1
|
Lopes R, Caetano J, Barahona F, Pestana C, Ferreira BV, Lourenço D, Queirós AC, Bilreiro C, Shemesh N, Beck HC, Carvalho AS, Matthiesen R, Bogen B, Costa-Silva B, Serre K, Carneiro EA, João C. Multiple Myeloma-Derived Extracellular Vesicles Modulate the Bone Marrow Immune Microenvironment. Front Immunol 2022; 13:909880. [PMID: 35874665 PMCID: PMC9302002 DOI: 10.3389/fimmu.2022.909880] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/23/2022] [Indexed: 01/10/2023] Open
Abstract
Multiple myeloma (MM), the third most frequent hematological cancer worldwide, is characterized by the proliferation of neoplastic plasma cells in the bone marrow (BM). One of the hallmarks of MM is a permissive BM microenvironment. Increasing evidence suggests that cell-to-cell communication between myeloma and immune cells via tumor cell-derived extracellular vesicles (EV) plays a key role in the pathogenesis of MM. Hence, we aimed to explore BM immune alterations induced by MM-derived EV. For this, we inoculated immunocompetent BALB/cByJ mice with a myeloma cell line, MOPC315.BM, inducing a MM phenotype. Upon tumor establishment, characterization of the BM microenvironment revealed the expression of both activation and suppressive markers by lymphocytes, such as granzyme B and PD-1, respectively. In addition, conditioning of the animals with MOPC315.BM-derived EV, before transplantation of the MOPC315.BM tumor cells, did not anticipate the disease phenotype. However, it induced features of suppression in the BM milieu, such as an increase in PD-1 expression by CD4+ T cells. Overall, our findings reveal the involvement of MOPC315.BM-derived EV protein content as promoters of immune niche remodeling, strengthening the importance of assessing the mechanisms by which MM may impact the immune microenvironment.
Collapse
Affiliation(s)
- Raquel Lopes
- Myeloma Lymphoma Research Group, Champalimaud Experimental Clinical Research Programme, Champalimaud Foundation, Lisbon, Portugal
- Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Joana Caetano
- Myeloma Lymphoma Research Group, Champalimaud Experimental Clinical Research Programme, Champalimaud Foundation, Lisbon, Portugal
- Hemato-Oncology Department, Champalimaud Foundation, Lisbon, Portugal
- Faculty of Medical Sciences, NOVA Medical School (NMS), Lisbon, Portugal
| | - Filipa Barahona
- Myeloma Lymphoma Research Group, Champalimaud Experimental Clinical Research Programme, Champalimaud Foundation, Lisbon, Portugal
- Faculty of Medical Sciences, NOVA Medical School (NMS), Lisbon, Portugal
| | - Carolina Pestana
- Myeloma Lymphoma Research Group, Champalimaud Experimental Clinical Research Programme, Champalimaud Foundation, Lisbon, Portugal
- Centre of Statistics and Its Applications, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Bruna Velosa Ferreira
- Myeloma Lymphoma Research Group, Champalimaud Experimental Clinical Research Programme, Champalimaud Foundation, Lisbon, Portugal
- Hemato-Oncology Department, Champalimaud Foundation, Lisbon, Portugal
- Faculty of Medical Sciences, NOVA Medical School (NMS), Lisbon, Portugal
| | - Diana Lourenço
- Myeloma Lymphoma Research Group, Champalimaud Experimental Clinical Research Programme, Champalimaud Foundation, Lisbon, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana C. Queirós
- Myeloma Lymphoma Research Group, Champalimaud Experimental Clinical Research Programme, Champalimaud Foundation, Lisbon, Portugal
| | - Carlos Bilreiro
- Faculty of Medical Sciences, NOVA Medical School (NMS), Lisbon, Portugal
- Neural Plasticity and Neural Activity Laboratory, Champalimaud Experimental Clinical Research Programme, Champalimaud Foundation, Lisbon, Portugal
- Radiology Department, Champalimaud Foundation, Lisbon, Portugal
| | - Noam Shemesh
- Neural Plasticity and Neural Activity Laboratory, Champalimaud Experimental Clinical Research Programme, Champalimaud Foundation, Lisbon, Portugal
| | - Hans Christian Beck
- Centre for Clinical Proteomics, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Ana Sofia Carvalho
- Computational and Experimental Biology, Chronic Diseases Research Centre (CEDOC); NOVA Medical School (NMS), Lisbon, Portugal
| | - Rune Matthiesen
- Computational and Experimental Biology, Chronic Diseases Research Centre (CEDOC); NOVA Medical School (NMS), Lisbon, Portugal
| | - Bjarne Bogen
- Institute of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Bruno Costa-Silva
- Systems Oncology, Champalimaud Physiology and Cancer Programme, Champalimaud Foundation, Lisbon, Portugal
| | - Karine Serre
- Molecular Medicine Institute-Laço Hub, Instituto de Medicina Molecular João Lobo Antunes, Lisbon, Portugal
| | - Emilie Arnault Carneiro
- Myeloma Lymphoma Research Group, Champalimaud Experimental Clinical Research Programme, Champalimaud Foundation, Lisbon, Portugal
| | - Cristina João
- Myeloma Lymphoma Research Group, Champalimaud Experimental Clinical Research Programme, Champalimaud Foundation, Lisbon, Portugal
- Hemato-Oncology Department, Champalimaud Foundation, Lisbon, Portugal
- Faculty of Medical Sciences, NOVA Medical School (NMS), Lisbon, Portugal
- *Correspondence: Cristina João,
| |
Collapse
|
2
|
Marek G, Collinsworth A, Liu C, Brantly M, Clark V. Quantitative measurement of the histological features of alpha-1 antitrypsin deficiency-associated liver disease in biopsy specimens. PLoS One 2021; 16:e0256117. [PMID: 34398915 PMCID: PMC8366994 DOI: 10.1371/journal.pone.0256117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/31/2021] [Indexed: 11/27/2022] Open
Abstract
Background Pathological mutations in Alpha-1 Antitrypsin (AAT) protein cause retention of toxic polymers in the hepatocyte endoplasmic reticulum. The risk for cirrhosis in AAT deficiency is likely directly related to retention of these polymers within the liver. Polymers are classically identified on liver biopsy as inclusion bodies by periodic acid schiff staining after diastase treatment and immunohistochemistry. However, characterization of the polymer burden within a biopsy sample is limited to a semi-quantitative scale as described by a pathologist. Better methods to quantify polymer are needed to advance our understanding of pathogenesis of disease. Therefore, we developed a method to quantify polymer aggregation from standard histologic specimens. In addition, we sought to understand the relationship of polymer burden and other histologic findings to the presence of liver fibrosis. Methods Liver samples from a well-categorized AATD cohort were used to develop histo-morphometric tools to measure protein aggregation. Results Whole-slide morphometry reliably quantifies aggregates in AATD individuals. Despite very low levels of inclusions present (0–0.41%), accumulation of globules is not linear and is associated with higher fibrosis stages. Immunohistochemistry demonstrates that fibrosis is associated with polymer accumulation and not total AAT. A proportion of patients were found to be “heavy accumulators” with a polymer burden above the upper 25% of normal distribution. Males had significantly more liver inclusions and polymer than females. These measurements also highlight interrelated phenotypes of hepatocellular degeneration and autophagy in AATD liver disease. Conclusion Quantitative inclusion analysis measures AAT accumulation in liver biopsy specimens. Quantification of polymer may identify individuals at risk for progressive disease and candidates for therapeutic interventions. Furthermore, these methods may be useful for evaluating efficacy of drugs targeting accumulation of AAT.
Collapse
Affiliation(s)
- George Marek
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| | - Amy Collinsworth
- Advanced Pathology Solutions, Little Rock, Arkansas, United States of America
| | - Chen Liu
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Mark Brantly
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Virginia Clark
- Division of Gastroenterology, Hepatology, and Nutrition, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
3
|
Abstract
Post-translational modifications of cellular substrates with ubiquitin and ubiquitin-like proteins (UBLs), including ubiquitin, SUMOs, and neural precursor cell-expressed developmentally downregulated protein 8, play a central role in regulating many aspects of cell biology. The UBL conjugation cascade is initiated by a family of ATP-dependent enzymes termed E1 activating enzymes and executed by the downstream E2-conjugating enzymes and E3 ligases. Despite their druggability and their key position at the apex of the cascade, pharmacologic modulation of E1s with potent and selective drugs has remained elusive until 2009. Among the eight E1 enzymes identified so far, those initiating ubiquitylation (UBA1), SUMOylation (SAE), and neddylation (NAE) are the most characterized and are implicated in various aspects of cancer biology. To date, over 40 inhibitors have been reported to target UBA1, SAE, and NAE, including the NAE inhibitor pevonedistat, evaluated in more than 30 clinical trials. In this Review, we discuss E1 enzymes, the rationale for their therapeutic targeting in cancer, and their different inhibitors, with emphasis on the pharmacologic properties of adenosine sulfamates and their unique mechanism of action, termed substrate-assisted inhibition. Moreover, we highlight other less-characterized E1s-UBA6, UBA7, UBA4, UBA5, and autophagy-related protein 7-and the opportunities for targeting these enzymes in cancer. SIGNIFICANCE STATEMENT: The clinical successes of proteasome inhibitors in cancer therapy and the emerging resistance to these agents have prompted the exploration of other signaling nodes in the ubiquitin-proteasome system including E1 enzymes. Therefore, it is crucial to understand the biology of different E1 enzymes, their roles in cancer, and how to translate this knowledge into novel therapeutic strategies with potential implications in cancer treatment.
Collapse
Affiliation(s)
- Samir H Barghout
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (S.H.B., A.D.S.); Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada (S.H.B., A.D.S.); and Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt (S.H.B.)
| | - Aaron D Schimmer
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (S.H.B., A.D.S.); Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada (S.H.B., A.D.S.); and Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt (S.H.B.)
| |
Collapse
|
4
|
Ren YM, Duan YH, Sun YB, Yang T, Zhao WJ, Zhang DL, Tian ZW, Tian MQ. Exploring the key genes and pathways of side population cells in human osteosarcoma using gene expression array analysis. J Orthop Surg Res 2018; 13:153. [PMID: 29921292 PMCID: PMC6006685 DOI: 10.1186/s13018-018-0860-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/08/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human osteosarcoma (OS) is one of the most common primary bone sarcoma, because of early metastasis and few treatment strategies. It has been reported that the tumorigenicity and self-renewal capacity of side population (SP) cells play roles in human OS via regulating of target genes. This study aims to complement the differentially expressed genes (DEGs) that regulated between the SP cells and the non-SP cells from primary human OS and identify their functions and molecular pathways associated with OS. METHODS The gene expression profile GSE63390 was downloaded, and bioinformatics analysis was made. RESULTS One hundred forty-one DEGs totally were identified. Among them, 72 DEGs (51.06%) were overexpressed, and the remaining 69 DEGs (48.94%) were underexpressed. Gene ontology (GO) and pathway enrichment analysis of target genes were performed. We furthermore identified some relevant core genes using gene-gene interaction network analysis such as EIF4E, FAU, HSPD1, IL-6, and KISS1, which may have a relationship with the development process of OS. We also discovered that EIF4E/mTOR signaling pathway could be a potential research target for therapy and tumorigenesis of OS. CONCLUSION This analysis provides a comprehensive understanding of the roles of DEGs coming from SP cells in the development of OS. However, these predictions need further experimental validation in future studies.
Collapse
Affiliation(s)
- Yi-Ming Ren
- Department of Joint and Sport Medicine, Tianjin Union Medical Center, Jieyuan Road 190, Hongqiao District, Tianjin, 300121 People’s Republic of China
| | - Yuan-Hui Duan
- Department of Joint and Sport Medicine, Tianjin Union Medical Center, Jieyuan Road 190, Hongqiao District, Tianjin, 300121 People’s Republic of China
| | - Yun-Bo Sun
- Department of Joint and Sport Medicine, Tianjin Union Medical Center, Jieyuan Road 190, Hongqiao District, Tianjin, 300121 People’s Republic of China
| | - Tao Yang
- Department of Joint and Sport Medicine, Tianjin Union Medical Center, Jieyuan Road 190, Hongqiao District, Tianjin, 300121 People’s Republic of China
| | - Wen-Jun Zhao
- Department of Joint and Sport Medicine, Tianjin Union Medical Center, Jieyuan Road 190, Hongqiao District, Tianjin, 300121 People’s Republic of China
| | - Dong-Liang Zhang
- Department of Joint and Sport Medicine, Tianjin Union Medical Center, Jieyuan Road 190, Hongqiao District, Tianjin, 300121 People’s Republic of China
| | - Zheng-Wei Tian
- Department of Joint and Sport Medicine, Tianjin Union Medical Center, Jieyuan Road 190, Hongqiao District, Tianjin, 300121 People’s Republic of China
| | - Meng-Qiang Tian
- Department of Joint and Sport Medicine, Tianjin Union Medical Center, Jieyuan Road 190, Hongqiao District, Tianjin, 300121 People’s Republic of China
| |
Collapse
|
5
|
Thakur A, Qureshi A, Kumar M. vhfRNAi: a web-platform for analysis of host genes involved in viral infections discovered by genome wide RNAi screens. MOLECULAR BIOSYSTEMS 2018; 13:1377-1387. [PMID: 28561835 DOI: 10.1039/c6mb00841k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Knockdown of host genes using high-throughput genome-wide RNA interference screens has identified numerous host factors that affect viral infections, which would be helpful in understanding host-virus interactions. We have developed a vhfRNAi web resource based on genome-wide RNAi experiments for viruses. It contains experimental details of 12 249 entries (host factors + restriction factors) for 18 viruses. Simultaneously, this resource encompasses analysis of overlapping genes, genome wide association studies, gene ontology (GO), pathogen interacting proteins, interaction networks and pathway enrichment. Using overlap analysis, it was found that Influenza A virus shared overlapping host genes with the majority of viruses including Hepatitis C virus and Dengue virus 2. In the genome wide association studies analysis, 429 diseases/traits were mapped, of which obesity-related traits were the most common. GO analysis revealed that the major categories belonged to metabolic processes, molecule transport, signal transduction, proteolysis, etc. In the pathogen interacting protein analysis, protein interaction data from different resources can be explored for further understanding of host-virus biology. By pathway enrichment analysis, a total of 8955 genes were mapped on 303 pathways with most of the hits coming from metabolic pathways. We have found 491 genes that are not essential for the host but essential for the virus and can be targeted to inhibit the virus. These may be explored as potential candidates for drug targets. The resource is freely accessible at and will be useful in understanding host-virus biology as well as identification of targets for the development of antiviral therapeutics.
Collapse
Affiliation(s)
- Anamika Thakur
- Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research, Sector 39-A, Chandigarh-160036, India.
| | | | | |
Collapse
|
6
|
Zhang YH, Huang T, Chen L, Xu Y, Hu Y, Hu LD, Cai Y, Kong X. Identifying and analyzing different cancer subtypes using RNA-seq data of blood platelets. Oncotarget 2017; 8:87494-87511. [PMID: 29152097 PMCID: PMC5675649 DOI: 10.18632/oncotarget.20903] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/16/2017] [Indexed: 12/11/2022] Open
Abstract
Detection and diagnosis of cancer are especially important for early prevention and effective treatments. Traditional methods of cancer detection are usually time-consuming and expensive. Liquid biopsy, a newly proposed noninvasive detection approach, can promote the accuracy and decrease the cost of detection according to a personalized expression profile. However, few studies have been performed to analyze this type of data, which can promote more effective methods for detection of different cancer subtypes. In this study, we applied some reliable machine learning algorithms to analyze data retrieved from patients who had one of six cancer subtypes (breast cancer, colorectal cancer, glioblastoma, hepatobiliary cancer, lung cancer and pancreatic cancer) as well as healthy persons. Quantitative gene expression profiles were used to encode each sample. Then, they were analyzed by the maximum relevance minimum redundancy method. Two feature lists were obtained in which genes were ranked rigorously. The incremental feature selection method was applied to the mRMR feature list to extract the optimal feature subset, which can be used in the support vector machine algorithm to determine the best performance for the detection of cancer subtypes and healthy controls. The ten-fold cross-validation for the constructed optimal classification model yielded an overall accuracy of 0.751. On the other hand, we extracted the top eighteen features (genes), including TTN, RHOH, RPS20, TRBC2, in another feature list, the MaxRel feature list, and performed a detailed analysis of them. The results indicated that these genes could be important biomarkers for discriminating different cancer subtypes and healthy controls.
Collapse
Affiliation(s)
- Yu-Hang Zhang
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China.,Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, People's Republic of China
| | - YaoChen Xu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Yu Hu
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Lan-Dian Hu
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Yudong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, People's Republic of China
| | - Xiangyin Kong
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| |
Collapse
|
7
|
Abstract
Ubiquitin-like proteins (Ubl's) are conjugated to target proteins or lipids to regulate their activity, stability, subcellular localization, or macromolecular interactions. Similar to ubiquitin, conjugation is achieved through a cascade of activities that are catalyzed by E1 activating enzymes, E2 conjugating enzymes, and E3 ligases. In this review, we will summarize structural and mechanistic details of enzymes and protein cofactors that participate in Ubl conjugation cascades. Precisely, we will focus on conjugation machinery in the SUMO, NEDD8, ATG8, ATG12, URM1, UFM1, FAT10, and ISG15 pathways while referring to the ubiquitin pathway to highlight common or contrasting themes. We will also review various strategies used to trap intermediates during Ubl activation and conjugation.
Collapse
Affiliation(s)
- Laurent Cappadocia
- Structural Biology Program, Sloan Kettering Institute , New York, New York 10021, United States
| | - Christopher D Lima
- Structural Biology Program, Sloan Kettering Institute , New York, New York 10021, United States.,Howard Hughes Medical Institute, Sloan Kettering Institute , New York, New York 10021, United States
| |
Collapse
|
8
|
Trakman L, Hewson C, Burdach J, Morris KV. RNA Directed Modulation of Phenotypic Plasticity in Human Cells. PLoS One 2016; 11:e0152424. [PMID: 27082860 PMCID: PMC4833343 DOI: 10.1371/journal.pone.0152424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/14/2016] [Indexed: 11/18/2022] Open
Abstract
Natural selective processes have been known to drive phenotypic plasticity, which is the emergence of different phenotypes from one genome following environmental stimulation. Long non-coding RNAs (lncRNAs) have been observed to modulate transcriptional and epigenetic states of genes in human cells. We surmised that lncRNAs are governors of phenotypic plasticity and drive natural selective processes through epigenetic modulation of gene expression. Using heat shocked human cells as a model we find several differentially expressed transcripts with the top candidates being lncRNAs derived from retro-elements. One particular retro-element derived transcripts, Retro-EIF2S2, was found to be abundantly over-expressed in heat shocked cells. Over-expression of Retro-EIF2S2 significantly enhanced cell viability and modulated a predisposition for an adherent cellular phenotype upon heat shock. Mechanistically, we find that this retro-element derived transcript interacts directly with a network of proteins including 40S ribosomal protein S30 (FAU), Eukaryotic translation initiation factor 5A (EIF5A), and Ubiquitin-60S ribosomal protein L40 (UBA52) to affect protein modulated cell adhesion pathways. We find one motif in Retro-EIF2S2 that exhibits binding to FAU and modulates phenotypic cell transitions from adherent to suspension states. The observations presented here suggest that retroviral derived transcripts actively modulate phenotypic plasticity in human cells in response to environmental selective pressures and suggest that natural selection may play out through the action of retro-elements in human cells.
Collapse
Affiliation(s)
- Laura Trakman
- The University of New South Wales, Biotechnology and Biomedical Sciences, Sydney NSW 2052, Australia
| | - Chris Hewson
- The University of New South Wales, Biotechnology and Biomedical Sciences, Sydney NSW 2052, Australia
| | - Jon Burdach
- The University of New South Wales, Biotechnology and Biomedical Sciences, Sydney NSW 2052, Australia
| | - Kevin V. Morris
- The University of New South Wales, Biotechnology and Biomedical Sciences, Sydney NSW 2052, Australia
- City of Hope – Beckman Research Institute, Center for Gene Therapy, Duarte, California, 91010, United States of America
- * E-mail:
| |
Collapse
|
9
|
Li Y, Liu J, Li W, Brown A, Baddoo M, Li M, Carroll T, Oxburgh L, Feng Y, Saifudeen Z. p53 Enables metabolic fitness and self-renewal of nephron progenitor cells. Development 2016; 142:1228-41. [PMID: 25804735 DOI: 10.1242/dev.111617] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Contrary to its classic role in restraining cell proliferation, we demonstrate here a divergent function of p53 in the maintenance of self-renewal of the nephron progenitor pool in the embryonic mouse kidney. Nephron endowment is regulated by progenitor availability and differentiation potential. Conditional deletion of p53 in nephron progenitor cells (Six2Cre(+);p53(fl/fl)) induces progressive depletion of Cited1(+)/Six2(+) self-renewing progenitors and loss of cap mesenchyme (CM) integrity. The Six2(p53-null) CM is disorganized, with interspersed stromal cells and an absence of a distinct CM-epithelia and CM-stroma interface. Impaired cell adhesion and epithelialization are indicated by decreased E-cadherin and NCAM expression and by ineffective differentiation in response to Wnt induction. The Six2Cre(+);p53(fl/fl) cap has 30% fewer Six2(GFP(+)) cells. Apoptotic index is unchanged, whereas proliferation index is significantly reduced in accordance with cell cycle analysis showing disproportionately fewer Six2Cre(+);p53(fl/fl) cells in the S and G2/M phases compared with Six2Cre(+);p53(+/+) cells. Mutant kidneys are hypoplastic with fewer generations of nascent nephrons. A significant increase in mean arterial pressure is observed in early adulthood in both germline and conditional Six2(p53-null) mice, linking p53-mediated defects in kidney development to hypertension. RNA-Seq analyses of FACS-isolated wild-type and Six2(GFP(+)) CM cells revealed that the top downregulated genes in Six2Cre(+);p53(fl/fl) CM belong to glucose metabolism and adhesion and/or migration pathways. Mutant cells exhibit a ∼ 50% decrease in ATP levels and a 30% decrease in levels of reactive oxygen species, indicating energy metabolism dysfunction. In summary, our data indicate a novel role for p53 in enabling the metabolic fitness and self-renewal of nephron progenitors.
Collapse
Affiliation(s)
- Yuwen Li
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | - Jiao Liu
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University Health Sciences Center, New Orleans, LA 70112, USA The Hypertension and Renal Centers of Excellence, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | - Wencheng Li
- Department of Biomedical Science, Colorado State University, Fort Collins, CO 80523, USA
| | - Aaron Brown
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME 04074, USA
| | | | - Marilyn Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Thomas Carroll
- Department of Internal Medicine (Nephrology) and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Leif Oxburgh
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME 04074, USA
| | - Yumei Feng
- Department of Biomedical Science, Colorado State University, Fort Collins, CO 80523, USA
| | - Zubaida Saifudeen
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University Health Sciences Center, New Orleans, LA 70112, USA The Hypertension and Renal Centers of Excellence, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
10
|
Yan B, Guo X, Zhou Q, Yang Y, Chen X, Sun W, Du A. Hc-fau, a novel gene regulating diapause in the nematode parasite Haemonchus contortus. Int J Parasitol 2014; 44:775-86. [PMID: 25058511 DOI: 10.1016/j.ijpara.2014.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 01/05/2023]
Abstract
Diapause induced in the early fourth stage of Haemonchus contortus is a strategy to adapt this nematode to hostile environmental conditions. In this study, we identified a new gene, Hc-fau, a homologue of human fau and Caenorhabditis elegans Ce-rps30. Hc-fau encodes two proteins through alternative RNA splicing, Hc-FAUA and Hc-FAUB, consisting of 130 and 107 amino acids, respectively. Hc-FAU possesses a diverged ubiquitin-like (UBiL) protein domain and a conserved ribosome protein S30 domain. The protein is ubiquitously expressed, except in the gonad. However Hc-fau transcripts decrease significantly in diapausing L4s of H. contortus. In C. elegans, knockdown of Ce-rps30 confers an extended lifespan, increased lipid storage in the intestine and shortened body length. These morphological characteristics are comparable with dauer larvae of C. elegans, in which the gonad is condensed considerably. In contrast, a shortened lifespan is observed in C. elegans over-expressing Hc-faua, and especially Hc-faub, with hatching failure detected. The genes of insulin/IGF-1 signalling (IIS), TGF-β, cGMP, dafachronic acid (DA), apoptosis (AP) and fatty acids (FA) metabolism are all down-regulated in Ce-rps30RNAi (RNA interference) worms, except for akt-1 and daf-16. However, daf-16 up-regulation is inconsistent with its target gene down-regulation and the result from a heat stress assay in these worms. Daf-16 RNAi conducted in Ce-rps30 (tm6034/nt1) mutants failed to rescue the worms. The S30 domain stays in the nucleus, while UBiL accumulates in the cytoplasm. Compared with Hc-FAUA, results of UBiL domain and S30 domain over-expression indicate synergism between UBiL and S30 in regulating lifespan and reproduction. These results suggest the potential functions of Hc-fau in regulating larval diapause in H.contortus.
Collapse
Affiliation(s)
- Baolong Yan
- Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xiaolu Guo
- Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Qianjin Zhou
- School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Yi Yang
- Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xueqiu Chen
- Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Weiwei Sun
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Aifang Du
- Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
11
|
Kessler BM. Putting proteomics on target: activity-based profiling of ubiquitin and ubiquitin-like processing enzymes. Expert Rev Proteomics 2014; 3:213-21. [PMID: 16608434 DOI: 10.1586/14789450.3.2.213] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Modification of proteins with ubiquitin (Ub) and Ub-like modifiers (Ubls) plays a fundamental role in cell biology. As a consequence, proteomics-based efforts were developed to characterize proteins that are modified by Ub or Ubls. A more focused functional proteomics strategy relies on active-site probes based on the Ub/Ubl scaffold, which specifically targets Ub/Ubl-processing enzymes. Activity-based profiling with such tools led to the identification of novel gene products with Ub/Ubl-processing activity and uncovered novel control mechanisms regulating their activity. This review discusses recent advances in chemistry-based functional proteomics applications, and how this information can provide a framework for drug development against Ub/Ubl-processing enzymes.
Collapse
Affiliation(s)
- Benedikt M Kessler
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7BN, UK.
| |
Collapse
|
12
|
Pickard MR, Mourtada-Maarabouni M, Williams GT. Candidate tumour suppressor Fau regulates apoptosis in human cells: an essential role for Bcl-G. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1146-53. [PMID: 21550398 DOI: 10.1016/j.bbadis.2011.04.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 04/08/2011] [Accepted: 04/21/2011] [Indexed: 02/06/2023]
Abstract
FAU, which encodes a ubiquitin-like protein (termed FUBI) with ribosomal protein S30 as a carboxy-terminal extension, has recently been identified as a pro-apoptotic regulatory gene. This activity may be mediated by Bcl-G (a pro-apoptotic member of the Bcl-2 family) which can be covalently modified by FUBI. FAU gene expression has been shown to be down-regulated in human breast, prostate and ovarian tumours, and this down-regulation is strongly associated with poor prognosis in breast cancer. We demonstrate here that ectopic FAU expression increases basal apoptosis in human T-cell lines and 293T/17 cells, whereas it has only a transient stimulatory effect on ultraviolet-C (UVC)-induced apoptosis. Conversely, siRNA-mediated silencing of FAU gene expression has no effect on basal apoptosis, but attenuates UV-induced apoptosis. Importantly, prior knockdown of Bcl-G expression ablates the stimulation of basal apoptosis by FAU, consistent with an essential downstream role for Bcl-G, itself a candidate tumour suppressor, in mediating the apoptosis regulatory role of FAU. In 293T/17 cells, Bcl-G knockdown also attenuates UV-induced apoptosis, so that Bcl-G may constitute a common factor in the pathways by which both FAU and UV-irradiation induce apoptosis. UV irradiation increases Bcl-G mRNA levels, providing an explanation for the transient nature of the effect of ectopic FAU expression on UV-induced apoptosis. Since failure of apoptosis is fundamental to the development of many cancers, the pro-apoptotic activity of the Fau/Bcl-G pathway offers an attractive explanation for the putative tumour suppressor role of FAU.
Collapse
Affiliation(s)
- Mark R Pickard
- Institute of Science and Technology in Medicine, Huxley Building, Keele University, Keele, ST5 5BG, UK.
| | | | | |
Collapse
|
13
|
van Wijk SJL, Timmers HTM. The family of ubiquitin-conjugating enzymes (E2s): deciding between life and death of proteins. FASEB J 2009; 24:981-93. [PMID: 19940261 DOI: 10.1096/fj.09-136259] [Citation(s) in RCA: 283] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The family of ubiquitin-conjugating (E2) enzymes is characterized by the presence of a highly conserved ubiquitin-conjugating (UBC) domain. These domains accommodate the ATP-activated ubiquitin (Ub) or ubiquitin-like (UBL) protein via a covalently linked thioester onto its active-site residue. E2 enzymes act via selective protein-protein interactions with the E1 and E3 enzymes and connect activation to covalent modification. By doing so, E2s differentiate effects on downstream substrates, either with a single Ub/UBL molecule or as a chain. While E3s are involved in substrate selection, E2s are the main determinants for selection of the lysine to construct ubiquitin chains, which thereby directly control the cellular fate of the substrate. In humans, 35 active E2 enzymes have been identified so far, while other eukaryotic genomes harbor 16 to 35 E2 family members. Some E2s possess N- and/or C-terminal extensions that mediate E2-specific processes. During the past two decades, strong support has led to the control of E2 enzymes in decisions concerning the life or death of a protein. Here, we summarize current knowledge and recent developments on E2 enzymes with respect to structural characteristics and functions. From this we propose a shell-like model to rationalize the selectivity of these key enzymes in directing Ub/UBL-conjugation pathways.-Van Wijk, S. J. L., Timmers, H. T. M. The family of ubiquitin-conjugating enzymes (E2s): deciding between life and death of proteins.
Collapse
Affiliation(s)
- Sjoerd J L van Wijk
- Department of Physiological Chemistry, Division of Biomedical Genetics, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | | |
Collapse
|
14
|
Jeram SM, Srikumar T, Pedrioli PGA, Raught B. Using mass spectrometry to identify ubiquitin and ubiquitin-like protein conjugation sites. Proteomics 2009; 9:922-34. [PMID: 19180541 DOI: 10.1002/pmic.200800666] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Ubiquitin (Ub) and the ubiquitin-like proteins (Ubls) are polypeptides that are covalently conjugated to proteins and other biomolecules to modulate their turnover rate, localization, and/or function. The full range of Ubl functions is only beginning to be understood, and the wide variety of Ubl conjugates is only beginning to be identified. Moreover, how Ubl conjugation is regulated, and how Ubl conjugate populations change, e.g., throughout the cell cycle, in response to hormones, nutrients, or stress, or in various disease states, remains largely enigmatic. MS represents a powerful tool for the characterization of PTMs. However, standard sample preparation and data search methods are not amenable to the identification of many types of Ubl conjugates. Here, we describe the challenges of identifying Ub/Ubl conjugates, and propose an improved workflow for identification of Ub/Ubl conjugation sites. Considering the importance of Ubls in normal cellular physiology, and their roles in disease etiology and progression, it will be critical to develop improved high-throughput MS methods capable of efficiently identifying proteins and other biomolecules modified by these very interesting and important PTMs.
Collapse
Affiliation(s)
- Stanley M Jeram
- Ontario Cancer Institute, McLaughlin Centre for Molecular Medicine, Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | | | | | | |
Collapse
|
15
|
Aleshin VV, Konstantinova AV, Mikhailov KV, Nikitin MA, Petrov NB. Do we need many genes for phylogenetic inference? BIOCHEMISTRY (MOSCOW) 2008; 72:1313-23. [PMID: 18205615 DOI: 10.1134/s000629790712005x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fifty-six nuclear protein coding genes from Taxonomically Broad EST Database and other databases were selected for phylogenomic-based examination of alternative phylogenetic hypotheses concerning intergroup relationship between multicellular animals (Metazoa) and other representatives of Opisthokonta. The results of this work support sister group relationship between Metazoa and Choanoflagellata. Both of these groups form the taxon Holozoa along with the monophyletic Ichthyosporea or Mesomycetozoea (a group that includes Amoebidium parasiticum, Sphaeroforma arctica, and Capsaspora owczarzaki). These phylogenetic hypotheses receive high statistical support both when utilizing whole alignment and when only 5000 randomly selected alignment positions are used. The presented results suggest subdivision of Fungi into Eumycota and lower fungi, Chytridiomycota. The latter form a monophyletic group that comprises Chytridiales+Spizellomycetales+Blastocladiales (Batrachochytrium, Spizellomyces, Allomyces, Blastocladiella), contrary to the earlier reports based on the analysis of 18S rRNA and a limited set of protein coding genes. The phylogenetic distribution of genes coding for a ubiquitin-fused ribosomal protein S30 implies at least three independent cases of gene fusion: in the ancestors of Holozoa, in heterotrophic Heterokonta (Oomycetes and Blastocystis) and in the ancestors of Cryptophyta and Glaucophyta. Ubiquitin-like sequences fused with ribosomal protein S30 outside of Holozoa are not FUBI orthologs. Two independent events of FUBI replacement by the ubiquitin sequence were detected in the lineage of C. owczarzaki and in the monophyletic group of nematode worms Tylenchomorpha+Cephalobidae. Bursaphelenchus xylophilus (Aphelenchoidoidea) retains a state typical of the rest of the Metazoa. The data emphasize the fact that the reliability of phylogenetic reconstructions depends on the number of analyzed genes to a lesser extent than on our ability to recognize reconstruction artifacts.
Collapse
Affiliation(s)
- V V Aleshin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | | | | | | | | |
Collapse
|
16
|
Mourtada-Maarabouni M, Kirkham L, Farzaneh F, Williams GT. Regulation of apoptosis by fau revealed by functional expression cloning and antisense expression. Oncogene 2005; 23:9419-26. [PMID: 15543234 DOI: 10.1038/sj.onc.1208048] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Functional expression cloning is a powerful strategy for identifying critical steps in biological pathways independently of prior assumptions. It is particularly suitable for the identification of molecules crucial to the control of apoptosis. Our screen for sequences suppressing T-cell apoptosis isolated a sequence antisense to fau (Finkel-Biskis-Reilly murine sarcoma virus (FBR-MuSV)-associated ubiquitously expressed gene). The fox gene in FBR murine osteosarcoma virus is also antisense to fau and several reports have indicated that fau displays tumour suppressor and oncogenic properties in different contexts. Our observations indicate that the fau antisense sequence suppresses expression of endogenous fau mRNA and produces resistance to apoptosis induced both by the glucocorticoid analogue dexamethasone' by ultraviolet radiation, and by the anticancer drug cisplatin. In all cases, colony-forming ability is protected, indicating that fau affects the critical events prior to commitment to cell death. Overexpression of fau in the sense orientation induces cell death, which is inhibited both by Bcl-2 and by inhibition of caspases, in line with its proposed role in apoptosis.
Collapse
|