1
|
Bakhanashvili M. The Role of Tumor Suppressor p53 Protein in HIV-Host Cell Interactions. Cells 2024; 13:1512. [PMID: 39329696 PMCID: PMC11429533 DOI: 10.3390/cells13181512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
The virus-host relationship is indispensable for executing successful viral infection. The pathogenesis of HIV is determined by an intricate interaction between the host and the virus for the regulation of HIV infection, thereby influencing various aspects, including the regulation of signaling pathways. High mutation rates and population heterogeneity characterize HIV with consequences for viral pathogenesis and the potential to escape the immune system and anti-viral inhibitors used in therapy. The origin of the high mutation rates exhibited by HIV may be attributed to a limited template-copied fidelity that likely operates in the cytoplasm. HIV-1 infection induces upregulation and activation of tumor suppressor p53 protein in the early stages of HIV-1 infection. p53 plays a multifaceted role in the context of HIV infection, thereby affecting viral replication. p53 is involved in maintaining genetic integrity, actively participating in various DNA repair processes through its various biochemical activities and via its ability to interact with components of the repair machinery. This report focuses on the impact of the p53 protein on the HIV-1 reverse transcription process while incorporating various incorrect and non-canonical nucleotides. The presence of functional host-coded p53 protein with proofreading-repair activities in the cytoplasm may lead to various biological outcomes.
Collapse
Affiliation(s)
- Mary Bakhanashvili
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
2
|
Zhu Y, Jiang Z, Liu L, Yang X, Li M, Cheng Y, Xu J, Yin C, Zhu H. Scopoletin Reactivates Latent HIV-1 by Inducing NF-κB Expression without Global T Cell Activation. Int J Mol Sci 2023; 24:12649. [PMID: 37628826 PMCID: PMC10454185 DOI: 10.3390/ijms241612649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/25/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Reversing HIV-1 latency promotes the killing of infected cells and is essential for cure strategies. However, current latency-reversing agents (LRAs) are not entirely effective and safe in activating latent viruses in patients. In this study, we investigated whether Scopoletin (6-Methoxy-7-hydroxycoumarin), an important coumarin phytoalexin found in plants with multiple pharmacological activities, can reactivate HIV-1 latency and elucidated its underlying mechanism. Using the Jurkat T cell model of HIV-1 latency, we found that Scopoletin can reactivate latent HIV-1 replication with a similar potency to Prostratin and did so in a dose- and time-dependent manner. Moreover, we provide evidence indicating that Scopoletin-induced HIV-1 reactivation involves the nuclear factor kappa B (NF-κB) signaling pathway. Importantly, Scopoletin did not have a stimulatory effect on T lymphocyte receptors or HIV-1 receptors. In conclusion, our study suggests that Scopoletin has the potential to reactivate latent HIV-1 without causing global T-cell activation, making it a promising treatment option for anti-HIV-1 latency strategies.
Collapse
Affiliation(s)
- Yuqi Zhu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China; (Y.Z.); (Z.J.); (L.L.); (X.Y.); (M.L.); (Y.C.); (C.Y.)
| | - Zhengtao Jiang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China; (Y.Z.); (Z.J.); (L.L.); (X.Y.); (M.L.); (Y.C.); (C.Y.)
| | - Lin Liu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China; (Y.Z.); (Z.J.); (L.L.); (X.Y.); (M.L.); (Y.C.); (C.Y.)
| | - Xinyi Yang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China; (Y.Z.); (Z.J.); (L.L.); (X.Y.); (M.L.); (Y.C.); (C.Y.)
| | - Min Li
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China; (Y.Z.); (Z.J.); (L.L.); (X.Y.); (M.L.); (Y.C.); (C.Y.)
| | - Yipeng Cheng
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China; (Y.Z.); (Z.J.); (L.L.); (X.Y.); (M.L.); (Y.C.); (C.Y.)
| | - Jianqing Xu
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China;
| | - Chunhua Yin
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China; (Y.Z.); (Z.J.); (L.L.); (X.Y.); (M.L.); (Y.C.); (C.Y.)
| | - Huanzhang Zhu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China; (Y.Z.); (Z.J.); (L.L.); (X.Y.); (M.L.); (Y.C.); (C.Y.)
| |
Collapse
|
3
|
Manils J, Marruecos L, Soler C. Exonucleases: Degrading DNA to Deal with Genome Damage, Cell Death, Inflammation and Cancer. Cells 2022; 11:2157. [PMID: 35883600 PMCID: PMC9316158 DOI: 10.3390/cells11142157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/30/2022] [Accepted: 07/07/2022] [Indexed: 01/27/2023] Open
Abstract
Although DNA degradation might seem an unwanted event, it is essential in many cellular processes that are key to maintaining genomic stability and cell and organism homeostasis. The capacity to cut out nucleotides one at a time from the end of a DNA chain is present in enzymes called exonucleases. Exonuclease activity might come from enzymes with multiple other functions or specialized enzymes only dedicated to this function. Exonucleases are involved in central pathways of cell biology such as DNA replication, repair, and death, as well as tuning the immune response. Of note, malfunctioning of these enzymes is associated with immune disorders and cancer. In this review, we will dissect the impact of DNA degradation on the DNA damage response and its links with inflammation and cancer.
Collapse
Affiliation(s)
- Joan Manils
- Serra Húnter Programme, Immunology Unit, Department of Pathology and Experimental Therapy, School of Medicine, Universitat de Barcelona, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Spain;
- Immunity, Inflammation and Cancer Group, Oncobell Program, Institut d’Investigació Biomèdica de Bellvitge—IDIBELL, 08907 L’Hospitalet de Llobregat, Spain
| | - Laura Marruecos
- Breast Cancer Laboratory, Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
| | - Concepció Soler
- Immunity, Inflammation and Cancer Group, Oncobell Program, Institut d’Investigació Biomèdica de Bellvitge—IDIBELL, 08907 L’Hospitalet de Llobregat, Spain
- Immunology Unit, Department of Pathology and Experimental Therapy, School of Medicine, Universitat de Barcelona, 08007 Barcelona, Spain
| |
Collapse
|
4
|
Provasek VE, Mitra J, Malojirao VH, Hegde ML. DNA Double-Strand Breaks as Pathogenic Lesions in Neurological Disorders. Int J Mol Sci 2022; 23:ijms23094653. [PMID: 35563044 PMCID: PMC9099445 DOI: 10.3390/ijms23094653] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023] Open
Abstract
The damage and repair of DNA is a continuous process required to maintain genomic integrity. DNA double-strand breaks (DSBs) are the most lethal type of DNA damage and require timely repair by dedicated machinery. DSB repair is uniquely important to nondividing, post-mitotic cells of the central nervous system (CNS). These long-lived cells must rely on the intact genome for a lifetime while maintaining high metabolic activity. When these mechanisms fail, the loss of certain neuronal populations upset delicate neural networks required for higher cognition and disrupt vital motor functions. Mammalian cells engage with several different strategies to recognize and repair chromosomal DSBs based on the cellular context and cell cycle phase, including homologous recombination (HR)/homology-directed repair (HDR), microhomology-mediated end-joining (MMEJ), and the classic non-homologous end-joining (NHEJ). In addition to these repair pathways, a growing body of evidence has emphasized the importance of DNA damage response (DDR) signaling, and the involvement of heterogeneous nuclear ribonucleoprotein (hnRNP) family proteins in the repair of neuronal DSBs, many of which are linked to age-associated neurological disorders. In this review, we describe contemporary research characterizing the mechanistic roles of these non-canonical proteins in neuronal DSB repair, as well as their contributions to the etiopathogenesis of selected common neurological diseases.
Collapse
Affiliation(s)
- Vincent E. Provasek
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (V.H.M.)
- College of Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Joy Mitra
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (V.H.M.)
- Correspondence: (J.M.); (M.L.H.)
| | - Vikas H. Malojirao
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (V.H.M.)
| | - Muralidhar L. Hegde
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (V.H.M.)
- College of Medicine, Texas A&M University, College Station, TX 77843, USA
- Department of Neurosciences, Weill Cornell Medical College, New York, NY 11021, USA
- Correspondence: (J.M.); (M.L.H.)
| |
Collapse
|
5
|
Ihle M, Biber S, Schroeder IS, Blattner C, Deniz M, Damia G, Gottifredi V, Wiesmüller L. Impact of the interplay between stemness features, p53 and pol iota on replication pathway choices. Nucleic Acids Res 2021; 49:7457-7475. [PMID: 34165573 PMCID: PMC8287946 DOI: 10.1093/nar/gkab526] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
Using human embryonic, adult and cancer stem cells/stem cell-like cells (SCs), we demonstrate that DNA replication speed differs in SCs and their differentiated counterparts. While SCs decelerate DNA replication, differentiated cells synthesize DNA faster and accumulate DNA damage. Notably, both replication phenotypes depend on p53 and polymerase iota (POLι). By exploring protein interactions and newly synthesized DNA, we show that SCs promote complex formation of p53 and POLι at replication sites. Intriguingly, in SCs the translocase ZRANB3 is recruited to POLι and required for slow-down of DNA replication. The known role of ZRANB3 in fork reversal suggests that the p53–POLι complex mediates slow but safe bypass of replication barriers in SCs. In differentiated cells, POLι localizes more transiently to sites of DNA synthesis and no longer interacts with p53 facilitating fast POLι-dependent DNA replication. In this alternative scenario, POLι associates with the p53 target p21, which antagonizes PCNA poly-ubiquitination and, thereby potentially disfavors the recruitment of translocases. Altogether, we provide evidence for diametrically opposed DNA replication phenotypes in SCs and their differentiated counterparts putting DNA replication-based strategies in the spotlight for the creation of therapeutic opportunities targeting SCs.
Collapse
Affiliation(s)
- Michaela Ihle
- Department of Obstetrics and Gynecology, Ulm University, Ulm 89075, Germany
| | - Stephanie Biber
- Department of Obstetrics and Gynecology, Ulm University, Ulm 89075, Germany
| | - Insa S Schroeder
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt 64291, Germany
| | - Christine Blattner
- Institute for Biological and Chemical Systems - Biological Information Processing, Karlsruhe Institute of Technology, Karlsruhe 76021, Germany
| | - Miriam Deniz
- Department of Obstetrics and Gynecology, Ulm University, Ulm 89075, Germany
| | - Giovanna Damia
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS Milan, Milan 20156, Italy
| | - Vanesa Gottifredi
- Cell cycle and Genomic Stability Laboratory, Fundación Instituto Leloir, Buenos Aires C1405BWE, Argentina
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynecology, Ulm University, Ulm 89075, Germany
| |
Collapse
|
6
|
Ho T, Tan BX, Lane D. How the Other Half Lives: What p53 Does When It Is Not Being a Transcription Factor. Int J Mol Sci 2019; 21:ijms21010013. [PMID: 31861395 PMCID: PMC6982169 DOI: 10.3390/ijms21010013] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/07/2019] [Accepted: 12/16/2019] [Indexed: 12/31/2022] Open
Abstract
It has been four decades since the discovery of p53, the designated ‘Guardian of the Genome’. P53 is primarily known as a master transcription factor and critical tumor suppressor, with countless studies detailing the mechanisms by which it regulates a host of gene targets and their consequent signaling pathways. However, transcription-independent functions of p53 also strongly define its tumor-suppressive capabilities and recent findings shed light on the molecular mechanisms hinted at by earlier efforts. This review highlights the transcription-independent mechanisms by which p53 influences the cellular response to genomic instability (in the form of replication stress, centrosome homeostasis, and transposition) and cell death. We also pinpoint areas for further investigation in order to better understand the context dependency of p53 transcription-independent functions and how these are perturbed when TP53 is mutated in human cancer.
Collapse
|
7
|
Saragani Y, Hizi A, Rahav G, Zaouch S, Bakhanashvili M. Cytoplasmic p53 contributes to the removal of uracils misincorporated by HIV-1 reverse transcriptase. Biochem Biophys Res Commun 2018; 497:804-810. [PMID: 29470985 DOI: 10.1016/j.bbrc.2018.02.159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 02/18/2018] [Indexed: 01/15/2023]
Abstract
HIV-1 reverse transcriptase (RT) in the cytoplasm of HIV-infected cells efficiently inserts the non-canonical dUTP into the proviral DNA, and extends the dU-terminated DNA. The misincorporation of dUTP leads to mutagenesis, and uracils can down-regulate viral gene expression. However, uracilation might also protect HIV DNA from auto-integration in the cytoplasm. Tumor suppressor p53 protein, exhibiting inherent 3'→5' exonuclease activity, provides a potential host-derived repair mechanism during HIV reverse transcription for the misincorporation of various wrong nucleotides, leading to both base-base mismatches and incorporated non-canonical ribonucleotides. Since the presence of proofreading activity is essential for DNA synthesis accuracy, we elucidated the potential involvement of cytoplasmic p53 in the U-editing activities during insertion of dUTP into DNA by recombinant HIV-1 RT (using isogenic p53-proficient and -deficient HCT116 cells). The biochemical data show that p53 in cytoplasm can participate through the intermolecular pathway in a dU-damage-associated repair mechanism by its ability to remove preformed 3'-terminal dUs, thus preventing further extension of 3' dU-terminated primer during DNA synthesis by HIV-1 RT. The specific depletion of p53 from cytoplasmic lysates of repair-proficient p53-harboring cells reduced this negative effect. Accordingly, the increased abundance of p53 in nutlin-treated cells correlates with enhanced error-correction functions, namely, removal of incorporated uracil. The data substantiate the significance of p53 as a potential proofreader for removal of non-canonical dUTP from HIV DNA, thus preventing the consequences of dUTP misincorporation in cell-type specific infectivity of HIV.
Collapse
Affiliation(s)
- Yossi Saragani
- Infectious Diseases Unit, Sheba Medical Center, Tel-Hashomer 5265601, Israel
| | - Amnon Hizi
- Dep. Cell and Developmental Biology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Galia Rahav
- Infectious Diseases Unit, Sheba Medical Center, Tel-Hashomer 5265601, Israel
| | - Sara Zaouch
- Infectious Diseases Unit, Sheba Medical Center, Tel-Hashomer 5265601, Israel
| | - Mary Bakhanashvili
- Infectious Diseases Unit, Sheba Medical Center, Tel-Hashomer 5265601, Israel.
| |
Collapse
|
8
|
Yang X, Zhu X, Ji H, Deng J, Lu P, Jiang Z, Li X, Wang Y, Wang C, Zhao J, Wang Y, Zhong Y, Yang H, Zhu H. Quercetin synergistically reactivates human immunodeficiency virus type 1 latency by activating nuclear factor‑κB. Mol Med Rep 2017; 17:2501-2508. [PMID: 29207194 DOI: 10.3892/mmr.2017.8188] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 03/16/2017] [Indexed: 11/06/2022] Open
Abstract
Highly active antiretroviral therapy (HAART) is very effective in suppressing human immunodeficiency virus type 1 (HIV‑1) replication. However, the treatment is required to be administered for the remainder of an individual's lifetime due to latent HIV‑1 reservoirs. The 'shock‑and‑kill' strategy, which involves using agents to reactivate latent HIV‑1 and subsequently killing latently infected cells in the presence of HAART, was recently proposed. Unfortunately, no agents have currently demonstrated an ability to reactivate latent HIV‑1 in vivo in the absence of toxicity. Therefore, the identification of novel latency activators is required. In order to identify a potential novel agent, the present study investigated the effect of quercetin on latent HIV‑1 reactivation using an established model of HIV‑1 latency. As a marker for reactivation of HIV‑1 in C11 Jurkat cells, the expression of green fluorescent protein, controlled by HIV‑1 long terminal repeat, was observed by fluorescence microscopy. The results of the present study demonstrated that quercetin effectively reactivated latent HIV‑1 gene expression alone, and led to synergistic reactivation when combined with prostratin or valproic acid. In addition, the present study provides evidence that quercetin may reactivate HIV‑1 expression by inducing nuclear factor‑κB nuclear translocation, and that the toxicity of quercetin is lower when compared with various additional activators of HIV‑1. Combined, the results of the present study indicate that quercetin may be an effective agent to disrupt HIV‑1 latency and may be useful in future eradication strategies.
Collapse
Affiliation(s)
- Xinyi Yang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Xiaoli Zhu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Haiyan Ji
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Junxiao Deng
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Panpan Lu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Zhengtao Jiang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Xian Li
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Yibo Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Chuqiao Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Jingya Zhao
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Yanan Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Yangcheng Zhong
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - He Yang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Huanzhang Zhu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| |
Collapse
|
9
|
Vasileiou PVS, Mourouzis I, Pantos C. Principal Aspects Regarding the Maintenance of Mammalian Mitochondrial Genome Integrity. Int J Mol Sci 2017; 18:E1821. [PMID: 28829360 PMCID: PMC5578207 DOI: 10.3390/ijms18081821] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 12/11/2022] Open
Abstract
Mitochondria have emerged as key players regarding cellular homeostasis not only due to their contribution regarding energy production through oxidative phosphorylation, but also due to their involvement in signaling, ion regulation, and programmed cell death. Indeed, current knowledge supports the notion that mitochondrial dysfunction is a hallmark in the pathogenesis of various diseases. Mitochondrial biogenesis and function require the coordinated action of two genomes: nuclear and mitochondrial. Unfortunately, both intrinsic and environmental genotoxic insults constantly threaten the integrity of nuclear as well as mitochondrial DNA. Despite the extensive research that has been made regarding nuclear genome instability, the importance of mitochondrial genome integrity has only recently begun to be elucidated. The specific architecture and repair mechanisms of mitochondrial DNA, as well as the dynamic behavior that mitochondria exert regarding fusion, fission, and autophagy participate in mitochondrial genome stability, and therefore, cell homeostasis.
Collapse
Affiliation(s)
- Panagiotis V S Vasileiou
- Department of Basic Medical Sciences, Laboratory of Histology & Embryology, School of Medicine, National and Kapodistrian University of Athens, 75 MikrasAsias Avenue, Goudi, Athens 11527, Greece.
| | - Iordanis Mourouzis
- Department of Pharmacology, School of Medicine, National and Kapodistrian University of Athens, 75 MikrasAsias Avenue, Goudi, Athens 11527, Greece.
| | - Constantinos Pantos
- Department of Pharmacology, School of Medicine, National and Kapodistrian University of Athens, 75 MikrasAsias Avenue, Goudi, Athens 11527, Greece.
| |
Collapse
|
10
|
Removal of ribonucleotides by p53 protein incorporated during DNA synthesis by HIV-1 reverse transcriptase. AIDS 2017; 31:343-353. [PMID: 28081035 DOI: 10.1097/qad.0000000000001339] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE(S) HIV-1 reverse transcriptase frequently incorporates ribonucleotides into the proviral DNA in macrophages, but not in lymphocytes. The enzyme exerts an efficient ribonucleotide-terminated primer extension capacity. Furthermore, ribonucleotide-editing repair is attenuated in macrophages. Tumor suppressor p53 protein, displaying an intrinsic 3'→5' exonuclease activity, was found to be involved in efficient proofreading of base-base mismatches produced during DNA synthesis. As the presence of proofreading activity is cardinal for the DNA synthesis accuracy, it was of interest to assess whether p53 can serve as a trans-acting proofreader for HIV-1 reverse transcriptase during ribonucleotide incorporation. DESIGN We investigated the potential involvement of cytoplasmic p53 in error correction during insertion of ribonucleotides into DNA by recombinant HIV-1 reverse transcriptase in a p53-proficient and deficient background. METHODS Primer extension reactions were carried out to elucidate the incorporation and removal of ribonucleotides. RESULTS The biochemical studies suggest that p53 is involved in a ribonucleotide damage-associated repair mechanism through its capacity to remove preformed 3'-terminal ribonucleotides, to decrease ribonucleotide incorporation and to prevent the 3'-ribo-terminated primer extension during ongoing DNA synthesis by HIV-1 reverse transcriptase. A positive correlation exists between the presence of endogenous p53 and decrease in stable incorporation of ribonucleotides into DNA with p53-harboring lysates of HCT116 cells. p53, by preferential removal of purine over pyrimidine ribonucleotides, may affect the ribonucleotide mutation spectra produced by HIV-1 reverse transcriptase. CONCLUSION The data implies that p53 can excise incorrect sugar in addition to base mispairs, thereby expanding the role of p53 in the repair of nucleic acids replication errors.
Collapse
|
11
|
Nahálková J. Novel protein-protein interactions of TPPII, p53, and SIRT7. Mol Cell Biochem 2015; 409:13-22. [PMID: 26169984 DOI: 10.1007/s11010-015-2507-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/04/2015] [Indexed: 12/27/2022]
Abstract
Novel protein-protein interactions of TPPII, SIRT7, and p53 were detected by co-immunoprecipitation using both HeLa cell lysates and the cytoplasmic fraction prepared by fractionation of mouse liver tissue. The interactions were further verified in vivo by in situ proximity ligation assay (PLA) within control HEK293 cells transformed with empty vector, highactTPPII HEK293 cells over-expressing murine TPPII displaying high specific enzymatic activity and in lowactTPPII HEK293 cells over-expressing human TPPII having low specific activity of the enzyme. Besides an abundant cytoplasmic localization of TPPII-p53 interaction signal, the nuclear interactions were also demonstrated. The cytoplasmic interactions were likewise detected between TPPII and SIRT7 in control HEK293 and lowactTPPII HEK293 cells. The interactions of SIRT7 with p53 were confirmed in three HEK293 cell transformants as well. The cytoplasmic occurrence of SIRT7 protein was demonstrated by immunofluorescence, when both nucleolar and cytoplasmic signals were identified within HEK293 cells and primary human fibroblasts. The unique cytoplasmic localization of SIRT7 protein was discussed based on an epitope specificity of N-terminus specific SIRT7 antibodies utilized in the present study compared with C-terminus specific antibodies previously used for nuclear detection of SIRT7 by other authors. The epitope sequence of N-terminal antibodies is occurring in all three splicing variants of SIRT7 compared to the epitope of C-terminal antibody, which is specific exclusively to the splicing variant 1. The cytoplasmic localization of p53 detected by immunofluorescence supported the results from its interactions with TPPII and SIRT7 observed by in situ PLA within model cells. Novel interactions of TPPII, p53, and SIRT7 presented in this study might contribute to the knowledge of the regulatory effects of these proteins on apoptotic pathways and to the understanding mechanisms of aging and lifespan regulation.
Collapse
Affiliation(s)
- Jarmila Nahálková
- Department of Medical Biochemistry and Microbiology (IMBIM), BMC, Uppsala University, Box 582, 751 23, Uppsala, Sweden.
| |
Collapse
|
12
|
Zhao G, Tang S, Li J, Hu T, Guan Y. Effects of cations on small fragment of DNA polymerase I using a novel FRET assay. Acta Biochim Biophys Sin (Shanghai) 2014; 46:659-67. [PMID: 24966186 DOI: 10.1093/abbs/gmu050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
DNA polymerase I (PolI) digested by protease produces a small fragment (SF) containing 5'-3' exonuclease activity. The 5'-3' exonuclease activity of polI cleaves the downstream RNA primer strands during DNA replication in vivo. Previous in vitro studies suggested its capability of cleaving duplex from 5' terminal and a flap-structure-specific endonuclease activity. From the crystal structures of other nucleases and biochemical data, a two-metal-ion mechanism has been proposed but has not been determined. In this study, we cloned, expressed, and purified the SF protein, and established a novel fluorescence resonance energy transfer (FRET) assay to analyze the catalytic activity of the SF protein. The effects of several metal ions on its catalytic capability were analyzed using this FRET assay. Results showed that Mg2+, Mn2+, and Zn2+ were able to activate the cleavage of SF, while Ca2+, Ni2 +, and Co2+ were not suitable for SF catalysis. The effects of K+, Na+, and dNTP were also determined.
Collapse
|
13
|
Zhu X, Liu S, Wang P, Qu X, Wang X, Zeng H, Chen H, Zhu H. Oxaliplatin antagonizes HIV-1 latency by activating NF-κB without causing global T cell activation. Biochem Biophys Res Commun 2014; 450:202-7. [DOI: 10.1016/j.bbrc.2014.05.088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 05/20/2014] [Indexed: 11/16/2022]
|
14
|
Abstract
None of the current agents can safely and effectively eliminate latent HIV-1 reservoirs, meaning that there is a major barrier to the final cure of AIDS. Arsenic trioxide (As2O3), a drug used to treat acute promyelocytic leukemia (APL), was reported to affect the transcription factors and pathways involved in modulating HIV-1 expression. However, little is known about the effect and molecular basis of As2O3 in inducing HIV-1 expression in latently infected cells. Using the Jurkat T cell model of HIV-1 latency, we found that As2O3 activated latent HIV-1 replication with a similar potency to valproic acid (VPA) and did so in a dose- and time-dependent manner. We also found that As2O3 synergistically reactivated latent HIV-1 transcription with prostratin, tumor necrosis factor alpha (TNF-α) or VPA. Moreover, we provide evidence indicating that As2O3-induced HIV-1 activation involves the nuclear factor kappa B (NF-κB) signaling pathway. In conclusion, we have found that As2O3 can synergistically reactivate latent HIV-1 with other activators, which may provide a new tool to unravel the mechanisms of virus latency and reactivation.
Collapse
|
15
|
Derech-Haim S, Teiblum G, Kadosh R, Rahav G, Bonda E, Sredni B, Bakhanashvili M. Ribonuclease activity of p53 in cytoplasm in response to various stress signals. Cell Cycle 2012; 11:1400-13. [PMID: 22421154 DOI: 10.4161/cc.19812] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The tumor suppressor p53 protein is expressed at low levels under normal conditions. The subcellular localization and functional activation of p53 are influenced by diverse stress signals. p53 in cytoplasm exerts intrinsic 3'→5' exonuclease activity with various RNA and DNA substrates. ssRNAs containing an adenosine and uridine-rich (ARE) element are permissive targets for p53-mediated degradation. The analysis of the exonuclease activity in cytoplasm with activated p53 induced by various drug treatments or following γ-irradiation revealed that the expression of p53 exonuclease activity in response to stress signals is heterogeneous. Various genotoxic and non-genotoxic agents upregulate p53 yet have different effects on expression of exonuclease activity with ARE RNA but not with DNA substrate. Ribonuclease activity is enhanced in cytoplasmic extracts of HCT116 (p53+/+) cells exposed to γ-irradiation or treated by the non-genotoxic drug AS101 but decreased following treatment by genotoxic (e.g., doxorubicin) or non-genotoxic (e.g., DFMO) agents, thus indicating that p53 exonuclease activity is dependent on the specific stress and nature of the substrate. Apparently, the disparity in expression of p53 ribonuclease activity after each treatment is attributable to the different post-treatment response and to two posttranscriptional events: the interaction of RNA-binding HuR protein with ARE RNA protects the substrate from degradation by p53 and/or decrease in p53 ARE RNA binding capacity due to phosphorylation at Ser392 leads to reduction in p5 ribonuclease activity. Our results provide new insights into p53 exonuclease function and into the mechanisms behind the regulation ARE-RNA degradation by p53 under different cellular conditions.
Collapse
Affiliation(s)
- Sanaz Derech-Haim
- Infectious Diseases Unit, Sheba Medical Center, Tel Hashomer, Israel
| | | | | | | | | | | | | |
Collapse
|
16
|
Zheltukhin AO, Chumakov PM. Constitutive and induced functions of the p53 gene. BIOCHEMISTRY (MOSCOW) 2011; 75:1692-721. [DOI: 10.1134/s0006297910130110] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Regulation of cell cycle and DNA repair in post-mitotic GABA neurons in psychotic disorders. Neuropharmacology 2010; 60:1232-42. [PMID: 21184762 DOI: 10.1016/j.neuropharm.2010.12.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 11/24/2010] [Accepted: 12/15/2010] [Indexed: 11/24/2022]
Abstract
Disturbances of cell cycle regulation and DNA repair in post-mitotic neurons have been implicated in degenerative and malignant diseases of the human brain. Recent work is now suggesting that abnormal regulation of these functions in GABA cells of the adult hippocampus may also play a role in two neuropsychiatric disorders. In schizophrenia and bipolar disorder, a network of genes involved in the regulation of GAD₆₇, a marker for the functional differentiation of GABA cells, show pronounced changes in expression and include kainate receptor subunits, TGFβ and Wnt signaling pathways, epigenetic factors and transcription factors. One of these genes, cyclin D2, is involved in the regulation of cell cycle and DNA repair and appears to be a pivotal element in linking GAD₆₇ expression with these functional clusters of genes. Dysfunction of post-mitotic GABAergic neurons in the adult hippocampus of patients with psychotic disorders is associated with changes in the expression of genes that are involved in the maintenance of functional and genomic integrity of GABA cells. The nature of these changes is quite different in schizophrenia and bipolar disorder, suggesting that a common cell phenotype (in this case, decreased GAD₆₇ expression) may involve two fundamentally different molecular endophenotypes and reflect unique susceptibility genes involved in the respective disorders. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.
Collapse
|
18
|
Al-Swiahb JN, Chen CH, Chuang HC, Fang FM, Tasi HT, Chien CY. Clinical, pathological and molecular determinants in squamous cell carcinoma of the oral cavity. Future Oncol 2010; 6:837-50. [PMID: 20465394 DOI: 10.2217/fon.10.35] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Squamous cell carcinoma of the oral cavity (OCSCC) is the most frequently observed form of head-and-neck cancer in Southeast Asia and is the sixth most common cancer worldwide. Most cases of this preventable disease are caused by alcohol consumption, smoking and betel nut chewing. The survival rates of patients with advanced OCSCC have not increased significantly in recent years. While treatments for OCSCC are similar worldwide, survival rates differ by geographical area. The various genetic profiles and individual genetic susceptibility for carcinogens may account for this discrepancy. In some respects, molecular alteration or accumulation affects tumor progression and the clinical outcomes among patients with OCSCC. Clarifying the tumor behavior of oral cancer, with regard to pathological features or molecular aspects, could help clinicians to judge, tailor and adopt more effective therapeutic strategies to treat oral cancer.
Collapse
Affiliation(s)
- Jamil N Al-Swiahb
- Department of Otolaryngology, Chang Gung Memorial Hospital - Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|
19
|
Gührs KH, Groth M, Grosse F. A label-free assay of exonuclease activity using a pyrosequencing technique. Anal Biochem 2010; 405:11-8. [PMID: 20522331 DOI: 10.1016/j.ab.2010.05.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 05/17/2010] [Accepted: 05/19/2010] [Indexed: 12/01/2022]
Abstract
Enzymes with 3'-5' exonuclease activities are important in promoting the accuracy of DNA replication and DNA repair by proofreading. The alteration of the function of these enzymes by endogenous or exogenous effectors could, therefore, have a considerable impact on DNA replication and ultimately on genome integrity. We have developed a label-free high-throughput screening method for quantifying the effects of different reagents on exonuclease activity. The assay is based on a hairpin-forming biotinylated oligonucleotide substrate that contains one or more exonuclease-resistant phosphorothioate nucleotides. The activity and specificity of the selected 3'-5' exonuclease is determined indirectly using a sensitive pyrosequencing reaction after cleanup of the samples. In this pyrosequencing step, the amount of nucleotides filled into each position of the exonucleolytically degraded 3' end of the substrate can be recorded quantitatively and equals the amount of the nucleotides removed by the exonuclease. This system allows the estimation of both processivity and efficiency of the exonuclease activity. We have employed compounds reported in the literature to inhibit the exonuclease activities of either exonuclease III or the large fragment of polymerase I (Klenow fragment) to evaluate the assay.
Collapse
Affiliation(s)
- Karl-Heinz Gührs
- Biochemistry Workgroup, Leibniz Institute for Age Research-Fritz Lipmann Institute, D-07745 Jena, Germany.
| | | | | |
Collapse
|
20
|
Ahn J, Poyurovsky MV, Baptiste N, Beckerman R, Cain C, Mattia M, McKinney K, Zhou J, Zupnick A, Gottifredi V, Prives C. Dissection of the sequence-specific DNA binding and exonuclease activities reveals a superactive yet apoptotically impaired mutant p53 protein. Cell Cycle 2009; 8:1603-15. [PMID: 19462533 DOI: 10.4161/cc.8.10.8548] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Both sequence-specific DNA binding and exonuclease activities have been mapped to the central conserved core domain of p53. To gain more information about these two activities a series of mutants were generated that changed core domain histidine residues. Of these mutants, only one, H115N p53, showed markedly reduced exonuclease activity (ca. 15% of wild-type). Surprisingly, purified H115N p53 protein was found to be significantly more potent than wild-type p53 in binding to DNA by several criteria including gel mobility shift assay, filter binding and DNase I footprinting. Interestingly as well, non-specific DNA binding by the core domain of H115N p53 is superior to that of wild-type p53. To study H115N p53 in vivo, clones of H1299 cells expressing tetracycline regulated wild-type or H115N p53 were generated. H115N was both more potent than wild-type p53 in inducing p53 target genes such as p21 and PIG3 and was also more effective in arresting cells in G1. Unexpectedly, in contrast to wild-type p53, H115N p53 was markedly impaired in causing apoptosis when cells were subjected to DNA damage. Our results indicate that the exonuclease activity and transcriptional activation functions of p53 can be separated. They also extend previous findings showing that cell cycle arrest and apoptosis are separable functions of p53. Finally, these experiments confirm that DNA binding and xonuclease activities are distinct features of the p53 core domain.
Collapse
Affiliation(s)
- Jinwoo Ahn
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Site-specific regulation of cell cycle and DNA repair in post-mitotic GABA cells in schizophrenic versus bipolars. Proc Natl Acad Sci U S A 2009; 106:11731-6. [PMID: 19564623 DOI: 10.1073/pnas.0903066106] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
GABA cell dysfunction in both schizophrenia (SZ) and bipolar disorder (BD) involves decreased GAD(67) expression, although this change involves fundamentally different networks of genes in the 2 disorders. One gene that is common to these 2 networks is cyclin D2, a key component of cell cycle regulation that shows increased expression in SZ, but decreased expression in BD. Because of the importance of cell cycle regulation in maintaining functional differentiation and DNA repair, the current study has examined the genes involved in the G(1) and G(2) checkpoints to generate new hypotheses regarding the regulation of the GABA cell phenotype in the hippocampus of SZ and BD. The results have demonstrated significant changes in cell cycle regulation in both SZ and BD and these changes include the transcriptional complex (TC) that controls the expression of E2F/DP-1 target genes critical for progression to G(2)/M. The methyl-CpG binding domain protein (MBD4) that is pivotal for DNA repair, is significantly up-regulated in the stratum oriens (SO) of CA3/2 and CA1 in SZs and BDs. However, other genes associated with the TC, and the G(1) and G(2) checkpoints, show complex changes in expression in the SO of CA3/2 and CA1 of both SZs and BDS. Overall, the patterns of expression observed have suggested that the regulation of functional differentiation and/or genomic integrity of hippocampal GABA cells varies according to diagnosis and their location within the trisynaptic pathway.
Collapse
|
23
|
Abstract
OBJECTIVE Nucleoside analogs, used against HIV, can be incorporated into a mitochondrial DNA by DNA polymerase gamma. Both the decrease in mitochondrial DNA and increased mutations of mitochondrial DNA may lead to mitochondrial diseases. The tumor suppressor protein p53 exhibits 3' --> 5' exonuclease activity and can provide a proofreading function for DNA polymerases. In the present study, we investigated the ability of p53 to excise incorporated nucleoside analogs from DNA in mitochondria. DESIGN The functional interaction of p53 and DNA polymerase gamma during the incorporation of nucleoside analog was examined in mitochondrial fractions of p53-null H1299 cells, as the source of DNA polymerase gamma. METHODS Primer extension reactions were carried out to elucidate the incorporation and removal of nucleoside analogs. RESULTS The results demonstrate that the excision of incorporated nucleoside analogs in mitochondrial fractions of H1299 cells increased in the presence of purified recombinant p53, or cytoplasmic extracts of large cell carcinoma 2 cells expressing endogenous wild-type p53 (but not specifically predepleted extracts) or cytoplasmic extracts of H1299 cells overexpressing wild-type p53, but not exonuclease-deficient mutant p53-R175H. The amount of nucleoside analogs incorporated into the elongated DNA with mitochondrial fractions of human colon carcinoma 116 (HCT116)(p53+/+) cells was lower than that of HCT116(p53-/-) cells. Furthermore, mitochondrion-localized elevation of p53 in HCT116(p53+/+) cells, following the irradiation-stress stimuli, correlates with the reduction in incorporation of nucleoside analogs and wrong nucleotides. CONCLUSION p53 in mitochondria may functionally interact with DNA polymerase gamma, thus providing a proofreading function during mitochondrial DNA replication for excision of nucleoside analogs and polymerization errors.
Collapse
|
24
|
Wong TS, Rajagopalan S, Townsley FM, Freund SM, Petrovich M, Loakes D, Fersht AR. Physical and functional interactions between human mitochondrial single-stranded DNA-binding protein and tumour suppressor p53. Nucleic Acids Res 2008; 37:568-81. [PMID: 19066201 PMCID: PMC2632919 DOI: 10.1093/nar/gkn974] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Single-stranded DNA-binding proteins (SSB) form a class of proteins that bind preferentially single-stranded DNA with high affinity. They are involved in DNA metabolism in all organisms and serve a vital role in replication, recombination and repair of DNA. In this report, we identify human mitochondrial SSB (HmtSSB) as a novel protein-binding partner of tumour suppressor p53, in mitochondria. It binds to the transactivation domain (residues 1-61) of p53 via an extended binding interface, with dissociation constant of 12.7 (+/- 0.7) microM. Unlike most binding partners reported to date, HmtSSB interacts with both TAD1 (residues 1-40) and TAD2 (residues 41-61) subdomains of p53. HmtSSB enhances intrinsic 3'-5' exonuclease activity of p53, particularly in hydrolysing 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) present at 3'-end of DNA. Taken together, our data suggest that p53 is involved in DNA repair within mitochondria during oxidative stress. In addition, we characterize HmtSSB binding to ssDNA and p53 N-terminal domain using various biophysical measurements and we propose binding models for both.
Collapse
Affiliation(s)
- Tuck Seng Wong
- Centre for Protein Engineering, Medical Research Council, Hills Road, Cambridge CB2 0QH, UK
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Mitochondrial localization of p53 was observed in stressed and unstressed cells. p53 is involved in DNA repair and apoptosis. It exerts physical and functional interactions with mitochondrial DNA and DNA polymerase gamma (pol gamma). The functional cooperation of p53 and pol gamma during DNA synthesis was examined in the mitochondrial fraction of p53-null H1299 cells, as the source of pol gamma. The results show that p53 may affect the accuracy of DNA synthesis in mitochondria: (1) the excision of a misincorporated nucleotide increases in the presence of (a) recombinant wild-type p53 (wtp53); (b) cytoplasmic fraction of LCC2 cells expressing endogenous wtp53 (but not specifically pre-depleted fraction); (c) cytoplasmic extract of H1299 cells overexpressing wtp53, but not exonuclease-deficient mutant p53-R175H. (2) Mitochondrial extracts of HCT116(p53+/+) cells display higher exonuclease activity compared with that of HCT116(p53-/-) cells. Addition of exogenous p53 complements the HCT116(p53-/-) mitochondrial extract mispair excision. Furthermore, the misincorporation was lower in the mitochondrial fraction of HCT116(p53+/+) cells as compared with that of HCT116(p53-/-) cells. (3) Irradiation-induced mitochondrial translocation of endogenous p53 in HCT116(p53+/+) cells correlates with the enhancement of error-correction activities. Taken together, the data suggest that p53 in mitochondria may be a component of an error-repair pathway and serve as guardian of the mitochondrial genome. The function of p53 in DNA repair and apoptosis is discussed.
Collapse
|
26
|
Bakhanashvili M, Gedelovich R, Grinberg S, Rahav G. Exonucleolytic degradation of RNA by p53 protein in cytoplasm. J Mol Med (Berl) 2007; 86:75-88. [PMID: 17701148 DOI: 10.1007/s00109-007-0247-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 07/04/2007] [Accepted: 07/09/2007] [Indexed: 12/28/2022]
Abstract
p53 in cytoplasm displays an intrinsic 3'-->5' exonuclease activity. To understand the significance of p53 exonuclease activity in cytoplasm, cytoplasmic extracts of various cell lines were examined for exonuclease activity with different single-stranded RNA (ssRNA) substrates. Using an in vitro RNA degradation assay, we observed in cytoplasmic extracts of LCC2 cells, expressing high levels of endogenous wtp53, an efficient 3'-->5' exonuclease activity with RNA substrates, removing the 3'-terminal nucleotides. Interestingly, RNA containing AU-rich sequences (ARE) is the permissive substrate for exonucleolytic degradation. Evidence that exonuclease function with RNA detected in cytoplasmic extracts is attributed to the p53 is supported by several facts: (1) this activity closely parallels with status and levels of endogenous cytoplasmic p53; (2) the endogenous exonuclease exerts identical RNA substrate specificity and excision profile characteristic for purified baculovirus-or bacterially-expressed wtp53s; (3) the exonuclease activity with ARE RNA is competed out by the presence of ss or double-stranded DNA substrate utilized by p53 protein in cytoplasm; (4) immunoprecipitation by specific anti-p53 antibodies markedly reduced the exonuclease activity with both RNA and DNA substrates; and (5) transfection of the wtp53, but not exonuclease-deficient mutant p53-R175H, into p53-null H1299 or HCT116 cells induced high levels of exonuclease activity with ARE RNA substrate in cytoplasm with characteristic excision profile. The efficient ARE RNA degradation correlates with the efficient binding of p53 to ARE RNA in cytoplasm. The possible role of p53 exonuclease activity in ARE-mRNA destabilization in cytoplasm, which may be important for expression of proteins that control cell growth and/or apoptosis is discussed.
Collapse
|
27
|
Shin KH, Kim RH, Kang MK, Kim R, Kim S, Lim PK, Yochim JM, Baluda MA, Park NH. p53 promotes the fidelity of DNA end-joining activity by, in part, enhancing the expression of heterogeneous nuclear ribonucleoprotein G. DNA Repair (Amst) 2007; 6:830-40. [PMID: 17387044 PMCID: PMC2743147 DOI: 10.1016/j.dnarep.2007.01.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2006] [Revised: 12/06/2006] [Accepted: 01/29/2007] [Indexed: 10/23/2022]
Abstract
Many studies have suggested the involvement of wild-type (wt) p53 in the repair of DNA double-strand breaks (DSBs) via DNA end-joining (EJ) process. To investigate this possibility, we compared the capacity and fidelity of DNA EJ in RKO cells containing wt p53 and RKO cells containing no p53 (RKO cells with p53 knockdown). The p53 knockdown cells showed lower fidelity of DNA EJ compared to the control RKO cells. The DNA end-protection assay revealed the association of a protein complex including heterogeneous nuclear ribonucleoprotein G (hnRNP G) with the DNA ends in RKO cells containing wt p53, but not with the DNA ends in RKO cells with p53 knockdown. Depletion of endogenous hnRNP G notably diminished the fidelity of EJ in RKO cells expressing wt p53. Moreover, an ectopic expression of hnRNP G significantly enhanced the fidelity of DNA EJ and the protection of DNA ends in human cancer cells lacking hnRNP G protein or containing mutant hnRNP G. Finally, using recombinant hnRNP G proteins, we demonstrated the hnRNP G protein is able to bind to and protect DNA ends from degradation of nucleases. Our results suggest that wt p53 modulates DNA DSB repair by, in part, inducing hnRNP G, and the ability of hnRNP G to bind and protect DNA ends may contribute its ability to promote the fidelity of DNA EJ.
Collapse
Affiliation(s)
- Ki-Hyuk Shin
- UCLA School of Dentistry at UCLA, Los Angeles, CA 90095
- Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, CA 90095
| | - Reuben H. Kim
- UCLA School of Dentistry at UCLA, Los Angeles, CA 90095
| | - Mo K. Kang
- UCLA School of Dentistry at UCLA, Los Angeles, CA 90095
- Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, CA 90095
| | - Roy Kim
- UCLA School of Dentistry at UCLA, Los Angeles, CA 90095
| | - Steve Kim
- UCLA School of Dentistry at UCLA, Los Angeles, CA 90095
| | - Philip K. Lim
- UCLA School of Dentistry at UCLA, Los Angeles, CA 90095
| | - Ji Min Yochim
- UCLA School of Dentistry at UCLA, Los Angeles, CA 90095
| | - Marcel A. Baluda
- UCLA School of Dentistry at UCLA, Los Angeles, CA 90095
- David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - No-Hee Park
- UCLA School of Dentistry at UCLA, Los Angeles, CA 90095
- Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, CA 90095
- David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
- Correspondence to: Dr. No-Hee Park, UCLA School of Dentistry, CHS 53-038, 10833 Le Conte Ave. Los Angeles, CA 90095-1668, USA;
| |
Collapse
|
28
|
Re RN, Cook JL. The intracrine hypothesis: an update. ACTA ACUST UNITED AC 2005; 133:1-9. [PMID: 16226324 DOI: 10.1016/j.regpep.2005.09.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Accepted: 09/08/2005] [Indexed: 01/17/2023]
Abstract
The intracellular actions of peptide hormones, growth factors, as well as of extracellular-signaling enzymes and DNA-binding proteins, either within target cells or within their cells of synthesis has been called intracrine action. Although these intracrine moieties are structurally diverse, they share certain characteristics of synthesis and function. This has given rise to the development of a theory of intracrine action which permits testable predictions to be made regarding the functioning of these peptides/proteins. Here the intracrine hypothesis is briefly described and then recent experimental findings which bear on predictions made earlier on the basis of the theory are discussed. These findings provide new support for the intracrine hypothesis.
Collapse
Affiliation(s)
- Richard N Re
- Research Division, Ochsner Clinic Foundation, 1516 Jefferson Highway, New Orleans, LA 70121, USA.
| | | |
Collapse
|
29
|
Bakhanashvili M, Novitsky E, Rubinstein E, Levy I, Rahav G. Excision of nucleoside analogs from DNA by p53 protein, a potential cellular mechanism of resistance to inhibitors of human immunodeficiency virus type 1 reverse transcriptase. Antimicrob Agents Chemother 2005; 49:1576-9. [PMID: 15793143 PMCID: PMC1068624 DOI: 10.1128/aac.49.4.1576-1579.2005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2004] [Revised: 10/12/2004] [Accepted: 12/28/2004] [Indexed: 11/20/2022] Open
Abstract
We investigated the ability of p53 in cytoplasm to excise nucleoside analogs (NAs). A decrease in incorporation of NAs by human immunodeficiency virus type 1 reverse transcriptase and their excision from DNA by p53, provided by the cytoplasmic fraction of LCC2 cells, suggest that p53 in cytoplasm may act as an external proofreader for NA incorporation.
Collapse
Affiliation(s)
- Mary Bakhanashvili
- Infectious Diseases Unit, Chaim Sheba Medical Center, Tel-Hashomer 52621, Israel.
| | | | | | | | | |
Collapse
|