediate proliferation, in part through MEK/Erk activation. PI3K-Akt pathway activation may be involved in the increase in ECM synthesis observed in the absence of H- and N-Ras.
Collapse
|
23
|
Mei FC, Young TW, Liu J, Cheng X. RAS-mediated epigenetic inactivation of OPCML in oncogenic transformation of human ovarian surface epithelial cells. FASEB J 2005; 20:497-9. [PMID: 16384911 DOI: 10.1096/fj.05-4586fje] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Opioid binding protein/cell adhesion molecule-like gene (OPCML), a recently identified tumor-suppressor, is frequently inactivated by allele loss and CpG island promoter methylation in epithelial ovarian cancer. Since elevated activation of the RAS signaling pathway, including overexpression of HER-2/neu and mutations of RAS and BRAF, is common in human ovarian carcinoma, we examined the cellular effect of oncogenic RAS on the expression status of OPCML in a genetically defined human ovarian cancer model. Our study revealed that RAS(V12)-mediated oncogenic transformation was accompanied by a concomitant loss of OPCML expression. Methylation-sensitive PCR analysis showed that the OPCML promoter was hypermethylated in RAS-transformed human ovarian epithelial cells (T29H) and that treatment with the DNA methyltransferase inhibitor 5'-aza-2'-deoxycytidine promoted demethylation of the OPCML promoter and restored OPCML expression in T29H cells. Furthermore, suppression of oncogenic RAS activity by stable siRNA specific for HRAS(V12) led to the demethylation and re-expression of OPCML in T29H cells, demonstrating that oncogenic RAS activity is directly responsible for the observed OPCML promoter hypermethylation and epigenetic gene silencing of OPCML. Taken together, our study suggests that elevation of the RAS signaling pathway may play an important role in epigenetic inactivation of OPCML in human epithelial ovarian cancer.
Collapse
Affiliation(s)
- Fang C Mei
- Department of Pharmacology and Toxicology, Sealy Center for Cancer Cell Biology, School of Medicine, The University of Texas Medical Branch, Galveston, Texas 77555-1031, USA
| | | | | | | |
Collapse
|
24
|
Kim J, Seong J, Kim SH. Enhancement of tumor response by farnesyltransferase inhibitor in C3H/HeJ hepatocarcinoma. Ann N Y Acad Sci 2005; 1030:95-102. [PMID: 15659785 DOI: 10.1196/annals.1329.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Farnesyltransferase inhibitor (FTI) acts on ras, which can ultimately enhance radiosensitivity. The objective of this study was to explore whether FTI could potentiate the antitumor efficacy of radiation in vivo, particularly in radio-resistant hepatocarcinomas (HCa-I) syngeneic to C3H/HeJ mice. The presence of ras mutations was examined by PCR and DNA sequencing. C3H/HeJ mice, bearing HCa-I, were treated with FTI, LB42907, and 25 Gy radiation. FTI was orally administered, 60 mg/kg, twice daily for 30 days. The expression of regulating molecules was analyzed by Western blotting for p53, p21(WAF1/CIP1), and the Bcl-2 family, such as Bcl-2, Bax, and Bcl-X(L/s). In HCa-I, no ras mutations were detected. Downregulation of ras by FTI was most prominent at 4 h after treatment. In a tumor growth delay assay, FTI increased the effect of the tumor's radioresponse, with an enhancement factor of 1.32. Combined irradiation and FTI increased radiation-induced apoptosis; the peak apoptotic index was 3.6% with irradiation alone and with the drug alone but 7.1% in the combined treatment group. The analysis of apoptosis-regulating molecules by Western blotting showed upregulation of p53 and p21(WAF1/CIP1) in the combined treatment group compared with those in either of the single treatment groups, but the Bcl-2 family remained unchanged. FTI, in combination with radiation therapy, may have potential benefits in cancer treatment even if there are no ras mutations. FTI could inhibit ras activity but may also affect any protein that requires farnesylation for its activity.
Collapse
Affiliation(s)
- Jiyoung Kim
- Department of Radiation Oncology, Brain Korea 21 Project for Medical Science, Yonsei University Medical College, Shinchon-dong 134, Seodamun-Ku, Seoul 120-752, Korea.
| | | | | |
Collapse
|
25
|
Dai Y, Rahmani M, Pei XY, Khanna P, Han SI, Mitchell C, Dent P, Grant S. Farnesyltransferase inhibitors interact synergistically with the Chk1 inhibitor UCN-01 to induce apoptosis in human leukemia cells through interruption of both Akt and MEK/ERK pathways and activation of SEK1/JNK. Blood 2005; 105:1706-16. [PMID: 15494423 DOI: 10.1182/blood-2004-07-2767] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Abstract
Interactions between the Chk1 inhibitor UCN-01 and the farnesyltransferase inhibitor L744832 were examined in human leukemia cells. Combined exposure of U937 cells to subtoxic concentrations of UCN-01 and L744832 resulted in a dramatic increase in mitochondrial dysfunction, apoptosis, and loss of clonogenicity. Similar interactions were noted in other leukemia cells (HL-60, Raji, Jurkat) and primary acute myeloid leukemia (AML) blasts. Coadministration of L744832 blocked UCN-01-mediated phosphorylation of mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK), leading to down-regulation of phospho-cyclic adenosine monophosphate responsive element-binding protein (phospho-CREB) and -p90RSK and activation of p34cdc2 and stress-activated protein kinase/ERK kinase/c-Jun N-terminal kinase (SEK/JNK). Combined treatment also resulted in pronounced reductions in levels of phospho-Akt, -glycogen synthase kinase-3 (-GSK-3), -p70S6K, -mammalian target of rapamycin (-mTOR), -forkhead transcription factor (-FKHR), -caspase-9, and -Bad. Ectopic expression of Bcl-2 or Bcl-xL but not dominant-negative caspase-8 blocked UCN-01/L744832-mediated mitochondrial dysfunction and apoptosis but did not prevent activation of p34cdc2 and JNK or inactivation of MEK/ERK and Akt. Enforced expression of myristoylated Akt but not constitutively active MEK significantly attenuated UCN-01/L744832-induced apoptosis. However, dual transfection with Akt and MEK resulted in further protection from UCN-01/L744832-mediated lethality. Finally, down-regulation of JNK1 by siRNA significantly reduced the lethality of the UCN-01/L744832 regimen. Together, these findings suggest that farnesyltransferase inhibitors interrupt the cytoprotective Akt and MAPK pathways while reciprocally activating SAPK/JNK in leukemia cells exposed to UCN-01 and, in so doing, dramatically increase mitochondria-dependent apoptosis. (Blood. 2005;105:1706-1716)
Collapse
Affiliation(s)
- Yun Dai
- Department of Medicine, Virginia Commonwealth University/Medical College of Virginia, Richmond VA, 23298, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Pham NA, Jacobberger JW, Schimmer AD, Cao P, Gronda M, Hedley DW. The dietary isothiocyanate sulforaphane targets pathways of apoptosis, cell cycle arrest, and oxidative stress in human pancreatic cancer cells and inhibits tumor growth in severe combined immunodeficient mice. Mol Cancer Ther 2004. [DOI: 10.1158/1535-7163.1239.3.10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Anticancer effects of the dietary isothiocyanate sulforaphane were investigated in the human pancreatic cancer cell lines MIA PaCa-2 and PANC-1. Sulforaphane-treated cells accumulated in metaphase as determined by flow cytometry [4C DNA content, cyclin A(−), cyclin B1(+), and phospho-histone H3 (Ser10)(+)]. In addition, treated cells showed nuclear apoptotic morphology that coincided with an activation of caspase-8, loss of mitochondrial membrane potential, and loss of plasma membrane integrity. The initial detection of caspase-3 cleavage occurring in G2-M arrest was independent of a change in phospho-cdc2 (Tyr15) protein; consequently, sulforaphane treatment combined with UCN-01 had no significant impact on cellular toxicity. Incubations at higher sulforaphane doses (>10 μmol/L) resulted in cleavage of caspase-3 in the G1 subpopulation, suggesting that the induction of apoptosis and the sulforaphane-induced mitosis delay at the lower dose are independently regulated. Cellular toxicity in MIA PaCa-2, and to a greater extent in PANC-1, was positively correlated with a decrease in cellular glutathione levels, whereas sustained increases in glutathione observed in MIA PaCa-2 cells or the simultaneous incubation with N-acetyl-l-cysteine in PANC-1 cells were associated with resistance to sulforaphane-induced apoptosis. Daily sulforaphane i.p. injections (375 μmol/kg/d for 3 weeks) in severe combined immunodeficient mice with PANC-1 s.c. tumors resulted in a decrease of mean tumor volume by 40% compared with vehicle-treated controls. Our findings suggest that, in addition to the known effects on cancer prevention, sulforaphane may have activity in established pancreatic cancer.
Collapse
Affiliation(s)
- Nhu-An Pham
- 1Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- 2Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Ontario, Canada; and
| | | | - Aaron D. Schimmer
- 1Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- 2Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Ontario, Canada; and
| | - Pinjiang Cao
- 2Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Ontario, Canada; and
| | - Marcella Gronda
- 2Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Ontario, Canada; and
| | - David W. Hedley
- 1Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- 2Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Ontario, Canada; and
| |
Collapse
|
27
|
Gee JMW, Giles MG, Nicholson RI. Extreme growth factor signalling can promote oestrogen receptor-alpha loss: therapeutic implications in breast cancer. Breast Cancer Res 2004; 6:162-3. [PMID: 15217488 PMCID: PMC468673 DOI: 10.1186/bcr904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Julia M W Gee
- Tenovus Centre for Cancer Research, Welsh School of Pharmacy, Cardiff University, CF10 3XF, Wales, UK.
| | | | | |
Collapse
|
28
|
Ruiz JF, Juárez R, García-Díaz M, Terrados G, Picher AJ, González-Barrera S, Fernández de Henestrosa AR, Blanco L. Lack of sugar discrimination by human Pol mu requires a single glycine residue. Nucleic Acids Res 2003; 31:4441-9. [PMID: 12888504 PMCID: PMC169901 DOI: 10.1093/nar/gkg637] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
DNA polymerase mu (Pol mu) is a novel family X DNA polymerase that has been suggested to play a role in micro-homology mediated joining and repair of double strand breaks. We show here that human Pol mu is not able to discriminate against the 2'-OH group of the sugar moiety. It inserts rNTPs with an efficiency that is <10-fold lower than that of dNTPs, in sharp contrast with the >1000-fold discrimination characteristic of most DNA-dependent DNA polymerases. The lack of sugar discrimination by Pol mu is demonstrated by its ability to add rNTPs to both DNA and RNA primer strands, and to insert both deoxy- and ribonucleotides on growing nucleic acid chains. 3D-modelling of human Pol mu based on the available Pol beta and TdT structural information allowed us to predict candidate residues involved in sugar discrimination. Thus, a single amino acid substitution in which Gly433 residue of Pol mu was mutated to the consensus tyrosine present in Pol beta, produced a strong increase in the discrimination against ribonucleotides. The unusual capacity to insert both rNTPs and dNTPs will be discussed in the context of the predicted roles of Pol mu in DNA repair.
Collapse
Affiliation(s)
- José F Ruiz
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Campus de la Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Gorska MM, Alam R. Signaling molecules as therapeutic targets in allergic diseases. J Allergy Clin Immunol 2003; 112:241-50; quiz 251. [PMID: 12897726 DOI: 10.1067/mai.2003.1667] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A molecular understanding of physiologic and pathologic processes requires complete knowledge about the signal transduction mechanism of involved cells. Signal transduction research is a rapidly growing field in basic science. Unlike intercellular inflammatory mediators, signaling molecules show less functional redundancy. This allows inhibition of multiple cytokines/mediators by blocking one common signaling molecule. Interference with signaling pathways has shown significant potential for inhibition of fundamental processes as well as clinical phenotype of allergic diseases. The purpose of this review was to provide a theoretical classification of signaling molecules based on their function and to analyze various strategies for developing effective signaling inhibitors for allergic diseases.
Collapse
Affiliation(s)
- Magdalena M Gorska
- Division of Allergy and Immunology, National Jewish Medical and Research Center and University of Colorado Health Sciences Center, Denver, CO, USA
| | | |
Collapse
|
30
|
Shen Q, Brown PH. Novel agents for the prevention of breast cancer: targeting transcription factors and signal transduction pathways. J Mammary Gland Biol Neoplasia 2003; 8:45-73. [PMID: 14587863 DOI: 10.1023/a:1025783221557] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Transformation of breast cells occurs through loss or mutation of tumor suppressor genes, or activation or amplification of oncogenes, leading to deregulation of signal transduction pathways, abnormal amplification of growth signals, and aberrant expression of genes that ultimately transform the cells into invasive cancer. The goal of cancer preventive therapy, or "chemoprevention," is to eliminate premalignant cells or to block the progression of normal cells into cancer. Multiple alterations in signal pathways and transcription factors are observed in mammary gland tumorigenesis. In particular, estrogen receptor (ER) deregulation plays a critical role in breast cancer development and progress, and targeting ER with selective ER modulators (SERMs) has achieved significant reduction of breast cancer incidence in women at high risk for breast cancer. However, not all breast cancer is prevented by SERMs, because 30-40% of the tumors are ER-negative. Other receptors for retinoids, vitamin D analogs and peroxisome proliferator-activiator, along with transcription factors such as AP-1, NF-kappaB, and STATs (signal transducers and activators of transcription) affect breast tumorigenesis. This is also true for the signal transduction pathways, for example cyclooxygenase 2 (Cox-2), HER2/neu, mitogen-activated protein kinase (MAPK), and PI3K/Akt. Therefore, proteins in pathways that are altered during the process of mammary tumorigenesis may be promising targets of future chemopreventive drugs. Many newly-developed synthetic or natural compounds/agents are now under testing in preclinical studies and clinical trials. Receptor selective retinoids, receptor tyrosine kinase inhibitors (TKIs), SERMs, Cox-2 inhibitors, and others are some of the promising novel agents for the prevention of breast cancer. The chemopreventive activity of these agents and other novel signal transduction inhibitors are discussed in this chapter.
Collapse
Affiliation(s)
- Qiang Shen
- Breast Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|