1
|
Patient-level proteomic network prediction by explainable artificial intelligence. NPJ Precis Oncol 2022; 6:35. [PMID: 35672443 PMCID: PMC9174200 DOI: 10.1038/s41698-022-00278-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/15/2022] [Indexed: 11/08/2022] Open
Abstract
Understanding the pathological properties of dysregulated protein networks in individual patients’ tumors is the basis for precision therapy. Functional experiments are commonly used, but cover only parts of the oncogenic signaling networks, whereas methods that reconstruct networks from omics data usually only predict average network features across tumors. Here, we show that the explainable AI method layer-wise relevance propagation (LRP) can infer protein interaction networks for individual patients from proteomic profiling data. LRP reconstructs average and individual interaction networks with an AUC of 0.99 and 0.93, respectively, and outperforms state-of-the-art network prediction methods for individual tumors. Using data from The Cancer Proteome Atlas, we identify known and potentially novel oncogenic network features, among which some are cancer-type specific and show only minor variation among patients, while others are present across certain tumor types but differ among individual patients. Our approach may therefore support predictive diagnostics in precision oncology by inferring “patient-level” oncogenic mechanisms.
Collapse
|
2
|
Ferranti CS, Cheng J, Thompson C, Zhang J, Rotolo JA, Buddaseth S, Fuks Z, Kolesnick RN. Fusion of lysosomes to plasma membrane initiates radiation-induced apoptosis. J Biophys Biochem Cytol 2020; 219:133857. [PMID: 32328634 PMCID: PMC7147101 DOI: 10.1083/jcb.201903176] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 12/23/2019] [Accepted: 02/05/2020] [Indexed: 02/06/2023] Open
Abstract
Diverse stresses, including reactive oxygen species (ROS), ionizing radiation, and chemotherapies, activate acid sphingomyelinase (ASMase) and generate the second messenger ceramide at plasma membranes, triggering apoptosis in specific cells, such as hematopoietic cells and endothelium. Ceramide elevation drives local bilayer reorganization into ceramide-rich platforms, macrodomains (0.5-5-µm diameter) that transmit apoptotic signals. An unresolved issue is how ASMase residing within lysosomes is released extracellularly within seconds to hydrolyze sphingomyelin preferentially enriched in outer plasma membranes. Here we show that physical damage by ionizing radiation and ROS induces full-thickness membrane disruption that allows local calcium influx, membrane lysosome fusion, and ASMase release. Further, electron microscopy reveals that plasma membrane "nanopore-like" structures (∼100-nm diameter) form rapidly due to lipid peroxidation, allowing calcium entry to initiate lysosome fusion. We posit that the extent of upstream damage to mammalian plasma membranes, calibrated by severity of nanopore-mediated local calcium influx for lysosome fusion, represents a biophysical mechanism for cell death induction.
Collapse
Affiliation(s)
- Charles S. Ferranti
- Laboratory of Signal Transduction, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Jin Cheng
- Laboratory of Signal Transduction, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Chris Thompson
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Jianjun Zhang
- Laboratory of Signal Transduction, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Jimmy A. Rotolo
- Laboratory of Signal Transduction, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Salma Buddaseth
- Laboratory of Signal Transduction, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Zvi Fuks
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Richard N. Kolesnick
- Laboratory of Signal Transduction, Memorial Sloan-Kettering Cancer Center, New York, NY,Correspondence to Richard Kolesnick:
| |
Collapse
|
3
|
Betapudi V, Shukla M, Alluri R, Merkulov S, McCrae KR. Novel role for p56/Lck in regulation of endothelial cell survival and angiogenesis. FASEB J 2016; 30:3515-3526. [PMID: 27402674 DOI: 10.1096/fj.201500040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 06/28/2016] [Indexed: 01/08/2023]
Abstract
Previous studies have demonstrated that cleaved high-molecular-weight kininogen (HKa) induces endothelial apoptosis and inhibits angiogenesis and have suggested that this occurs through inhibition of Src family kinases. This study assessed the role of tyrosine-protein kinase Lck (p56/Lck) in this pathway. We analyzed early events leading to apoptosis of human endothelial cells exposed to HKa. The role of p56/Lck was investigated using short interfering (si) RNA knockdown and lentivirus expression in assays of endothelial tube formation, sprouting of neovessels from murine aorta, and angiogenesis in Matrigel plugs. HKa stimulated expression and phosphorylation of p56/Lck. siRNA knockdown of p56/Lck promoted endothelial proliferation and blocked HKa-induced apoptosis and activation of p53, Bax, and Bak. Lentivirus expression of p56/Lck in endothelial cells induced apoptosis and blocked tube formation. Expression of p56/Lck in murine aortic rings blocked sprouting angiogenesis. Lentivirus expressing p56/Lck blocked angiogenesis in Matrigel plugs, while p56/Lck short hairpin RNA inhibited the antiangiogenic effect of HKa. Scrambled siRNAs and empty lentiviral vectors were used in all experiments. Apoptosis of proliferating endothelial cells and inhibition of angiogenesis by HKa requires p56/Lck. This suggests a novel role for p56/Lck in regulation of endothelial cell survival and angiogenesis.-Betapudi, V., Shukla, M., Alluri, R., Merkulov, S., McCrae, K. R. Novel role for p56/Lck in regulation of endothelial cell survival and angiogenesis.
Collapse
Affiliation(s)
- Venkaiah Betapudi
- Department of Cellular and Molecular Medicine Cleveland Clinic, Cleveland, Ohio, USA; Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, USA; and
| | - Meenal Shukla
- Department of Cellular and Molecular Medicine Cleveland Clinic, Cleveland, Ohio, USA
| | - Ravi Alluri
- Department of Cellular and Molecular Medicine Cleveland Clinic, Cleveland, Ohio, USA
| | - Sergei Merkulov
- Department of Cellular and Molecular Medicine Cleveland Clinic, Cleveland, Ohio, USA
| | - Keith R McCrae
- Department of Cellular and Molecular Medicine Cleveland Clinic, Cleveland, Ohio, USA; Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
4
|
Yue C, Soboloff J, Gamero AM. Control of type I interferon-induced cell death by Orai1-mediated calcium entry in T cells. J Biol Chem 2011; 287:3207-16. [PMID: 22144678 DOI: 10.1074/jbc.m111.269068] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Store-operated Ca(2+) entry (SOCE) is an essential process in T cell activation. SOCE is controlled by the Ca(2+) release-activated Ca(2+) (CRAC) channel encoded by the gene Orai1 that is expressed on the plasma membrane and activated by STIM1 when ER Ca(2+) stores are depleted. Our earlier work showed that a somatic T-cell line Jurkat mutant H123 bearing a defect in Ca(2+) signaling was susceptible to the apoptotic effects of type I interferons (IFN-α/β). The nature of the mutation and whether this mutation was linked to IFN-α/β apoptotic susceptibility was unknown. Here we show that H123 cells lacked Orai1 and exhibit reduced STIM1 protein. Reconstitution of both Orai1 and STIM1 in H123 cells rescued SOCE in response to thapsigargin and ionomycin and abrogated IFN-α/β-induced apoptosis. Reciprocally, overexpression of the dominant negative Orai1-E106A in either parental Jurkat cells or an unrelated human T cell line (CEM391) inhibited SOCE and led to sensitization to IFN-α/β-induced apoptosis. Furthermore, we showed that the Ca(2+) response pathway antagonized the IFN-α/β -induced transcriptional responses; in the absence of SOCE, this negative regulatory effect was lost. However, the inhibitory effect of Ca(2+) on type I IFN-induced gene transcription was diminished by pharmacological inhibition of NF-κB in cells with intact SOCE. Our findings reveal an unexpected and novel regulatory crosstalk mechanism between type I IFNs and store-operated Ca(2+) signaling pathways mediated at least in part by NF-κB activity with significant clinical implications to both viral and tumor immunology.
Collapse
Affiliation(s)
- Chanyu Yue
- Department of Biochemistry, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | |
Collapse
|
5
|
Patrussi L, Giommoni N, Pellegrini M, Gamberucci A, Baldari CT. p66Shc-dependent apoptosis requires Lck and CamKII activity. Apoptosis 2011; 17:174-86. [DOI: 10.1007/s10495-011-0663-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Rudner J, Mueller AC, Matzner N, Huber SM, Handrick R, Belka C, Jendrossek V. The additional loss of Bak and not the lack of the protein tyrosine kinase p56/Lck in one JCaM1.6 subclone caused pronounced apoptosis resistance in response to stimuli of the intrinsic pathway. Apoptosis 2009; 14:711-20. [DOI: 10.1007/s10495-009-0342-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Desharnais P, Dupéré-Minier G, Hamelin C, Devine P, Bernier J. Involvement of CD45 in DNA fragmentation in apoptosis induced by mitochondrial perturbing agents. Apoptosis 2008; 13:197-212. [PMID: 18157742 DOI: 10.1007/s10495-007-0162-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
CD45 is a type I transmembrane molecule with phosphatase activity which comprises up to 10% of the cell surface area in nucleated haematopoietic cells. We have previously demonstrated the absence of nuclear apoptosis in CD45-negative T cells after chemical-induced apoptosis. The aim of this study was to characterize the role of CD45 in nuclear apoptosis. In contrast to wild type CD45-positive T cells, the CD45-deficient T cell lines are resistant to the induction of DNA fragmentation and chromatin condensation following tributyltin (TBT) or H2O2 exposure, but not to cycloheximide-induced apoptosis. CD45 transfection in deficient cell lines led to the restoration of chromatin condensation and DNA fragmentation following TBT exposure. In both CD45-positive and negative T cell lines, TBT exposure mediates intracellular calcium mobilization, caspase-3 activation and DFF45 cleavage. Moreover, DNA fragmentation was also induced by TBT in cells deficient in expression of p56lck, ZAP-70 and SHP-1. Subcellular partitioning showed a decrease in nuclear localisation of caspase-3 and DFF40. Together, these results demonstrate for the first time, that CD45 expression plays a key role in internucleosomal DNA fragmentation and chromatin condensation processes during apoptosis. CD45 activity or its substrates' activity, appears to be located downstream of caspase-3 activation and plays a role in retention of DFF40 in the nucleus.
Collapse
Affiliation(s)
- Philippe Desharnais
- INRS-Institut Armand-Frappier, 531 boul. des Prairies, Laval, QC, Canada, H7V 1B7
| | | | | | | | | |
Collapse
|
8
|
Sharif-Askari E, Gaucher D, Halwani R, Ma J, Jao K, Abdallah A, Haddad EK, Sékaly RP. p56Lck tyrosine kinase enhances the assembly of death-inducing signaling complex during Fas-mediated apoptosis. J Biol Chem 2007; 282:36048-56. [PMID: 17932036 DOI: 10.1074/jbc.m706007200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although the death-inducing signaling complex (DISC) is rapidly assembled, several lines of evidence suggest that formation of this complex is not the first consequence of cell surface CD95 (Fas) stimulation but rather a later step in this process. Activation of Fas triggers a cascade of signaling events that culminate in cellular apoptosis. Tyrosine kinases are critical effectors in T cell activation. However, their functional involvement in death receptor-mediated apoptosis is unknown. Here, we used p56(Lck)-deficient cells to show that CD95-induced cell death is highly dependent on p56(Lck) activity and its localization within plasma membrane. We found that p56(Lck) acts upstream of the mitochondria; in the absence of p56(Lck), Bid cleavage and the release of cytochrome c were severely impaired. Moreover, p56(Lck)-deficient cells or cells expressing an inactive form of p56(Lck) displayed defective formation of the DISC post CD95 stimulation. In vivo reconstitution of thymocytes from p56(lck)-deficient mice, which are resistant to apoptosis, with p56(Lck) restored Fas-mediated cell death. Our results support a novel model whereby sensitivity to apoptosis is regulated through quantitative changes in the stoichiometry of DISC components triggered by p56(Lck) activation and localization.
Collapse
Affiliation(s)
- Ehssan Sharif-Askari
- Laboratoire d'Immunologie, Centre de Recherche CHUM Saint-Luc, Montréal H2X 1P1, Canada
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Pathak R, Dey SK, Sarma A, Khuda-Bukhsh AR. Cell killing, nuclear damage and apoptosis in Chinese hamster V79 cells after irradiation with heavy-ion beams of (16)O, (12)C and (7)Li. Mutat Res 2007; 632:58-68. [PMID: 17532254 DOI: 10.1016/j.mrgentox.2007.04.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 04/07/2007] [Accepted: 04/14/2007] [Indexed: 01/09/2023]
Abstract
Chinese hamster V79 cells were exposed to high LET (linear energy transfer) (16)O-beam (625keV/mum) radiation in the dose range of 0-9.83Gy. Cell survival, micronuclei (MN), chromosomal aberrations (CA) and induction of apoptosis were studied as a follow up of our earlier study on high LET radiations ((7)Li-beam of 60keV/mum and (12)C-beam of 295keV/mum) as well as (60)Co gamma-rays. Dose dependent decline in surviving fraction was noticed along with the increase of MN frequency, CA frequency as well as percentage of apoptosis as detected by nuclear fragmentation assay. The relative intensity of DNA ladder, which is a useful marker for the determination of the extent of apoptosis induction, was also increased in a dose dependent manner. Additionally, expression of tyrosine kinase lck-1 gene, which plays an important role in response to ionizing radiation induced apoptosis, was increased with the increase of radiation doses and also with incubation time. The present study showed that all the high LET radiations were generally more effective in cell killing and inflicting other cytogenetic damages than that of low LET gamma-rays. The dose response curves revealed that (7)Li-beam was most effective in cell killing as well as inducing other nuclear damages followed by (12)C, (16)O and (60)Co gamma-rays, in that order. The result of this study may have some application in biological dosimetry for assessment of genotoxicity in heavy ion exposed subjects and in determining suitable doses for radiotherapy in cancer patients where various species of heavy ions are now being generally used.
Collapse
Affiliation(s)
- Rupak Pathak
- Department of Biotechnology, West Bengal University of Technology, Salt Lake Sector-I, Kolkata 700064, India
| | | | | | | |
Collapse
|
10
|
De Toni EN, Kuntzen C, Gerbes AL, Thasler WE, Sonuc N, Mucha SR, Camaj P, Bruns C, Göke B, Eichhorst ST. P60-c-src suppresses apoptosis through inhibition of caspase 8 activation in hepatoma cells, but not in primary hepatocytes. J Hepatol 2007; 46:682-91. [PMID: 17224200 DOI: 10.1016/j.jhep.2006.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 10/05/2006] [Accepted: 10/17/2006] [Indexed: 01/09/2023]
Abstract
BACKGROUND/AIMS Failure to induce apoptosis triggered by members of the death receptor family has been described in hepatocellular carcinoma (HCC) and sensitization of malignant cells to pro-apoptotic molecules such as TRAIL has been proposed as an alternative cancer therapy. Limiting to this approach are the resistance of many tumor cells to TRAIL and safety concerns about the toxicity of TRAIL in normal hepatocytes. METHODS We here explored the possibility that the protooncogene c-Src, known to be overexpressed in a variety of tumors, could be specifically responsible for the loss of response to receptor-mediated apoptosis. RESULTS Cotreatment of several hepatoma cell lines with the Src inhibitor PP2 potently sensitized these cells to TRAIL and CD95, dramatically decreasing effective doses of TRAIL to as low as 1 ng/ml. Remarkably, Src-inhibition did not synergize with TRAIL signaling in primary hepatocytes. Specific siRNAs showed that the effect was due to blockade of p60(c-Src) and occurred through increased recruitment of caspase 8. CONCLUSIONS We provide evidence that p60(c-Src) is an important and effective suppressor of receptor-mediated apoptosis in hepatoma cells but not in primary human hepatocytes. Inhibition of Src sensitizes tumor cells to apoptosis and decreases effective doses of TRAIL to therapeutic concentrations.
Collapse
Affiliation(s)
- Enrico N De Toni
- Ludwig-Maximilians-University, University Hospital Grosshadern, Department of Medicine 2, Research Lab B 5 E01 308, Marchioninistrasse 15, D-81377 Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
AbstractAngiotensin-converting enzyme (ACE, kininase II) is a plasma membrane zinc metallopeptidase that acts as a key enzyme for the extracellular conversion of vasoactive peptides. Recently, ACE outside-in signalling in endothelial cells has been described. The present study tested the hypothesis that ACE signalling is not restricted to endothelial cells and may act as an additional peptide receptor on human preadipocytes and adipocytes. ACE protein levels were not changed during adipose conversion of human primary preadipocytes. The enzyme was primarily localized to the non-detergent-resistant fraction of the membrane and phosphorylated in non-dividing cells. Antibody arrays of whole cell lysate detected putative ACE-interacting proteins, which all share important roles in cell cycle control and/or apoptosis. These findings suggest that ACE is a versatile molecule, involved both in the regulation of extracellular peptide concentrations and direct intracellular signalling. In human adipose cells ACE may potentially influence exit from the cell cycle, differentiation, and programmed cell death signalling.
Collapse
|
12
|
Abstract
Protein kinases are critically involved in signaling pathways that regulate cell growth, differentiation, activation, and survival. Lck, a member of the Src family of protein tyrosine kinases, plays a key role in T-lymphocyte activation and differentiation. However, under certain conditions Lck is also involved in the induction of apoptosis. In this issue of Oncogene, Samraj et al. used the Lck-defective JCaM1.6 cell line to demonstrate the critical role of Lck in the apoptotic response of T-cell leukemia cells to several chemotherapeutic drugs. They further showed that Lck controls the mitochondrial death pathway by regulating proapoptotic Bak expression. This chemosensitizing effect of Lck is independent of T-cell receptor signaling and does not require the kinase activity of Lck. These findings demonstrate that Lck might be part of two independent signaling pathways leading to either cell proliferation or apoptosis, and reveal a hitherto unrecognized link between Lck, Bak, and chemosensitivity of human leukemic cells.
Collapse
Affiliation(s)
- K Heyninck
- Department for Molecular Biomedical Research, Unit of Molecular Signal Transduction in Inflammation, VIB, Ghent University, Technologiepark, B-9052, Gent, Belgium
| | | |
Collapse
|
13
|
Marini P, Denzinger S, Schiller D, Kauder S, Welz S, Humphreys R, Daniel PT, Jendrossek V, Budach W, Belka C. Combined treatment of colorectal tumours with agonistic TRAIL receptor antibodies HGS-ETR1 and HGS-ETR2 and radiotherapy: enhanced effects in vitro and dose-dependent growth delay in vivo. Oncogene 2006; 25:5145-54. [PMID: 16636678 DOI: 10.1038/sj.onc.1209516] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We and others have demonstrated already that TRAIL (TNF-related apoptosis-inducing ligand) is a very promising candidate for molecular targeted anticancer therapy, especially when combined with ionizing radiation or other DNA-damaging agents. Agonist monoclonal antibodies that activate and are specific for the death signaling TRAIL receptors are an alternative method to stimulate the programmed cell death pathway. Phase 1 clinical trials have subsequently been conducted and shown a very good tolerability of these antibodies. In order to assess the efficacy of TRAIL receptor stimulation to induce cell death by this alternate method, we studied the combination of the agonistic-TRAIL receptor antibodies HGS-ETR1 and HGS-ETR2 with radiation in vitro and in vivo. Induction of apoptosis after combined treatment with TRAIL receptor antibodies HGS-ETR1 and/or HGS-ETR2 (0.01, 0.1, 1.0 mg/ml) and irradiation with 2, 5 or 10 Gy was determined by fluorescence microscopy and Western blot analysis of caspase-8 and PARP. The colorectal tumour cell lines Colo 205, HCT 116 and HCT-15 were used for in vitro experiments. Growth delay experiments were performed with combined treatment with fractionated irradiation (days 1-5 and 3 Gy single dose/day) and the receptor antibodies (intraperitonially, three different concentrations, application on days 1, 4 and 8) on Colo 205 xenograft-bearing NMRI (nu/nu) nude mice. HGS-ETR1 and HGS-ETR2 induced apoptotic cell death in a dose-dependent fashion and significantly increased cell death in combination with irradiation in vitro when compared to either irradiation or antibody treatment alone. The efficacy of the combined treatment seems to be at least partially Bax-dependent. Similar to the results from cell culture experiments, in vivo experiments demonstrated a dose-dependent delay in tumour growth after combined treatment. In vivo, in the Colo205 xenograft model, HGS-ETR2 revealed a higher activity than HGS-ETR1. This is the first study to demonstrate significant efficacy of combined treatment with the monoclonal agonistic TRAIL receptor antibodies HGS-ETR1 and HGS-ETR2 and ionising radiation in in vitro and in vivo models. We postulate that HGS-ETR1 and HGS-ETR2 will be very promising new agents in the field of molecular targeted multi-modality anticancer therapy.
Collapse
Affiliation(s)
- P Marini
- CCC Tübingen, Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ganswindt U, Budach W, Jendrossek V, Becker G, Bamberg M, Belka C. Combination of celecoxib with percutaneous radiotherapy in patients with localised prostate cancer - a phase I study. Radiat Oncol 2006; 1:9. [PMID: 16722607 PMCID: PMC1464385 DOI: 10.1186/1748-717x-1-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Accepted: 04/10/2006] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Current approaches for the improvement of bNED for prostate cancer patients treated with radiotherapy mainly focus on dose escalation. However molecularly targeted approaches may also turn out to be of value. In this regard cyclooxygenase (COX)-2 inhibitors have been shown to exert some anti-tumour activities in human prostate cancer in vivo and in vitro. Although in vitro data indicated that the combination of COX-2 inhibition and radiation was not associated with an increased toxicity, we performed a phase I trial using high dose celecoxib together with percutaneous radiation therapy. METHODS In order to rule out any increases of more than 20% incidence for a given side effect level 22 patients were included in the trial. Celecoxib was given 400 mg twice daily with onset of the radiation treatment. Risk adapted radiation doses were between 70 and 74 Gy standard fractionation. RTOG based gastrointestinal (GI) and genitourinary (GU) acute toxicity scoring was performed weekly during radiation therapy, at six weeks after therapy and three month after completing radiation treatment. RESULTS Generally no major increase in the level and incidence of side effects potentially caused by the combined treatment was observed. In two cases a generalised skin rash occurred which immediately resolved upon discontinuation of the drug. No grade 3 and 4 toxicity was seen. Maximal GI toxicity grade 1 and 2 was observed in 85% and 10%, respectively. In terms of GU toxicity 80% of the patients experienced a grade 1 toxicity and 10 % had grade 2 symptoms. CONCLUSION The combination of irradiation to the prostate with concurrent high dose celecoxib was not associated with an increased level of side effects.
Collapse
Affiliation(s)
- U Ganswindt
- CCC Tübingen, Centre for Genitourinary Oncology, Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - W Budach
- Department of Radiation Oncology, University of Düsseldorf, Düsseldorf, Germany
| | - V Jendrossek
- CCC Tübingen, Centre for Genitourinary Oncology, Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - G Becker
- Department of Radiation Oncology, Klinik am Eichert, Göppingen, Germany
| | - M Bamberg
- CCC Tübingen, Centre for Genitourinary Oncology, Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - C Belka
- CCC Tübingen, Centre for Genitourinary Oncology, Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
15
|
Ion G, Fajka-Boja R, Kovács F, Szebeni G, Gombos I, Czibula A, Matkó J, Monostori E. Acid sphingomyelinase mediated release of ceramide is essential to trigger the mitochondrial pathway of apoptosis by galectin-1. Cell Signal 2006; 18:1887-96. [PMID: 16549336 DOI: 10.1016/j.cellsig.2006.02.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 02/13/2006] [Accepted: 02/13/2006] [Indexed: 01/13/2023]
Abstract
The mechanism of apoptosis induced by human galectin-1, a mammalian beta-galactoside-binding protein with a remarkable cytotoxic effect on activated peripheral T cells and tumor T cell lines has been extensively investigated in this study. Here we first show that galectin-1 initiate the acid sphingomyelinase mediated release of ceramide and this event is critical in the further steps. Elevation of ceramide level coincides with exposure of phosphatidylserine on the outer cell membrane. The downstream events, decrease of Bcl-2 protein amount, depolarization of the mitochondria and activation of the caspase 9 and caspase 3 depend on production of ceramide. All downstream steps, including production of ceramide, require the generation of membrane rafts and the presence of two tyrosine kinases, p56(lck) and ZAP70. Based on our findings we suggest a model of the mechanism of galectin-1 triggered cell death.
Collapse
Affiliation(s)
- Gabriela Ion
- Lymphocyte Signal Transduction Laboratory, Institute of Genetics, Biological Research Center of Hungarian Academy of Sciences, 62 Temesvari krt, H-6726 Szeged, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Ion G, Fajka-Boja R, Tóth GK, Caron M, Monostori E. Role of p56lck and ZAP70-mediated tyrosine phosphorylation in galectin-1-induced cell death. Cell Death Differ 2005; 12:1145-7. [PMID: 15832176 DOI: 10.1038/sj.cdd.4401628] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
17
|
Scholz C, Richter A, Lehmann M, Schulze-Osthoff K, Dörken B, Daniel PT. Arsenic trioxide induces regulated, death receptor-independent cell death through a Bcl-2-controlled pathway. Oncogene 2005; 24:7031-42. [PMID: 16007134 DOI: 10.1038/sj.onc.1208868] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Arsenic trioxide (As2O3, arsenite) efficiently kills cells from various hematologic malignancies and has successfully been employed especially for the treatment of acute promyelocytic leukemia. There and in lymphoid cells, we demonstrated that As2O3 induces cell death in a caspase-2- and -9-independent fashion. Here, we address a potential role of death receptor signaling through the FADD/caspase-8 death-inducing signaling complex in As2O3-induced cell death. In detail, we demonstrate that As2O3 induces cell death independently of caspase-8 or FADD and cannot be blocked by disruption of CD95/Fas receptor ligand interaction. Unlike in death receptor ligation-induced apoptosis, As2O3-induced cell death was not blocked by the broad-spectrum caspase inhibitor z-VAD-fmk or the caspase-8-specific inhibitor z-IETD-fmk. Nevertheless, As2O3-induced cell death occurred in a regulated manner and was abrogated upon Bcl-2 overexpression. In contrast, As2O3-induced cell demise was neither blocked by the caspase-9 inhibitor z-LEHD-fmk nor substantially inhibited through the expression of a dominant negative caspase-9 mutant. Altogether our data demonstrate that As2O3-induced cell death occurs independently of the extrinsic death receptor pathway of apoptosis. Cell death proceeds entirely via an intrinsic, Bcl-2-controlled mitochondrial pathway that does, however, not rely on caspase-9.
Collapse
Affiliation(s)
- Christian Scholz
- Department of Hematology, Oncology and Tumor Immunology, University Medical Center Charité, Campus Buch, Humboldt University, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Jendrossek V, Belka C, Bamberg M. Novel chemotherapeutic agents for the treatment of glioblastoma multiforme. Expert Opin Investig Drugs 2005; 12:1899-924. [PMID: 14640936 DOI: 10.1517/13543784.12.12.1899] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
During the last few decades, the discovery of novel targets for therapeutic intervention led to the development of chemotherapeutic agents that specifically interfere with altered cellular functions of tumour cells. Genetic alterations in glioblastoma affect cell proliferation and cell cycle control, as well as invasive and metastatic growth. Therefore, innovative therapeutic strategies have been based on drugs targeting cellular proliferation, invasion, angiogenesis, metastasis and differentiation of tumour cells. Furthermore, disruption of cell-death pathways also contributes to the pathogenesis of glioblastoma and may result in resistance to chemotherapy and radiation. Therefore, additional treatment strategies that target intracellular survival and/or apoptotic pathways are under current laboratory investigation. The progress in the understanding of glioblastoma tumour biology and the refined diagnosis of individual patients together with the exploration of targeted drugs may allow a risk-adapted, individualised therapeutic strategy and will hopefully improve prognosis of glioblastoma patients in the future.
Collapse
Affiliation(s)
- Verena Jendrossek
- Department of Radiation Oncology, Hoppe-Seyler-Strasse 3, D-72076 Tübingen, Germany.
| | | | | |
Collapse
|
19
|
Rudner J, Jendrossek V, Lauber K, Daniel PT, Wesselborg S, Belka C. Type I and type II reactions in TRAIL-induced apoptosis -- results from dose-response studies. Oncogene 2005; 24:130-40. [PMID: 15531922 DOI: 10.1038/sj.onc.1208191] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Death receptor-induced apoptosis is paradigmatically mediated via the recruitment of FADD adapter molecule to the ligand/receptor complex and subsequent activation of caspase-8. However, several observations provided evidence that components of the mitochondrial apoptosis pathway are involved in death receptor-mediated apoptosis. In this regard, caspase-8-mediated activation of Bid induces the release of cytochrome c from the mitochondria, which, in turn, triggers the formation of the apoptosome protein complex, resulting in the activation of caspase-9. Whereas Bax or Bak were shown to be required for the proapoptotic effect of Bid, Bcl-2 was described to interfere with its action. Up to now, contradictory results regarding the role of Bcl-2 in TRAIL-induced apoptosis have been published. In order to study the influence of Bcl-2 on TRAIL-induced cell death more detailed, we utilized a tetracycline-regulated Bcl-2 expression system in Jurkat T cells. After having analysed the dose response for TRAIL-induced activation of caspase-8, -9, -3, breakdown of the mitochondrial membrane potential, and changes in the apoptotic morphology in cells expressing different Bcl-2 levels, we conclude that overexpression of Bcl-2 mediates a partial resistance towards lower doses of TRAIL that can be overcome when higher doses of TRAIL are applied. Thus, the requirement of the mitochondrial pathway for death receptor-induced apoptosis in type II cells should be reconsidered, since the protective effect of Bcl-2 is limited to lower TRAIL doses or early observation time points.
Collapse
Affiliation(s)
- Justine Rudner
- Department of Radiation Oncology, University of Tuebingen, Hoppe-Seyler-Str. 3, Tuebingen D-72076, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Weinmann M, Jendrossek V, Güner D, Goecke B, Belka C. Cyclic exposure to hypoxia and reoxygenation selects for tumor cells with defects in mitochondrial apoptotic pathways. FASEB J 2004; 18:1906-8. [PMID: 15456741 DOI: 10.1096/fj.04-1918fje] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The negative influence of hypoxia on the outcome of malignant tumors may be caused by direct oxygen effects, and potentially, the selection of resistant tumor cells under repetitive hypoxia. To evaluate whether cyclic hypoxia selects for resistant cells and to analyze the underlying mechanisms, the influence of cyclic hypoxia on intracellular death pathways was determined in tumor cells. It could be demonstrated that cyclic hypoxia selects for cells with increased resistance against hypoxia-induced apoptosis. These cells exhibited a cross-resistance against paradigmatic triggers of mitochondrial apoptotic pathways (ionizing radiation/etoposide). In contrast, TRAIL-receptor mediated apoptosis remained unaffected. Thus, cyclic hypoxia selects for cells with defects of the mitochondrial rather than receptor-mediated pathways. Selection of p53-defective cells has been described as a consequence of cyclic hypoxia; therefore, we evaluated the impact of hypoxic selection on activation of p21 and downstream mediators of p53-dependent apoptosis. p53 function and protein levels of key mediators of mitochondrial apoptosis remained unaffected by hypoxic selection. However, radiation-induced conformational changes of Bax were reduced after cyclic hypoxia. In summary, it could be demonstrated that hypoxic stress confers a selection pressure on mitochondrial apoptotic pathways and, consecutively, to an increased resistance toward mitochondrial death triggers.
Collapse
Affiliation(s)
- Martin Weinmann
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | | | | | | | | |
Collapse
|
21
|
Griffiths GJ, Koh MY, Brunton VG, Cawthorne C, Reeves NA, Greaves M, Tilby MJ, Pearson DG, Ottley CJ, Workman P, Frame MC, Dive C. Expression of kinase-defective mutants of c-Src in human metastatic colon cancer cells decreases Bcl-xL and increases oxaliplatin- and Fas-induced apoptosis. J Biol Chem 2004; 279:46113-21. [PMID: 15326164 DOI: 10.1074/jbc.m408550200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor resistance to current drugs prevents curative treatment of human colon cancer. A pressing need for effective, tumor-specific chemotherapies exists. The non-receptor-tyrosine kinase c-Src is overexpressed in >70% of human colon cancers and represents a tractable drug target. KM12L4A human metastatic colon cancer cells were stably transfected with two distinct kinase-defective mutants of c-src. Their response to oxaliplatin, to SN38, the active metabolite of irinotecan (drugs active in colon cancer), and to activation of the death receptor Fas was compared with vector control cells in terms of cell cycle arrest and apoptosis. Both kinase-defective forms of c-Src co-sensitized cells to apoptosis induced by oxaliplatin and Fas activation but not by SN38. Cells harboring kinase-defective forms of c-Src carrying function blocking point mutations in SH3 or SH2 domains were similarly sensitive to oxaliplatin, suggesting that reduction in kinase activity and not a Src SH2-SH3 scaffold function was responsible for the observed altered sensitivity. Oxaliplatin-induced apoptosis, potentiated by kinase-defective c-Src mutants, was dependent on activation of caspase 8 and associated with Bid cleavage. Each of the stable cell lines in which kinase-defective mutants of c-Src were expressed had reduced levels of Bcl-x(L.) However, inhibition of c-Src kinase activity by PP2 in vector control cells did not alter the oxaliplatin response over 72 h nor did it reduce Bcl-x(L) levels. The data suggest that longer term suppression of Src kinase activity may be required to lower Bcl-x(L) levels and sensitize colon cancer cells to oxaliplatin-induced apoptosis.
Collapse
Affiliation(s)
- Gareth J Griffiths
- Cancer Research UK Paterson Institute for Cancer Research, Manchester, and School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Manchester M20 4BX, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Gruber C, Henkel M, Budach W, Belka C, Jendrossek V. Involvement of tyrosine kinase p56/Lck in apoptosis induction by anticancer drugs. Biochem Pharmacol 2004; 67:1859-72. [PMID: 15130763 DOI: 10.1016/j.bcp.2004.01.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2003] [Accepted: 01/27/2004] [Indexed: 02/09/2023]
Abstract
Induction of apoptosis is a hallmark of the cellular response of human lymphocytes and lymphoma cells to treatment with anticancer drugs and irradiation. Both treatment modalities trigger apoptosis through intrinsic, mitochondrial apoptosis pathways resulting in the activation of caspases. We and others have shown that the tyrosine kinase p56/Lck is involved in the regulation of apoptosis induced by irradiation or treatment with ceramide but dispensable for death receptor triggered cell death. However, the role of p56/Lck for apoptosis induction in response to anticancer drugs is unclear. To elucidate the putative requirement of p56/Lck for apoptosis signaling of cytotoxic drugs, activation of caspases and alteration of mitochondrial functions were determined in Jurkat T cells, the p56/Lck deficient JCaM1.6 cells and the p56/Lck retransfected JCaM1.6/Lck cells in response to chemotherapeutic drugs with different targets of their primary action. Treatment with Doxorubicin, Paclitaxel or 5-Fluorouracil induced a breakdown of the mitochondrial membrane potential and apoptotic cell death in p56/Lck expressing Jurkat and the retransfected JCaM1.6/Lck cells within 48h of treatment. However, almost no mitochondrial alterations and no induction of apoptosis could be detected in the p56/Lck deficient JCaM1.6 cells. Correspondingly, activation of caspases-9, -8, and -3 and cleavage of the caspase-3 substrate PARP (poly-(ADP-ribose)-polymerase) were almost completely absent in JCaM1.6 cells while present in p56/Lck positive Jurkat and JCaM1.6/Lck cells. In contrast, retransfection of the cells with the p56/Lck-related tyrosine kinase Src could not restore sensitivity to the treatment with cytotoxic drugs indicating a specific role of the tyrosine kinase p56/Lck in apoptosis signaling. Importantly, kinase-activity of p56/Lck may be dispensable for its pro-apoptoptic action since preincubation with the Src-kinase inhibitor PP2 did not reduce apoptosis induced by cytotoxic drugs. In conclusion, the tyrosine kinase p56/Lck is essential for apoptosis induction by Doxorubicin, Paclitaxel and 5-Fluorouracil regulating early steps of the mitochondrial apoptosis signaling cascade, including alteration of mitochondrial functions and caspase-activation.
Collapse
Affiliation(s)
- Charlotte Gruber
- Department of Radiooncology, University of Tübingen, Hoppe-Seyler Strasse 3, 72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
23
|
Régulier EG, Reiss K, Khalili K, Amini S, Zagury JF, Katsikis PD, Rappaport J. T-cell and neuronal apoptosis in HIV infection: implications for therapeutic intervention. Int Rev Immunol 2004; 23:25-59. [PMID: 14690854 DOI: 10.1080/08830180490265538] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The pathogenesis of HIV infection involves the selective loss of CD4+ T cells contributing to immune deficiency. Although loss of T cells leading to immune dysfunction in HIV infection is mediated in part by viral infection, there is a much larger effect on noninfected T cells undergoing apoptosis in response to activation stimuli. In the subset of patients with HIV dementia complex, neuronal injury, loss, and apoptosis are observed. Viral proteins, gp120 and Tat, exhibit proapoptotic activities when applied to T cell and neuronal cultures by direct and indirect mechanisms. The pathways leading to cell death involve the activation of one or more death receptor pathways (i.e., TNF-alpha, Fas, and TRAIL receptors), chemokine receptor signaling, cytokine dysregulation, caspase activation, calcium mobilization, and loss of mitochondrial membrane potential. In this review, the mechanisms involved in T-cell and neuronal apoptosis, as well as antiapoptotic pathways potentially amenable to therapeutic application, are discussed.
Collapse
Affiliation(s)
- Emmanuel G Régulier
- Center for Neurovirology and Cancer Biology, Temple University, Philadelphia, Pennsylvania 19122, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Weinmann M, Jendrossek V, Handrick R, Güner D, Goecke B, Belka C. Molecular ordering of hypoxia-induced apoptosis: critical involvement of the mitochondrial death pathway in a FADD/caspase-8 independent manner. Oncogene 2004; 23:3757-69. [PMID: 15034549 DOI: 10.1038/sj.onc.1207481] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dys-regulated growth and improper angiogenesis commonly lead to areas of hypoxia in human tumors. Hypoxia is known to be associated with a worse outcome since a lack of oxygen interferes with the efficacy of chemotherapy or radiotherapy. In parallel, hypoxia-induced apoptosis may also impose a selection pressure favoring growth of more resistant tumor cells. However, the mechanisms of hypoxia-induced apoptosis and the relative contribution of intrinsic and extrinsic apoptotic pathways are not understood. Therefore, Jurkat cell lines with defined defects in the extrinsic or intrinsic signaling cascades were used to evaluate the role of either pathway for induction of apoptosis under hypoxic conditions. Jurkat cells were incubated in hypoxia and the rate of apoptosis induction was determined by Western blotting, fluorescence microscopy and flow cytometry. Hypoxia-induced apoptosis was not affected by lack of caspase-8 or FADD, whereas overexpression of Bcl-2 or expression of dominant-negative caspase-9 mutant rendered the cells resistant to hypoxia-induced apoptosis. These results suggest that hypoxia-induced apoptosis mainly relies on intrinsic, mitochondrial pathways, whereas extrinsic pathways have no significant implications in this process. Thus, in human tumors, hypoxia will mainly lead to the selection of hypoxia-resistant cells with defects in mitochondrial apoptosis signaling pathways.
Collapse
Affiliation(s)
- Martin Weinmann
- Department of Radiation Oncology, University of Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Kajimoto T, Shirai Y, Sakai N, Yamamoto T, Matsuzaki H, Kikkawa U, Saito N. Ceramide-induced Apoptosis by Translocation, Phosphorylation, and Activation of Protein Kinase Cδ in the Golgi Complex. J Biol Chem 2004; 279:12668-76. [PMID: 14715667 DOI: 10.1074/jbc.m312350200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinase C (PKC), a Ca(2+)/phospholipid-dependent protein kinase, is known as a key enzyme in various cellular responses, including apoptosis. However, the functional role of PKC in apoptosis has not been clarified. In this study, we focused on the involvement of PKCdelta in ceramide-induced apoptosis in HeLa cells and examined the importance of spatiotemporal activation of the specific PKC subtype in apoptotic events. Ceramide-induced apoptosis was inhibited by the PKCdelta-specific inhibitor rottlerin and also was blocked by knockdown of endogenous PKCdelta expression using small interfering RNA. Ceramide induced the translocation of PKCdelta to the Golgi complex and the concomitant activation of PKCdelta via phosphorylation of Tyr(311) and Tyr(332) in the hinge region of the enzyme. Unphosphorylatable PKCdelta (mutants Y311F and Y332F) could translocate to the Golgi complex in response to ceramide, suggesting that tyrosine phosphorylation is not necessary for translocation. However, ceramide failed to activate PKCdelta lacking the C1B domain, which did not translocate to the Golgi complex, but could be activated by tyrosine phosphorylation. These findings suggest that ceramide translocates PKCdelta to the Golgi complex and that PKCdelta is activated by tyrosine phosphorylation in the compartment. Furthermore, we utilized species-specific knockdown of PKCdelta by small interfering RNA to study the significance of phosphorylation of Tyr(311) and Tyr(332) in PKCdelta for ceramide-induced apoptosis and found that phosphorylation of Tyr(311) and Tyr(332) is indispensable for ceramide-induced apoptosis. We demonstrate here that the targeting mechanism of PKCdelta, dual regulation of both its activation and translocation to the Golgi complex, is critical for the ceramide-induced apoptotic event.
Collapse
Affiliation(s)
- Taketoshi Kajimoto
- Laboratories of Molecular Pharmacology and Biochemistry, Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Hur YG, Yun Y, Won J. Rosmarinic acid induces p56lck-dependent apoptosis in Jurkat and peripheral T cells via mitochondrial pathway independent from Fas/Fas ligand interaction. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2004; 172:79-87. [PMID: 14688312 DOI: 10.4049/jimmunol.172.1.79] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Apoptosis is one way of controlling immune responses, and a variety of immunosuppressive drugs suppress harmful immune responses by inducing apoptosis of lymphocytes. In this study we observed that rosmarinic acid, a secondary metabolite of herbal plants, induced apoptosis in an p56(lck) (Lck)-dependent manner; Lck(+) Jurkat T cells undergo apoptosis in response to rosmarinic acid (RosA) treatment, whereas Lck(-) Jurkat subclone J.CaM1.6 cells do not. J.CaM1.6 cells with various Lck mutants indicated that Lck SH2 domain, but not Lck kinase activity, was required for RosA-induced apoptosis. RosA induced apoptosis in the absence of a TCR stimulus, and this was not prevented by interruption of the Fas/Fas ligand interaction. Instead, RosA-mediated apoptosis involved a mitochondrial pathway as indicated by cytochrome c release and the complete blockage of apoptosis by an inhibitor of mitochondrial membrane depolarization. Both caspase-3 and -8 were indispensable in RosA-induced apoptosis and work downstream of mitochondria and caspase-9 in the order of caspase-9/caspase-3/caspase-8. In freshly isolated human PBMC, RosA specifically induced apoptosis of Lck(+) subsets such as T and NK cells, but not Lck-deficient cells, including B cells and monocytes. Moreover, RosA's ability to kill T and NK cells was restricted to actively proliferating cells, but not to resting cells. In conclusion, Lck-dependent apoptotic activity may make RosA an attractive therapeutic tool for the treatment of diseases in which T cell apoptosis is beneficial.
Collapse
Affiliation(s)
- Yun-Gyoung Hur
- Mogam Biotechnology Research Institute, 304 Bojungri, Goosungeup, Yongin City, Gyunggido 449-913, Korea
| | | | | |
Collapse
|
27
|
Grassmé H, Cremesti A, Kolesnick R, Gulbins E. Ceramide-mediated clustering is required for CD95-DISC formation. Oncogene 2003; 22:5457-70. [PMID: 12934106 DOI: 10.1038/sj.onc.1206540] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Early events required for induction of apoptosis by CD95 are preassociation of CD95, the formation of the death-inducing signaling complex (DISC) and clustering of CD95 in distinct membrane domains. Here, we identify the molecular ordering of these events and show that the acid sphingomyelinase (ASM) functions upstream of the DISC to mediate CD95 clustering in ceramide-enriched membrane platforms, an event that is required for DISC formation. Experiments in ASM-deficient cells revealed that CD95 ligation, in the absence of ceramide generation, triggers <1% of full caspase 8 activation at the receptor. This event, however, is both necessary and sufficient to trigger translocation of ASM onto the outer leaflet of the plasma membrane, ASM activation and ceramide release, but insufficient for apoptosis induction. Ceramide-mediated CD95 clustering then amplifies the primary CD95 signaling and drives the second step of CD95 signaling, that is, formation of the DISC yielding 100% caspase activity and apoptosis. These studies suggest that the most parsimonious interpretation of the molecular ordering of the earliest events in CD95 signaling, at least in some cells, is: CD95 ligation-->1% of maximum caspase 8 activation-->ASM translocation-->ceramide generation-->CD95 clustering-->DISC formation-->100% of maximum caspase 8 activation-->apoptosis.
Collapse
Affiliation(s)
- Heike Grassmé
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | | | | | | |
Collapse
|
28
|
Jendrossek V, Handrick R, Belka C. Celecoxib activates a novel mitochondrial apoptosis signaling pathway. FASEB J 2003; 17:1547-9. [PMID: 12824303 DOI: 10.1096/fj.02-0947fje] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The cyclooxygenase (COX)-2 inhibitor Celecoxib may inhibit cancer cell growth independently of its capacity to block the COX-2 enzyme. The growth inhibitory effect had been attributed to its pro-apoptotic effects. However, the molecular details of Celecoxib-induced apoptosis have not been analyzed yet. To differentiate between death receptor and mitochondrial signaling pathways, induction of apoptosis upon treatment with Celecoxib was tested in Jurkat T- and BJAB B-lymphoma cell lines with defects in either pathway. Celecoxib-induced dose- and time-dependent apoptosis in Jurkat and BJAB cells involving i) activation of caspases-9, -8, and -3, ii) cleavage of poly(ADP-ribose) polymerase and inhibitor of caspase-activated DNAase, iii) breakdown of the mitochondrial membrane potential, and iv) release of cytochrome c. Lack of Fas-associated death domain protein (FADD), overexpression of a dominant negative FADD, lack of caspase-8, and treatment with caspase-8-specific inhibitors had no influence on Celecoxib-induced apoptosis. In contrast, overexpression of a dominant negative caspase-9 or pharmacological inhibition of caspase-9 strongly interfered with Celecoxib-induced cell death. Furthermore, expression of Apaf-1 was required for Celecoxib-induced apoptosis. Importantly, Bcl-2 overexpression did not abrogate caspase activation, mitochondrial alterations, and apoptosis upon Celecoxib treatment while inhibiting radiation induced apoptosis. In conclusion, Celecoxib induces apoptosis via a novel apoptosome-dependent but Bcl-2-independent mitochondrial pathway.
Collapse
Affiliation(s)
- Verena Jendrossek
- Department of Radiation Oncology, Experimental Radiotherapy Group, University of Tübingen, Hoppe Seyler Str. 3, D-72076 Tübingen, Germany
| | | | | |
Collapse
|