1
|
The Expression and Function of Circadian Rhythm Genes in Hepatocellular Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4044606. [PMID: 34697563 PMCID: PMC8541861 DOI: 10.1155/2021/4044606] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/07/2021] [Accepted: 09/25/2021] [Indexed: 12/25/2022]
Abstract
Hepatocellular carcinoma (HCC) is among the most common and lethal form of cancer worldwide. However, its diagnosis and treatment are still dissatisfactory, due to limitations in the understanding of its pathogenic mechanism. Therefore, it is important to elucidate the molecular mechanisms and identify novel therapeutic targets for HCC. Circadian rhythm-related genes control a variety of biological processes. These genes play pivotal roles in the initiation and progression of HCC and are potential diagnostic markers and therapeutic targets. This review gives an update on the research progress of circadian rhythms, their effects on the initiation, progression, and prognosis of HCC, in a bid to provide new insights for the research and treatment of HCC.
Collapse
|
2
|
Wang S, Ma X, Ying Y, Sun J, Yang Z, Li J, Jin K, Wang X, Xie B, Zheng X, Liu B, Xie L. Upregulation of ARNTL2 is associated with poor survival and immune infiltration in clear cell renal cell carcinoma. Cancer Cell Int 2021; 21:341. [PMID: 34217271 PMCID: PMC8255002 DOI: 10.1186/s12935-021-02046-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
Background Aryl hydrocarbon receptor nuclear translocator like 2 (ARNTL2) is a member of the PAS superfamily. Previous studies explored the carcinogenic roles of transcription factor ARNTL2 in human malignancies. However, its roles in ccRCC have not been elucidated. This study sought to explore the roles of ARNTL2 in ccRCC and determine its correlations with tumor immunity. Methods The expression of ARNTL2 was analyzed using the GEO, TCGA and GTEx database, and verified in ccRCC tissue samples and cell lines by qRT-PCR and western blot analysis. Kaplan–Meier survival curve analysis, Cox regression analysis (including univariate and multivariate analysis) was utilized to evaluate the prognostic values of ARNTL2. Potential biological mechanisms of ARNTL2 were explored using GSEA method. Colony formation and wound healing assays were conducted to explore the oncogenic role of ARNTL2 in ccRCC. ssGSEA and xCell algorithm were used to explore the correlation between ARNTL2 expression and tumor immune microenvironment (TIME). Results ARNTL2 was significantly upregulated in ccRCC tissues and cell lines compared to normal kidney tissues and cell line. Enhanced expression of ARNTL2 was strongly linked to advanced clinical stage and unfavorable overall survival in ccRCC. ARNTL2 was determined as an independent prognostic marker through cox regression analysis. A prognostic nomogram was constructed to predict 1-, 3- and 5-year overall survival of ccRCC patients by integrating ARNTL2 expression with other clinicopathologic variables. GSEA analysis showed that focal adhesion, T cell receptor, cell cycle, and JAK-STAT signaling pathway were significantly enriched in high ARNTL2 samples. Silencing of ARNTL2 suppressed the colony formation ability and wound healing efficacy of ccRCC cell lines. xCell analysis showed that high expression level of ARNTL2 exhibited an immune infiltration status similar to CD8 + inflamed ccRCC subtype, which was characterized by high infiltration level of CD8 + T cell and high expression level of the immune escape biomarkers such as PD-L1, PD-L2, PD1 and CTLA4. Conclusion ARNTL2 is an independent adverse predictor of ccRCC patient survival. High expression level of ARNTL2 is associated with immune infiltration, and may be a novel therapeutic target in ccRCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02046-z.
Collapse
Affiliation(s)
- Song Wang
- Department of Urology, School of Medicine, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Xueyou Ma
- Department of Urology, School of Medicine, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Yufan Ying
- Department of Urology, School of Medicine, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Jiazhu Sun
- Department of Urology, School of Medicine, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Zitong Yang
- Department of Urology, School of Medicine, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Jiangfeng Li
- Department of Urology, School of Medicine, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Ke Jin
- Department of Urology, School of Medicine, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Xiao Wang
- Department of Urology, School of Medicine, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Bo Xie
- Department of Urology, School of Medicine, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Xiangyi Zheng
- Department of Urology, School of Medicine, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Ben Liu
- Department of Urology, School of Medicine, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| | - Liping Xie
- Department of Urology, School of Medicine, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
3
|
Karri K, Waxman DJ. Widespread Dysregulation of Long Noncoding Genes Associated With Fatty Acid Metabolism, Cell Division, and Immune Response Gene Networks in Xenobiotic-exposed Rat Liver. Toxicol Sci 2020; 174:291-310. [PMID: 31926019 PMCID: PMC7098378 DOI: 10.1093/toxsci/kfaa001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Xenobiotic exposure dysregulates hundreds of protein-coding genes in mammalian liver, impacting many physiological processes and inducing diverse toxicological responses. Little is known about xenobiotic effects on long noncoding RNAs (lncRNAs), many of which have important regulatory functions. Here, we present a computational framework to discover liver-expressed, xenobiotic-responsive lncRNAs (xeno-lncs) with strong functional, gene regulatory potential and elucidate the impact of xenobiotic exposure on their gene regulatory networks. We assembled the long noncoding transcriptome of xenobiotic-exposed rat liver using RNA-seq datasets from male rats treated with 27 individual chemicals, representing 7 mechanisms of action (MOAs). Ortholog analysis was combined with coexpression data and causal inference methods to infer lncRNA function and deduce gene regulatory networks, including causal effects of lncRNAs on protein-coding gene expression and biological pathways. We discovered > 1400 liver-expressed xeno-lncs, many with human and/or mouse orthologs. Xenobiotics representing different MOAs often regulated common xeno-lnc targets: 123 xeno-lncs were dysregulated by ≥ 10 chemicals, and 5 xeno-lncs responded to ≥ 20 of the 27 chemicals investigated; 81 other xeno-lncs served as MOA-selective markers of xenobiotic exposure. Xeno-lnc-protein-coding gene coexpression regulatory network analysis identified xeno-lncs closely associated with exposure-induced perturbations of hepatic fatty acid metabolism, cell division, or immune response pathways, and with apoptosis or cirrhosis. We also identified hub and bottleneck lncRNAs, which are expected to be key regulators of gene expression. This work elucidates extensive networks of xeno-lnc-protein-coding gene interactions and provides a framework for understanding the widespread transcriptome-altering actions of foreign chemicals in a key-responsive mammalian tissue.
Collapse
Affiliation(s)
- Kritika Karri
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts
| |
Collapse
|
4
|
Zhou D, Wang Y, Chen L, Jia L, Yuan J, Sun M, Zhang W, Wang P, Zuo J, Xu Z, Luan J. Evolving roles of circadian rhythms in liver homeostasis and pathology. Oncotarget 2016; 7:8625-39. [PMID: 26843619 PMCID: PMC4890992 DOI: 10.18632/oncotarget.7065] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/18/2016] [Indexed: 02/06/2023] Open
Abstract
Circadian clock in mammals is determined by a core oscillator in the suprachiasmatic nucleus (SCN) of the hypothalamus and synchronized peripheral clocks in other tissues. The coherent timing systems could sustain robust output of circadian rhythms in response to the entrainment controlled environmentally. Disparate approaches have discovered that clock genes and clock-controlled genes (CCGs) exist in nearly all mammalian cell types and are essential for establishing the mechanisms and complexity of internal time-keeping systems. Accumulating evidence demonstrates that the control of homeostasis and pathology in the liver involves intricate loops of transcriptional and post-translational regulation of clock genes expression. This review will focus on the recent advances with great importance concerning clock rhythms linking liver homeostasis and diseases. We particularly highlight what is currently known of the evolving insights into the mechanisms underlying circadian clock . Eventually , findings during recent years in the field might prompt new circadian-related chronotherapeutic strategies for the diagnosis and treatment of liver diseases by coupling these processes.
Collapse
Affiliation(s)
- Dexi Zhou
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China
- Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Yaqin Wang
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China
- Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Lu Chen
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China
- Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Leijuan Jia
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China
- Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Jie Yuan
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China
- Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Mei Sun
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China
- Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Wen Zhang
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China
- Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Peipei Wang
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China
- Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Jian Zuo
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China
- Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Zhenyu Xu
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China
- Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Jiajie Luan
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China
- Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| |
Collapse
|
5
|
Matkowskyj KA, Rao MS, Yang GY. Pathologic Features of Primary and Metastatic Hepatic Malignancies. Cancer Treat Res 2016; 168:257-293. [PMID: 29206377 DOI: 10.1007/978-3-319-34244-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In the mammalian liver, 60 % of the cellular components are hepatocytes while the remainder (35 %) includes biliary epithelium, Kupffer cells, endothelial cells, fat storing cells and connective tissue cells. Although neoplasms of hepatocytes are the most common, a significant number of both benign and malignant primary liver neoplasms arising from other cell types can develop, such as tumors of bile duct epithelium (Table 1). In addition, the liver is one of the most susceptible sites for metastatic tumors arising from other organs of the body. Not too long ago, liver tumors were left untreated because the liver was considered a complex and mysterious organ inaccessible to surgery. Advances in imaging procedures and surgical techniques over the past 40 years have revolutionized the approaches to the treatment of benign and malignant liver tumors. Subsegmentectomy, segmentectomy, lobectomy, and transplantation are routinely performed for the treatment of primary and metastatic liver tumors with minimal morbidity and mortality. Since accurate diagnosis remains the key to clinical and surgical management, the emphasis of this chapter is on classification, morphological features and differential diagnosis of malignant neoplasms of the liver.
Collapse
|
6
|
Lebailly B, Boitard C, Rogner UC. Circadian rhythm-related genes: implication in autoimmunity and type 1 diabetes. Diabetes Obes Metab 2015; 17 Suppl 1:134-8. [PMID: 26332978 DOI: 10.1111/dom.12525] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/05/2015] [Indexed: 01/11/2023]
Abstract
Recent gene association and functional studies have proven the implication of several circadian rhythm-related genes in diabetes. Diabetes has been related to variation in central circadian regulation and peripheral oscillation. Different transcriptional regulators have been identified. Circadian genes are clearly implicated in metabolic pathways, pancreatic function and in type 2 diabetes. Much less evidence has been shown for the link between circadian regulation and type 1 diabetes. The hypothesis that circadian genes are involved in type 1 diabetes is reinforced by findings that the immune system undergoes circadian variation and that several autoimmune diseases are associated with circadian genes. Recent findings in the non-obese diabetic mouse model pinpoint to specific mechanisms controlling type 1 diabetes by the clock-related gene Arntl2 in the immune system.
Collapse
Affiliation(s)
- B Lebailly
- Institut Cochin (INSERM U1016, CNRS UMR-S8104, Département "Endocrinologie, Métabolisme et Diabètes), Paris, France
- Cellule Pasteur, University Pierre and Marie Curie, Paris, France
| | - C Boitard
- Institut Cochin (INSERM U1016, CNRS UMR-S8104, Département "Endocrinologie, Métabolisme et Diabètes), Paris, France
| | - U C Rogner
- Institut Cochin (INSERM U1016, CNRS UMR-S8104, Département "Endocrinologie, Métabolisme et Diabètes), Paris, France
| |
Collapse
|
7
|
Mazzoccoli G, Pazienza V, Panza A, Valvano MR, Benegiamo G, Vinciguerra M, Andriulli A, Piepoli A. ARNTL2 and SERPINE1: potential biomarkers for tumor aggressiveness in colorectal cancer. J Cancer Res Clin Oncol 2012; 138:501-11. [PMID: 22198637 DOI: 10.1007/s00432-011-1126-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 12/12/2011] [Indexed: 12/24/2022]
Abstract
PURPOSE Cathepsin and plasmin may favor cancer cell invasion degrading extracellular matrix. Plasmin formation from plasminogen is regulated by plasminogen activator inhibitor type-1 (PAI-1). ARNTL2 activates the promoters of the PAI-1 gene, officially called SERPINE1, driving the circadian variation in circulating PAI-1 levels. METHODS We evaluated ARNTL2 and SERPINE1 expression in 50 colorectal cancer specimens and adjacent normal tissue and in colon cancer cell lines. RESULTS We found up-regulation of ARNTL2 (P = 0.004) and SERPINE1 (P = 0.002) in tumor tissue. A statistically significant association was found between high ARNTL2 mRNA levels and vascular invasion (P < 0.0001), and between high SERPINE1 mRNA levels and microsatellite instability (MSI-H and MSI-L, P = 0.025). Sorting the subjects into quartile groups, a statistically significant association was found between high ARNTL2 expression and lymph node involvement (P < 0.001), between high SERPINE1 expression and grading (P < 0.001) and between high SERPINE1 expression and MSI H-L (P < 0.0001). In SW480 cells, a more proliferative model compared to CaCo2 cells, there were higher mRNA levels of ARNTL2 (P < 0.001) and SERPINE1 (P = 0.001). CONCLUSION ARNTL2 and SERPINE1 expression is increased in colorectal cancer and in a highly proliferative colon cancer cell line and is related to tumor invasiveness and aggressiveness.
Collapse
Affiliation(s)
- Gianluigi Mazzoccoli
- Division of Internal Medicine and Chronobiology Unit, IRCCS Casa Sollievo della Sofferenza, Research Hospital, San Giovanni Rotondo, FG, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
He CX, Avner P, Boitard C, Rogner UC. Downregulation of the circadian rhythm related gene Arntl2 suppresses diabetes protection in Idd6 NOD.C3H congenic mice. Clin Exp Pharmacol Physiol 2011; 37:1154-8. [PMID: 20880188 DOI: 10.1111/j.1440-1681.2010.05451.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
1. Our previous studies of the murine genetic locus Idd6 revealed the aryl hydrocarbon receptor nuclear translocator-like protein 2 (Arntl2) as a candidate gene for type 1 diabetes; and in Idd6 NOD.C3H congenic mice, Arntl2 upregulation is linked to decreased diabetes development. 2. In the present study, shRNA plasmids capable of suppressing Arntl2 expression were developed and given to diabetes resistant NOD.C3H congenic mice by hydrodynamic tail vein injection. The effects of Arntl2 suppression on diabetes incidence and immune cell numbers were investigated. 3. Diabetes incidence was increased by Arntl2 mRNA interference in the congenic strain and this was associated with an increase in CD4(+) T cells and a decrease in regulatory T cells in the peripheral immune system. 4. These results provide additional support for the protective role of the Arntl2 gene located in locus Idd6 in diabetes progression in NOD.C3H congenic mice.
Collapse
Affiliation(s)
- Chen-Xia He
- Institut Pasteur, Unité de Génétique Moléculaire Murine, Paris, France
| | | | | | | |
Collapse
|
9
|
Lai MW, Chen TC, Pang ST, Yeh CT. Overexpression of cyclin-dependent kinase-associated protein phosphatase enhances cell proliferation in renal cancer cells. Urol Oncol 2011; 30:871-8. [PMID: 21396835 DOI: 10.1016/j.urolonc.2010.09.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 09/20/2010] [Accepted: 09/21/2010] [Indexed: 10/18/2022]
Abstract
OBJECTIVE The aim of this study was to understand the role of cyclin-dependent kinase-associated protein phosphatase (KAP) in renal cancer cell growth. MATERIALS AND METHODS Renal cell carcinoma (RCC) tissues from 58 patients receiving surgical resection were included for immunohistochemistry analysis. Additionally, human embryonic kidney (HEK293) cells overexpressing KAP were established for tumorigenicity experiments. RESULTS Clinicopathologic analysis indicated that poorly differentiated RCCs with a higher histological grade (grade 3/4) were associated with a higher proportion of KAP-positive cells (P < 0.001) as well as cytoplasmic expression of KAP (P < 0.05). HEK293 cells overexpressing KAP had a higher growth rate, greater resistance to TNF-α mediated increment of caspase 3 activity, a shorter cell cycle time, and greater ability of cell invasion. Tumorigenicity experiments showed that KAP-overexpressing cells generated significantly larger xenograft tumors in nude mice compared with mock controls (P = 0.032). CONCLUSIONS KAP expression was associated with poorly differentiated RCCs and overexpression of KAP in renal cells enhanced cell proliferation, resistance to apoptosis, invasive ability, and xenograft tumor formation.
Collapse
Affiliation(s)
- Ming-Wei Lai
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | | | | | | |
Collapse
|
10
|
Gene profiling of Graffi murine leukemia virus-induced lymphoid leukemias: identification of leukemia markers and Fmn2 as a potential oncogene. Blood 2010; 117:1899-910. [PMID: 21135260 DOI: 10.1182/blood-2010-10-311001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Graffi murine leukemia virus induces a large spectrum of leukemias in mice and thus provides a good model to compare the transcriptome of all types of leukemias. We analyzed the gene expression profiles of both T and B leukemias induced by the virus with DNA microarrays. Given that we considered that a 4-fold change in expression level was significant, 388 probe sets were associated to B, to T, or common to both leukemias. Several of them were not yet associated with lymphoid leukemia. We confirmed specific deregulation of Fmn2, Arntl2, Bfsp2, Gfra2, Gpm6a, and Gpm6b in B leukemia, of Nln, Fbln1, and Bmp7 in T leukemias, and of Etv5 in both leukemias. More importantly, we show that the mouse Fmn2 induced an anchorage-independent growth, a drastic modification in cell shape with a concomitant disruption of the actin cytoskeleton. Interestingly, we found that human FMN2 is overexpressed in approximately 95% of pre-B acute lymphoblastic leukemia with the highest expression levels in patients with a TEL/AML1 rearrangement. These results, surely related to the role of FMN2 in meiotic spindle maintenance, suggest its important role in leukemogenesis. Finally, we propose a new panel of genes potentially involved in T and/or B leukemias.
Collapse
|
11
|
He CX, Prevot N, Boitard C, Avner P, Rogner UC. Inhibition of type 1 diabetes by upregulation of the circadian rhythm-related aryl hydrocarbon receptor nuclear translocator-like 2. Immunogenetics 2010; 62:585-92. [PMID: 20676886 DOI: 10.1007/s00251-010-0467-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 07/12/2010] [Indexed: 12/21/2022]
Abstract
The genetic locus Idd6 is involved in type 1 diabetes development in the non-obese diabetic (NOD) mouse through its effect on the immune system and in particular, on T cell activities. Analysis of congenic strains for Idd6 has established the Aryl hydrocarbon receptor nuclear translocator-like 2 (Arntl2) as a likely candidate gene. In this study we investigate the role of Arntl2 in the autoimmune disease and T cell activation. An Arntl2 expressing plasmid was transfected into CD4(+) T cells by nucleofection. Expression levels of cytokines and CD4(+) T cell activation markers, cell death, apoptosis, and cell proliferation rates were characterized in ex vivo experiments whilst in vivo the transfected cells were transferred into NOD.SCID mice to monitor diabetes development. The results demonstrate that Arntl2 overexpression leads to inhibition of CD4(+) T cell proliferation and decreases in their diabetogenic activity without influence on the expression levels of cytokines, CD4(+) T cell activation markers, cell death, and apoptosis. Our findings suggest that Arntl2 at the Idd6 locus may act via the inhibition of CD4(+) T cell proliferation and the reduction in the diabetogenic activity of CD4(+) T cells to protect against autoimmune type 1 diabetes in the NOD mice.
Collapse
Affiliation(s)
- Chen-Xia He
- Institut Pasteur, Unité de Génétique Moléculaire Murine, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | | | |
Collapse
|
12
|
Kuo JHS, Liou MJ, Chiu HC. Evaluating the gene-expression profiles of HeLa cancer cells treated with activated and nonactivated poly(amidoamine) dendrimers, and their DNA complexes. Mol Pharm 2010; 7:805-14. [PMID: 20394435 DOI: 10.1021/mp900303s] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Using dendrimers in cancer therapy as nonviral vectors for gene delivery seems promising. The biological performance of a dendrimer-based gene delivery system depends heavily on its molecular architecture. The transfection activity of dendrimers is significantly improved by processes activated in the heat degradation treatment of solvolysis. However, very little is known about the molecular mechanisms that dendrimers produce in cancer cells. We studied the changes in global gene-expression profiles in human cervical cancer HeLa cells exposed to nonactivated and activated poly(amidoamine) (PAMAM) dendrimers, alone or in complexes with plasmid DNA (dendriplexes). Real-time quantitative reverse transcriptase-polymerase chain reaction was used to confirm four regulated genes (PHF5A, ARNTL2, CHD4, and P2RX7) affected by activated dendrimers and dendriplexes. Activated and nonactivated dendrimers and dendriplexes alike induced multiple gene expression changes, some of which overlapped with their dendriplexes. Dendrimer activation improved transfection efficiency and induced additional gene expression changes in HeLa cells. Dendrimers and dendriplexes principally affect genes with the molecular functions of nucleic acid binding and transcription activity, metal-ion binding, enzyme activity, receptor activity, and protein binding. Our findings provide a deeper insight into the changes in gene expression patterns caused by the molecular structure of PAMAM dendrimers for gene-based cancer therapy.
Collapse
Affiliation(s)
- Jung-hua Steven Kuo
- Graduate Institute of Pharmaceutical Science, Chia Nan University of Pharmacy and Science, 60 Erh-Jen Road, Sec. 1, Jen-Te, Tainan 717, Taiwan.
| | | | | |
Collapse
|
13
|
Midorikawa Y, Sugiyama Y, Aburatani H. Molecular targets for liver cancer therapy: From screening of target genes to clinical trials. Hepatol Res 2010; 40:49-60. [PMID: 19788683 DOI: 10.1111/j.1872-034x.2009.00583.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cancer arises from the accumulation of genetic alterations, and the inactivation of oncogenes, or recovery of suppressor genes, are promising strategies for cancer treatment. Genome-based drug research starts with identification of target genes and is accomplished by exploitation of target-based drugs such as monoclonal antibodies, small molecules and antisense drugs. Recently, clinical trials for treatment of advanced hepatocellular carcinoma (HCC) have been performed, and the effectiveness of sorafenib, an oral multikinase inhibitor of the vascular endothelial growth factor receptor and Ras kinase, has been demonstrated. In addition to known target genes, microarray technology has enabled us to constitute novel therapeutic targets, and many researchers have applied this technology in studies of HCC and have identified candidate target genes, validated to affect cell growth. In addition, promoter arrays for whole-genome epigenetic aberration analysis, ChIP-chip analysis using tiling arrays, and high-throughput sequencing systems have been applied to drug discovery. To elucidate the status of therapeutic target genes in vivo, development of diagnostic markers for stratification of patients is a pressing need. Here, we review recent advances in microarray technology for liver cancer, discuss the innovations and approaches to therapeutic target discovery, and present data regarding the outcome of gene target therapy using monoclonal antibodies and molecular diagnostic markers in our laboratory.
Collapse
Affiliation(s)
- Yutaka Midorikawa
- Department of Surgery, Teikyo University School of Medicine University Hospital, Mizonokuchi, Kawasaki
| | | | | |
Collapse
|
14
|
Lange A, Kistler C, Jutzi TB, Bazhin AV, Klemke CD, Schadendorf D, Eichmüller SB. Detergent fractionation with subsequent subtractive suppression hybridization as a tool for identifying genes coding for plasma membrane proteins. Exp Dermatol 2009; 18:527-35. [DOI: 10.1111/j.1600-0625.2008.00821.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Chang ML, Sung KF, Sheen IS, Lin SM, Yeh CT. A liver slice culture-based ex vivo assay to predict the outcome of antiviral therapy for chronic hepatitis C. J Viral Hepat 2009; 16:359-66. [PMID: 19243501 DOI: 10.1111/j.1365-2893.2009.01090.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
A liver slice culture-based, ex vivo drug suppression assay was developed as a pre-therapeutic predictor for the outcome of antiviral therapy. To investigate its clinical application, 106 consecutive patients with chronic hepatitis C virus (HCV) infection were evaluated. Ex vivo drug suppression assay was performed before administrating a standard course of peginterferon plus ribavirin combination therapy. Stepwise logistic regression model was used to estimate sustained virological response (SVR) on the presence of various clinicopathological parameters. Suppression of HCV replication in the ex vivo assay was present in 32 patients, 29 (90.6%) of whom achieved SVR. Stepwise logistic regression analysis indicated that the presence of interferon suppression effect in the ex vivo assay (odds ratio [OR], 5.552; 95% confidence interval [CI], 1.114-27.673; P = 0.036), genotype 1 (OR; 0.045, 95% CI, 0.008-0.259; P = 0.001), HCV-RNA level (OR, 0.739; 95% CI, 0.617-0.885; P = 0.001), the presence of fatty metamorphosis (OR, 0.205; 95% CI, 0.053-0.793; P = 0.022), and albumin (OR, 9.687; 95% CI, 2.237-41.940; P = 0.002) were independent determinants of SVR. Categorical analysis revealed that 17 of 17 (100%) patients with genotype non-1 and positive ex vivo suppression test achieved SVR, while 20 of 40 (50%) with genotype 1 and negative ex vivo suppression test achieved SVR. In conclusion, the ex vivo drug suppression assay may serve as an independent pre-therapeutic predictor for the SVR in interferon-based antiviral therapy.
Collapse
Affiliation(s)
- M-L Chang
- Liver Research Unit, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | | | | | | | | |
Collapse
|
16
|
von Schantz M. Phenotypic effects of genetic variability in human clock genes on circadian and sleep parameters. J Genet 2009; 87:513-9. [PMID: 19147940 DOI: 10.1007/s12041-008-0074-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Circadian rhythms and sleep are two separate but intimately related processes. Circadian rhythms are generated through the precisely controlled, cyclic expression of a number of genes designated clock genes. Genetic variability in these genes has been associated with a number of phenotypic differences in circadian as well as sleep parameters, both in mouse models and in humans. Diurnal preferences as determined by the selfreported Horne-Ostberg (HO) questionnaire, has been associated with polymorphisms in the human genes CLOCK, PER1, PER2 and PER3. Circadian rhythm-related sleep disorders have also been associated with mutations and polymorphisms in clock genes, with the advanced type cosegrating in an autosomal dominant inheritance pattern with mutations in the genes PER2 and CSNK1D, and the delayed type associating without discernible Mendelian inheritance with polymorphisms in CLOCK and PER3. Several mouse models of clock gene null alleles have been demonstrated to have affected sleep homeostasis. Recent findings have shown that the variable number tandem polymorphism in PER3, previously linked to diurnal preference, has profound effects on sleep homeostasis and cognitive performance following sleep loss, confirming the close association between the processes of circadian rhythms and sleep at the genetic level.
Collapse
|
17
|
Lai MW, Huang SF, Lin SM, Chen TC, Lin CY, Yeh CN, Yeh TS, Chen MF, Yeh CT. Expression of the HCRP1 mRNA in HCC as an independent predictor of disease-free survival after surgical resection. Hepatol Res 2009; 39:164-76. [PMID: 19208037 DOI: 10.1111/j.1872-034x.2008.00413.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AIM Hepatocellular carcinoma (HCC)-related protein-1 (HCRP1) gene was located at chromosome 8p22, a frequently deleted region in HCC. The gene product was a subunit of mammalian Endosomal Sorting Complex Required for Transport (ESCRT)-I, essential for degradation of epidermal growth factor receptors. In this study, we examined the prognostic role of HCRP1 mRNA expression in HCC. METHODS The expression of HCRP1 mRNA in HCC was assessed in 125 patients receiving surgical resection of HCC. Using the adjacent non-cancerous tissues as a reference, 55 and 70 patients expressing high and low levels of HCRP1 mRNA, respectively, were identified. The predictive value of HCRP1 mRNA expression in postoperative survival was evaluated. RESULTS Expression of HCRP1 mRNA was not associated with any of the baseline clinicopathological parameters. However, univariate analysis showed that it was associated with a better disease-free survival (P < 0.001) and overall survival (P = 0.032). Stepwise Cox multivariate proportional hazards regression analysis showed that the expression of HCRP1 mRNA (hazard ratio [HR], 0.396; 95% confidence interval (CI), 0.233-0.674; P = 0.001), tumor number (HR, 1.596; 95% CI, 1.221-2.087; P = 0.001), serum aspartate aminotransferase (HR, 1.002; 95% CI, 1.000-1.003; P = 0.031) and the presence of microvascular invasion (HR, 1.852; 95% CI, 1.131-3.032; P = 0.014) were included as independent predictors for disease-free survival. CONCLUSION Expression of HCRP1 mRNA served as an independent predictor for postoperative disease-free survival in HCC patients.
Collapse
Affiliation(s)
- Ming-Wei Lai
- Department of Pediatric Gastroenterology, Chang Gung Memorial Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Midorikawa Y, Sugiyama Y, Aburatani H. Screening of liver-targeted drugs. Expert Opin Drug Discov 2008; 3:643-54. [DOI: 10.1517/17460441.3.6.643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Sato F, Bhawal UK, Kawamoto T, Fujimoto K, Imaizumi T, Imanaka T, Kondo J, Koyanagi S, Noshiro M, Yoshida H, Kusumi T, Kato Y, Kijima H. Basic-helix-loop-helix (bHLH) transcription factor DEC2 negatively regulates vascular endothelial growth factor expression. Genes Cells 2008; 13:131-44. [PMID: 18233956 DOI: 10.1111/j.1365-2443.2007.01153.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
DEC1 (BHLHB2/Sharp2/Stra13) and DEC2 (BHLHB3/Sharp1) are basic-helix-loop-helix (bHLH) transcription factors, involved in cellular differentiation, responses to hypoxia and circadian rhythms. We recently showed that the expression of DEC1 and DEC2 was up-regulated by hypoxia; however, the functions of these two factors under hypoxic conditions have not been elucidated in detail. It is well established that the expression of vascular endothelial growth factor (VEGF) is up-regulated by hypoxia, and the expression of VEGF in response to hypoxia depends on transcriptional activation by a heterodimer comprising hypoxia-inducible factor 1alpha (HIF-1alpha) and arylhydrocarbon receptor nuclear translocator 1 (ARNT1). In the present study, we showed that DEC2, but not DEC1, suppressed VEGF gene expression under hypoxic conditions. DEC2 protein was co-immunoprecipitated with HIF-1alpha but not with ARNT1. The binding of HIF-1alpha to the hypoxia response element (HRE) in the VEGF promoter was decreased by DEC2 over-expression, and increased by DEC2 knockdown. We also showed that the circadian expression of VEGF showed a reciprocal pattern to that of DEC2 in cartilage. DEC2 had a circadian oscillation in implanted Sarcoma 180 cells. We conclude that DEC2 negatively regulates VEGF expression and plays an important role in the pathological conditions in which VEGF is involved.
Collapse
Affiliation(s)
- Fuyuki Sato
- Department of Pathology, Hirosaki University School of Medicine, Hirosaki 036-8562, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Huang YS, Dai Y, Yu XF, Bao SY, Yin YB, Tang M, Hu CX. Microarray analysis of microRNA expression in hepatocellular carcinoma and non-tumorous tissues without viral hepatitis. J Gastroenterol Hepatol 2008; 23:87-94. [PMID: 18171346 DOI: 10.1111/j.1440-1746.2007.05223.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIM MicroRNAs (miRNAs) are non-coding RNA molecules of 21-24 nt that regulate the expression of target genes in a post-transcriptional manner. Evidence indicates that miRNAs play essential roles in embryogenesis, cell differentiation, and pathogenesis of human diseases including cancer. METHODS We analyzed the miRNA expression profiles in 10 pairs of hepatocellular carcinoma (HCC) and adjacent non-tumorous tissue (NT) from 10 non-viral hepatitis patients, using a mammalian miRNA microarray containing whole human mature and precursor miRNA sequences. RESULTS A total of 15 miRNAs exhibited higher expression in the HCC samples than that in the NT samples, and one miRNA demonstrated lower expression in the HCC samples than in the NT samples. A total of 18 miRNAs identified valid expression only in HCC samples, with six only in NT samples. The chip results were confirmed by Northern blot analysis. CONCLUSION Our study may help clarify the molecular mechanisms involved in the pathogenesis of HCC, and miRNAs potentially serve as a novel diagnostic tool of HCC.
Collapse
Affiliation(s)
- Yuan-Shuai Huang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
21
|
Midorikawa Y, Makuuchi M, Tang W, Aburatani H. Microarray-based analysis for hepatocellular carcinoma: From gene expression profiling to new challenges. World J Gastroenterol 2007; 13:1487-92. [PMID: 17461438 PMCID: PMC4146888 DOI: 10.3748/wjg.v13.i10.1487] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Accumulation of mutations and alterations in the expression of various genes result in carcinogenesis, and the development of microarray technology has enabled us to identify the comprehensive gene expression alterations in oncogenesis. Many studies have applied this technology for hepatocellular carcinoma (HCC), and identified a number of candidate genes useful as biomarkers in cancer staging, prediction of recurrence and prognosis, and treatment selection. Some of these target molecules have been used to develop new serum diagnostic markers and therapeutic targets against HCC to benefit patients. Previously, we compared gene expression profiling data with classification based on clinicopathological features, such as hepatitis viral infection or liver cancer progression. The next era of gene expression analysis will require systematic integration of expression profiles with other types of biological information, such as genomic locus, gene function, and sequence information. We have reported integration between expression profiles and locus information, which is effective in detecting structural genomic abnormalities, such as chromosomal gains and losses, in which we showed that gene expression profiles are subject to chromosomal bias. Furthermore, array-based comparative genomic hybridization analysis and allelic dosage analysis using genotyping arrays for HCC were also reviewed, with comparison of conventional methods.
Collapse
Affiliation(s)
- Yutaka Midorikawa
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, The University of Tokyo, Tokyo 113-8655, Japan.
| | | | | | | |
Collapse
|
22
|
Hung MS, Avner P, Rogner UC. Identification of the transcription factor ARNTL2 as a candidate gene for the type 1 diabetes locus Idd6. Hum Mol Genet 2006; 15:2732-42. [PMID: 16893914 DOI: 10.1093/hmg/ddl209] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The Idd6 murine type 1 diabetes locus has been shown to control diabetes by regulating the protective activity of the peripheral immune system, as demonstrated by diabetes transfer assays using splenocytes. The analysis of three novel subcongenic (NOD.C3H nonobese. C3H) diabetes strains has confirmed the presence of at least two diabetes-related genes within the 5.8 Mb Idd6 interval with the disease protection conferred by splenocyte co-transfer being located to the 700 kb Idd6.3 subregion. This subinterval contains the circadian rhythm-related transcription factor Arntl2 (Bmal2), a homologue of the type 2 diabetes-associated ARNT (HIF1beta) gene. Arntl2 exhibited a six-fold upregulation in spleens of the NOD.C3H 6.VIII congenic strain compared with the NOD control strain, strain-specific splice variants and a large number of polymorphisms in both coding and non-coding regions. Arntl2 upregulation was not associated with changes in the expression levels of other circadian genes in the spleen, but did correlate with the upregulation of the ARNT-binding motif containing Pla2g4a gene, which has recently been described as being protective for the progression of insulitis and autoimmune diabetes in the NOD mouse via regulation of the tumour necrosis factor-alpha pathway. Our studies strongly suggest that the HIFbeta-homologous Arntl2 gene is involved in the control of type 1 diabetes.
Collapse
Affiliation(s)
- Ming-Shiu Hung
- Unité de Génétique Moléculaire Murine CNRS URA 2578, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
23
|
Hwang DR, Lai HY, Chang ML, Hsu JTA, Yeh CT. Emergence of mutation clusters in the HCV genome during sequential viral passages in Sip-L expressing cells. J Virol Methods 2005; 129:170-7. [PMID: 16005986 DOI: 10.1016/j.jviromet.2005.05.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Revised: 05/26/2005] [Accepted: 05/31/2005] [Indexed: 01/22/2023]
Abstract
Sip-L, a member of the Cupin superfamily, is a hepatic factor capable of supporting hepatitis C virus (HCV) replication in an otherwise non-permissive cell line. HCV-positive serum was used to infect Huh-7 and 293 cells stably expressing Sip-L. Using the culture medium of the infected cells as an infection source, sequential viral passages were carried out in both cell lines. Efficient viral passage was observed in 293-Sip-L cells but not in Huh-7-Sip-L cells. The viral concentrations in the culture medium increased gradually from less than 10(2) copies/mL to 5.3 x 10(4) copies/mL after 25 sequential passages in 293-Sip-L cells. Sequence analysis of the viral genomes obtained from both the initial and final inocula revealed emergence of mutation clusters in NS2, NS3, and NS5A coding regions. Immunofluorescence study revealed that only a small percentage of infected cells expressed a detectable level of viral protein. Caspase 3 activities in the infected cells increased progressively during the viral passages. In conclusion, perpetual propagation of HCV was achieved using Sip-L expressing cells, allowing for the development of mutation clusters in the genome. The mutant HCV can be used as an infection source to study the molecular mechanism of HCV replication.
Collapse
Affiliation(s)
- Der-Ren Hwang
- Division of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Taipei, Taiwan
| | | | | | | | | |
Collapse
|