1
|
Repenning A, Happel D, Bouchard C, Meixner M, Verel‐Yilmaz Y, Raifer H, Holembowski L, Krause E, Kremmer E, Feederle R, Keber CU, Lohoff M, Slater EP, Bartsch DK, Bauer U. PRMT1 promotes the tumor suppressor function of p14 ARF and is indicative for pancreatic cancer prognosis. EMBO J 2021; 40:e106777. [PMID: 33999432 PMCID: PMC8246066 DOI: 10.15252/embj.2020106777] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/04/2022] Open
Abstract
The p14ARF protein is a well-known regulator of p53-dependent and p53-independent tumor-suppressive activities. In unstressed cells, p14ARF is predominantly sequestered in the nucleoli, bound to its nucleolar interaction partner NPM. Upon genotoxic stress, p14ARF undergoes an immediate redistribution to the nucleo- and cytoplasm, where it promotes activation of cell cycle arrest and apoptosis. Here, we identify p14ARF as a novel interaction partner and substrate of PRMT1 (protein arginine methyltransferase 1). PRMT1 methylates several arginine residues in the C-terminal nuclear/nucleolar localization sequence (NLS/NoLS) of p14ARF . In the absence of cellular stress, these arginines are crucial for nucleolar localization of p14ARF . Genotoxic stress causes augmented interaction between PRMT1 and p14ARF , accompanied by arginine methylation of p14ARF . PRMT1-dependent NLS/NoLS methylation promotes the release of p14ARF from NPM and nucleolar sequestration, subsequently leading to p53-independent apoptosis. This PRMT1-p14ARF cooperation is cancer-relevant and indicative for PDAC (pancreatic ductal adenocarcinoma) prognosis and chemotherapy response of pancreatic tumor cells. Our data reveal that PRMT1-mediated arginine methylation is an important trigger for p14ARF 's stress-induced tumor-suppressive function.
Collapse
Affiliation(s)
- Antje Repenning
- Institute for Molecular Biology and Tumor Research (IMT)Philipps‐University MarburgMarburgGermany
| | - Daniela Happel
- Institute for Molecular Biology and Tumor Research (IMT)Philipps‐University MarburgMarburgGermany
| | - Caroline Bouchard
- Institute for Molecular Biology and Tumor Research (IMT)Philipps‐University MarburgMarburgGermany
| | - Marion Meixner
- Institute for Molecular Biology and Tumor Research (IMT)Philipps‐University MarburgMarburgGermany
| | - Yesim Verel‐Yilmaz
- Department of VisceralThoracic and Vascular SurgeryUniversity Hospital MarburgPhilipps‐University MarburgMarburgGermany
| | - Hartmann Raifer
- Core Facility Flow CytometryUniversity Hospital MarburgPhilipps‐University MarburgMarburgGermany
- Institute for Med. Microbiology & Hospital HygieneUniversity Hospital MarburgPhilipps‐University MarburgMarburgGermany
| | - Lena Holembowski
- Institute for Molecular Biology and Tumor Research (IMT)Philipps‐University MarburgMarburgGermany
| | | | - Elisabeth Kremmer
- Institute of Molecular ImmunologyHelmholtz Zentrum MünchenGerman Research Center for Environmental HealthMünchenGermany
| | - Regina Feederle
- Monoclonal Antibody Core FacilityInstitute for Diabetes and ObesityHelmholtz Zentrum MünchenGerman Research Center for Environmental HealthNeuherbergGermany
| | - Corinna U Keber
- Institute for PathologyUniversity Hospital MarburgPhilipps‐University MarburgMarburgGermany
| | - Michael Lohoff
- Institute for Med. Microbiology & Hospital HygieneUniversity Hospital MarburgPhilipps‐University MarburgMarburgGermany
| | - Emily P Slater
- Department of VisceralThoracic and Vascular SurgeryUniversity Hospital MarburgPhilipps‐University MarburgMarburgGermany
| | - Detlef K Bartsch
- Department of VisceralThoracic and Vascular SurgeryUniversity Hospital MarburgPhilipps‐University MarburgMarburgGermany
| | - Uta‐Maria Bauer
- Institute for Molecular Biology and Tumor Research (IMT)Philipps‐University MarburgMarburgGermany
| |
Collapse
|
2
|
Bandyopadhyay K, Li P, Gjerset RA. CK2-mediated hyperphosphorylation of topoisomerase I targets serine 506, enhances topoisomerase I-DNA binding, and increases cellular camptothecin sensitivity. PLoS One 2012. [PMID: 23185622 PMCID: PMC3503890 DOI: 10.1371/journal.pone.0050427] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Topoisomerase I is the target for a potent class of chemotherapeutic drugs derived from the plant alkaloid camptothecin that includes irinotecan and topotecan. In this study we have identified a novel site of CK2-mediated topoisomerase I (topo I) phosphorylation at serine 506 (PS506) that is relevant to topo I function and to cellular responses to these topo I-targeted drugs. CK2 treatment induced hyperphosphorylation of recombinant topo I and expression of the PS506 epitope, and resulted in increased binding of topo I to supercoiled plasmid DNA. Hyperphosphorylated topo I was approximately three times more effective than the basal phosphorylated enzyme at relaxing plasmid supercoils but had similar DNA cleavage activity once bound to DNA. The PS506 epitope was expressed in cancer cell lines with elevated CK2 activity, hyperphosphorylated topo I, and increased sensitivity to camptothecin. In contrast, PS506 was not detected in normal cells or cancer cell lines with lower levels of CK2 activity. By experimentally manipulating CK2 activity in cancer cell lines, we demonstrate a cause and effect relationship between CK2 activity, PS506 expression, camptothecin-induced cellular DNA damage, and cellular camptothecin sensitivity. Our results show that the PS506 epitope is an indicator of dysregulated, hyperphosphorylated topo I in cancer cells, and may thus serve as a diagnostic or prognostic biomarker and predict tumor responsiveness to widely used topo I-targeted therapies.
Collapse
MESH Headings
- Antineoplastic Agents, Phytogenic/pharmacology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Camptothecin/pharmacology
- Casein Kinase II/genetics
- Casein Kinase II/metabolism
- Cell Line, Tumor
- DNA Fragmentation/drug effects
- DNA Topoisomerases, Type I/genetics
- DNA Topoisomerases, Type I/metabolism
- DNA, Superhelical/metabolism
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Epitopes
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Phosphorylation/drug effects
- Plasmids
- Serine/genetics
- Serine/metabolism
- Topoisomerase I Inhibitors/pharmacology
Collapse
Affiliation(s)
- Keya Bandyopadhyay
- Torrey Pines Institute for Molecular Studies, San Diego, California, United States of America
| | - Pingchuan Li
- Torrey Pines Institute for Molecular Studies, San Diego, California, United States of America
| | - Ruth A. Gjerset
- Torrey Pines Institute for Molecular Studies, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
3
|
Andrique L, Fauvin D, El Maassarani M, Colasson H, Vannier B, Séité P. ErbB380kDa, a nuclear variant of the ErbB3 receptor, binds to the Cyclin D1 promoter to activate cell proliferation but is negatively controlled by p14ARF. Cell Signal 2012; 24:1074-85. [DOI: 10.1016/j.cellsig.2012.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 12/16/2011] [Accepted: 01/04/2012] [Indexed: 01/11/2023]
|
4
|
Bandyopadhyay K, Gjerset RA. Protein kinase CK2 is a central regulator of topoisomerase I hyperphosphorylation and camptothecin sensitivity in cancer cell lines. Biochemistry 2011; 50:704-14. [PMID: 21182307 DOI: 10.1021/bi101110e] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Topoisomerase I (topo I) is required to unwind DNA during synthesis and provides the unique target for camptothecin-derived chemotherapeutic agents, including Irinotecan and Topotecan. While these agents are highly effective anticancer agents, some tumors do not respond due to intrinsic or acquired resistance, a process that remains poorly understood. Because of treatment toxicity, there is interest in identifying cellular factors that regulate tumor sensitivity and might serve as predictive biomarkers of therapy sensitivity. Here we identify the serine kinase, protein kinase CK2, as a central regulator of topo I hyperphosphorylation and activity and cellular sensitivity to camptothecin. In nine cancer cell lines and three normal tissue-derived cell lines we observe a consistent correlation between CK2 levels and camptothecin responsiveness. Two other topo I-targeted serine kinases, protein kinase C and cyclin-dependent kinase 1, do not show this correlation. Camptothecin-sensitive cancer cell lines display high CK2 activity, hyperphosphorylation of topo I, elevated topo I activity, and elevated phosphorylation-dependent complex formation between topo I and p14ARF, a topo I activator. Camptothecin-resistant cancer cell lines and normal cell lines display lower CK2 activity, lower topo I phosphorylation, lower topo I activity, and undetectable topo I/p14ARF complex formation. Experimental inhibition or activation of CK2 demonstrates that CK2 is necessary and sufficient for regulating these topo I properties and altering cellular responses to camptothecin. The results establish a cause and effect relationship between CK2 activity and camptothecin sensitivity and suggest that CK2, topo I phosphorylation, or topo I/p14ARF complex formation could provide biomarkers of therapy-responsive tumors.
Collapse
Affiliation(s)
- Keya Bandyopadhyay
- Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, California 92121, United States
| | | |
Collapse
|
5
|
Xi L, Feber A, Gupta V, Wu M, Bergemann AD, Landreneau RJ, Litle VR, Pennathur A, Luketich JD, Godfrey TE. Whole genome exon arrays identify differential expression of alternatively spliced, cancer-related genes in lung cancer. Nucleic Acids Res 2008; 36:6535-47. [PMID: 18927117 PMCID: PMC2582617 DOI: 10.1093/nar/gkn697] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Alternative processing of pre-mRNA transcripts is a major source of protein diversity in eukaryotes and has been implicated in several disease processes including cancer. In this study we have performed a genome wide analysis of alternative splicing events in lung adenocarcinoma. We found that 2369 of the 17 800 core Refseq genes appear to have alternative transcripts that are differentially expressed in lung adenocarcinoma versus normal. According to their known functions the largest subset of these genes (30.8%) is believed to be cancer related. Detailed analysis was performed for several genes using PCR, quantitative RT-PCR and DNA sequencing. We found overexpression of ERG variant 2 but not variant 1 in lung tumors and overexpression of CEACAM1 variant 1 but not variant 2 in lung tumors but not in breast or colon tumors. We also identified a novel, overexpressed variant of CDH3 and verified the existence and overexpression of a novel variant of P16 transcribed from the CDKN2A locus. These findings demonstrate how analysis of alternative pre-mRNA processing can shed additional light on differences between tumors and normal tissues as well as between different tumor types. Such studies may lead to the development of additional tools for tumor diagnosis, prognosis and therapy.
Collapse
Affiliation(s)
- Liqiang Xi
- Department of Pathology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Mennecier G, Derangeon M, Coronas V, Hervé JC, Mesnil M. Aberrant expression and localization of connexin43 and connexin30 in a rat glioma cell line. Mol Carcinog 2008; 47:391-401. [DOI: 10.1002/mc.20393] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Bowen C, Stuart A, Ju JH, Tuan J, Blonder J, Conrads TP, Veenstra TD, Gelmann EP. NKX3.1 homeodomain protein binds to topoisomerase I and enhances its activity. Cancer Res 2007; 67:455-64. [PMID: 17234752 DOI: 10.1158/0008-5472.can-06-1591] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The prostate-specific homeodomain protein NKX3.1 is a tumor suppressor that is commonly down-regulated in human prostate cancer. Using an NKX3.1 affinity column, we isolated topoisomerase I (Topo I) from a PC-3 prostate cancer cell extract. Topo I is a class 1B DNA-resolving enzyme that is ubiquitously expressed in higher organisms and many prokaryotes. NKX3.1 interacts with Topo I to enhance formation of the Topo I-DNA complex and to increase Topo I cleavage of DNA. The two proteins interacted in affinity pull-down experiments in the presence of either DNase or RNase. The NKX3.1 homeodomain was essential, but not sufficient, for the interaction with Topo I. NKX3.1 binding to Topo I occurred independently of the Topo I NH2-terminal domain. The binding of equimolar amounts of Topo I to NKX3.1 caused displacement of NKX3.1 from its cognate DNA recognition sequence. Topo I activity in prostates of Nkx3.1+/- and Nkx3.1-/- mice was reduced compared with wild-type mice, whereas Topo I activity in livers, where no NKX3.1 is expressed, was independent of Nkx3.1 genotype. Endogenous Topo I and NKX3.1 could be coimmunoprecipitated from LNCaP cells, where NKX3.1 and Topo I were found to colocalize in the nucleus and comigrate within the nucleus in response to either gamma-irradiation or mitomycin C exposure, two DNA-damaging agents. This is the first report that a homeodomain protein can modify the activity of Topo I and may have implications for organ-specific DNA replication, transcription, or DNA repair.
Collapse
Affiliation(s)
- Cai Bowen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia 20007-2197, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Ayrault O, Andrique L, Fauvin D, Eymin B, Gazzeri S, Séité P. Human tumor suppressor p14ARF negatively regulates rRNA transcription and inhibits UBF1 transcription factor phosphorylation. Oncogene 2006; 25:7577-86. [PMID: 16924243 DOI: 10.1038/sj.onc.1209743] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The nucleolar Arf protein has been shown to regulate cell cycle through both p53-dependent and -independent pathways. In addition to the well-characterized Arf-mdm2-p53 pathway, several partners of Arf have recently been described that could participate in alternative regulation process. Among those is the nucleolar protein B23/NPM, involved in the sequential maturation of rRNA. p19ARF can interact with B23/NPM in high molecular complexes and partially inhibit the cleavage of the 32S rRNA, whereas the human p14ARF protein has been shown to participate in the degradation of NPM/B23 by the proteasome. These data led to define Arf as a negative regulator of ribosomal RNA maturation. Our recent finding that the human p14ARF protein was able to specifically interact with the rRNA promoter in a p53-independent context, led us to analyse in vitro and in vivo the consequences of this interaction. Luciferase assay and pulse-chase experiments demonstrated that the rRNA transcription was strongly reduced upon p14ARF overexpression. Investigations on potential interactions between p14ARF and the transcription machinery proteins demonstrated that the upstream binding factor (UBF), required for the initiation of the transcriptional complex, was a new partner of the p14ARF protein. We next examined the phosphorylation status of UBF as UBF phosphorylation is required to recruit on the promoter factors involved in the transcriptional complex. Upon p14ARF overexpression, UBF was found hypophosphorylated, thus unable to efficiently recruit the transcription complex. Taken together, these data define a new p53-independent pathway that could regulate cell cycle through the negative control of rRNA transcription.
Collapse
Affiliation(s)
- O Ayrault
- Laboratoire d'Oncologie Moléculaire. EA3805, Pô le Biologie-Santé. 40, Poitiers cedex, France
| | | | | | | | | | | |
Collapse
|
9
|
Gjerset RA. DNA damage, p14ARF, nucleophosmin (NPM/B23), and cancer. J Mol Histol 2006; 37:239-51. [PMID: 16855788 DOI: 10.1007/s10735-006-9040-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Accepted: 06/21/2006] [Indexed: 12/18/2022]
Abstract
The p53/p14ARF/mdm2 stress response pathway plays a central role in mediating cellular responses to oncogene activation, genome instability, and therapy-induced DNA damage. Abrogation of the pathway occurs in most if not all cancers, and may be essential for tumor development. The high frequency with which the pathway is disabled in cancer and the fact that the pathway appears to be incompatible with tumor cell growth, has made it an important point of focus in cancer research and therapeutics development. Recently, Nucleophosmin (NPM, B23, NO38 and numatrin), a multifunctional nucleolar protein, has emerged as a p14ARF binding protein and regulator of p53. While complex formation between ARF and NPM retains ARF in the nucleolus and prevents ARF from activating p53, DNA damaging treatments promote a transient subnuclear redistribution of ARF to the nucleoplasm, where it interacts with mdm2 and promotes p53 activation. The results add support to a recently proposed model in which the nucleolus serves as a p53-uspstream sensor of stress, and where ARF links nucleolar stress signals to nucleoplasmic effectors of the stress response. A better understanding of ARF's nucleolar interactions could further elucidate the regulation of the p53 pathway and suggest new therapeutic approaches to restore p53 function.
Collapse
Affiliation(s)
- Ruth A Gjerset
- Sidney Kimmel Cancer Center, 10835 Road to the Cure (previously Altman Row), San Diego, CA 92121, USA.
| |
Collapse
|
10
|
Gallagher SJ, Kefford RF, Rizos H. The ARF tumour suppressor. Int J Biochem Cell Biol 2006; 38:1637-41. [PMID: 16600663 DOI: 10.1016/j.biocel.2006.02.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 02/18/2006] [Accepted: 02/20/2006] [Indexed: 11/18/2022]
Abstract
The ARF tumour suppressor is a product of the INK4a/ARF locus; a sequence that is frequently altered in human cancer. ARF is upregulated by oncogenic stimuli and is a critical regulator of p53 stability through interactions with the mdm2 and ARF-BP1/Mule ubiquitin ligases. Cellular stress signals liberate ARF from the nucleolus where it is bound to B23/nucleophosmin. This nucleolar location of ARF may serve as a reservoir for the rapid induction of p53, but may also serve to co-ordinate effects on cell cycle, survival and growth. The biological functions of ARF interactions with other binding partners remain uncertain, but ARF-mediated sumoylation may represent a unifying effector pathway.
Collapse
Affiliation(s)
- Stuart J Gallagher
- Westmead Institute for Cancer Research, University of Sydney at Westmead Millennium Institute, Westmead Hospital, Westmead, NSW 2145, Australia
| | | | | |
Collapse
|
11
|
Lee C, Smith BA, Bandyopadhyay K, Gjerset RA. DNA damage disrupts the p14ARF-B23(nucleophosmin) interaction and triggers a transient subnuclear redistribution of p14ARF. Cancer Res 2005; 65:9834-42. [PMID: 16267006 DOI: 10.1158/0008-5472.can-05-1759] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The p14 alternate reading frame (ARF) tumor suppressor plays a central role in cancer by binding to mdm2 (Hdm2 in humans) and enhancing p53-mediated apoptosis following DNA damage and oncogene activation. It is unclear, however, how ARF initiates its involvement in the p53/mdm2 pathway, as p53 and mdm2 are located in the nucleoplasm, whereas ARF is largely nucleolar in tumor cells. We have used immunofluorescence and coimmunoprecipitation to examine how the subnuclear distribution and protein-protein interactions of ARF change immediately after DNA damage and over the time course of the DNA damage response in human tumor cells. We find that DNA damage disrupts the interaction of ARF with the nucleolar protein B23(nucleophosmin) and promotes a transient p53-independent translocation of ARF to the nucleoplasm, resulting in a masking of the ARF NH2 terminus that correlates with the appearance of ARF-Hdm2 complexes. The translocation also results in an unmasking of the ARF COOH terminus, suggesting that redistribution disrupts a nucleolar interaction of ARF involving this region. By 24 hours after irradiation, DNA repair has ceased and the pretreatment immunofluorescence patterns and complexes of ARF have been restored. Although the redistribution of ARF is independent of p53 and likely to be regulated by interactions other than Hdm2, ARF does not promote UV sensitization unless p53 is expressed. The results implicate the nucleolus and nucleolar interactions of the ARF, including potentially novel interactions involving its COOH terminus as sites for early DNA damage and stress-mediated cellular events.
Collapse
Affiliation(s)
- Casey Lee
- Department of Cancer Cell Biology, Sidney Kimmel Cancer Center, San Diego, California 92121, USA
| | | | | | | |
Collapse
|
12
|
Chapman EJ, Harnden P, Chambers P, Johnston C, Knowles MA. Comprehensive analysis of CDKN2A status in microdissected urothelial cell carcinoma reveals potential haploinsufficiency, a high frequency of homozygous co-deletion and associations with clinical phenotype. Clin Cancer Res 2005; 11:5740-7. [PMID: 16115911 DOI: 10.1158/1078-0432.ccr-05-0411] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE There are significant differences in reported frequencies, modes of inactivation, and clinical significance of CDKN2A in urothelial cell carcinoma (UCC). We aimed to address these issues by investigating all possible modes of inactivation and clinicopathologic variables in a single tumor panel. EXPERIMENTAL DESIGN Fifty microdissected UCCs were examined. CDKN2A gene dosage (quantitative real-time PCR), allelic status (microsatellite analysis), hypermethylation (methylation-specific PCR), mutation status (denaturing high-performance liquid chromatography and sequencing), protein expression (immunohistochemistry), and clinicopathologic variables (stage, grade, and disease recurrence during follow-up) were assessed. RESULTS Exon 2 was underrepresented in 20 of 46 (43%) and exon 1beta in 21 of 46 (46%) of cases. Underrepresentation of exon 2 was accompanied by loss of heterozygosity (LOH) of 9p in 6 of 18 (30%) and of exon 1beta in 11 of 19 assessable cases (58%). Overall, LOH of 9p was identified in 15/41 (37%). Homozygous deletion of exons 2 and 1beta was detected in 16 of 46 (35%) and 10 of 46 tumors (22%), respectively. Co-deletion was most common, but exon 2-specific homozygous deletion was also detected. In tumors without homozygous deletion, p16 promoter hypermethylation was detected in 1 of 18 (6%). Hypermethylation of the p14ARF promoter or mutations in CDKN2A were not observed. Homozygous deletion of exon 2 or LOH on 9p were associated with invasion. Homozygous deletion of exon 2 or exon 1beta was associated with recurrent disease. CONCLUSIONS These results confirm CDKN2A as a clinically relevant target for inactivation in UCC and show that the true frequency of alteration is only revealed by comprehensive analysis. Our results suggest that CDKN2A may be haploinsufficient in human cancer.
Collapse
Affiliation(s)
- Emma J Chapman
- Cancer Research UK Clinical Centre, St. James's University Hospital, Leeds, United Kingdom
| | | | | | | | | |
Collapse
|
13
|
Li Y, Wu D, Chen B, Ingram A, He L, Liu L, Zhu D, Kapoor A, Tang D. ATM activity contributes to the tumor-suppressing functions of p14ARF. Oncogene 2004; 23:7355-65. [PMID: 15258567 DOI: 10.1038/sj.onc.1207957] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
P14/p19ARF (ARF) plays a major role in the activation of p53 by oncogenic signals. The biochemical basis of this has not been fully elucidated. We report here that forced expression of p14ARF enhances phosphorylation of p53 serine 15 (p53S15) in NIH3T3, IMR90 and MCF7 cells. Ectopic expression of the oncogenes c-myc, E2F1 and E1A, all of which activate p53 at least partially via ARF, lead to p53S15 phosphorylation in IMR90 cells. In addition, ectopic expression of p53 also results in p53S15 phosphorylation, suggesting that this is a common event in the ARF-p53 tumor suppression system. Furthermore, p53-, p14ARF-, c-myc- and E2F1-, but not E1A-, induced p53S15 phosphorylation was substantially reduced in AT fibroblasts (GM05823). Downregulation of ATM in MCF7 cells using RNA interference (RNAi) technology significantly attenuated p14ARF- and p53-induced phosphorylation of p53S15. Ectopically expressed ARF in NIH3T3 cells induced ATM nuclear foci and activated ATM kinase. Functionally, ectopic expression of p14ARF and c-myc inhibited the proliferation of IMR90 but not ATM null GM05823 cells, and p14ARF-induced inhibition of MCF7 cell proliferation was significantly attenuated by downregulation of ATM by RNAi. Taken together, these data show a functional role for ATM in ARF-mediated tumor suppression.
Collapse
Affiliation(s)
- Yanxia Li
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|