1
|
Lou J, Xiang Z, Zhu X, Fan Y, Li J, Jin G, Cui S, Huang N, Le X. A two-step, two-sample Mendelian randomization analysis investigating the interplay between gut microbiota, immune cells, and melanoma skin cancer. Medicine (Baltimore) 2024; 103:e40432. [PMID: 39533622 PMCID: PMC11557063 DOI: 10.1097/md.0000000000040432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
This study aims to rigorously explore the potential causal relationships among gut microbiota (GM), immune cells, and melanoma skin cancer among participants from Europe, where this disease exhibits significant prevalence and profound societal impact. Using the genome-wide association analysis database, a double-sample Mendelian randomization (MR) analysis was drawn upon to investigate GM, immune cells, and melanoma skin cancer. The inverse variance weighted approach was applied to estimate the causal connections among these variables. A two-step MR analysis was employed to quantitatively gauge the impact of immune cells mediated GM on melanoma skin cancer. To address potential sources of bias, such as pleiotropy and heterogeneity, multiple analytical techniques were integrated. The MR analysis pinpointed 6 GM taxa related to either an augmented or declined risk of late-stage melanoma skin cancer. In the same vein, 32 immune cell phenotypes were noticed as correlates with modified risk of melanoma skin cancer. Our study also implies that the probable association between GM and melanoma could be facilitated by 5 immune cell phenotypes. The findings of our study underline certain GM taxa and immune cells as potential influencers on the onset and development of melanoma skin cancer. Importantly, our results spotlight 5 immune cell phenotypes as potential agents mediating this association.
Collapse
Affiliation(s)
- Jiaqi Lou
- Burn Department, Ningbo No. 2 Hospital, Ningbo, Zhejiang Province, China
| | - Ziyi Xiang
- Department of Psychiatry and Psychotherapy, Section of Medical Psychology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Xiaoyu Zhu
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Youfen Fan
- Burn Department, Ningbo No. 2 Hospital, Ningbo, Zhejiang Province, China
| | - Jiliang Li
- Burn Department, Ningbo No. 2 Hospital, Ningbo, Zhejiang Province, China
| | - Guoying Jin
- Burn Department, Ningbo No. 2 Hospital, Ningbo, Zhejiang Province, China
| | - Shengyong Cui
- Burn Department, Ningbo No. 2 Hospital, Ningbo, Zhejiang Province, China
| | - Neng Huang
- Burn Department, Ningbo No. 2 Hospital, Ningbo, Zhejiang Province, China
| | - Xin Le
- Burn Department, Ningbo No. 2 Hospital, Ningbo, Zhejiang Province, China
| |
Collapse
|
2
|
Wu G, Xiao G, Yan Y, Guo C, Hu N, Shen S. Bioinformatics analysis of the clinical significance of HLA class II in breast cancer. Medicine (Baltimore) 2022; 101:e31071. [PMID: 36221383 PMCID: PMC9543021 DOI: 10.1097/md.0000000000031071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human leukocyte antigen (HLA) class II plays critical roles in antigen presentation and the initiation of immune responses. However, the correlation between the HLA class II gene expression level and the survival of patients with breast cancer is still under investigation. We analyzed microarray and RNA-Seq data of breast cancer from the cancer genome atlas (TCGA), genotype-tissue expression (GTEx) and Oncomine databases by using bioinformatics tools. The expression of the HLA-DQA1, HLA-DQA2, and HLA-DQB2 genes was significantly upregulated in breast cancer. Higher expression levels of HLA class II genes in breast cancer, especially HLA-DOB and HLA-DQB2, were significantly associated with better overall survival. Furthermore, the expression of HLA class II genes was more closely associated with survival in breast cancer than in other cancer types. CD48 coexpressed with both HLA-DOB and HLA-DQB2 was also positively associated with the overall survival of breast cancer patients. The results indicated that HLA class II and CD48 may enhance antitumor immunity, and their expression patterns may serve as potential prognostic biomarkers and therapeutic targets in breast cancer.
Collapse
Affiliation(s)
- Guihua Wu
- Finance Section, Yuebei People’s Hospital, Shantou University, Shaoguan, China
| | - Gaofang Xiao
- Department of Pathology, Yuebei People’s Hospital, Shantou University, Shaoguan, China
| | - Yuhang Yan
- Breast Surgery, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, China
| | - Chengwei Guo
- Department of Radiology, 82 Group Hospital of PLA, Baoding, China
| | - Ningdong Hu
- Thoracic surgery, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, China
| | - Sandi Shen
- Breast Surgery, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, China
- *Correspondence: Sandi Shen, Breast Surgery, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, 21 Yinquan South Road, Qingyuan 511518, China (e-mail: )
| |
Collapse
|
3
|
Hosokawa K, Nakao S. Somatic mutations and clonal expansions in paroxysmal nocturnal hemoglobinuria. Semin Hematol 2022; 59:143-149. [DOI: 10.1053/j.seminhematol.2022.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 01/02/2023]
|
4
|
Tsuji N, Hosokawa K, Urushihara R, Tanabe M, Zaimoku Y, Katagiri T, Ozawa T, Takamatsu H, Ishiyama K, Yamazaki H, Kishi H, Ogawa S, Nakao S. Frequent HLA-DR loss on hematopoietic stem progenitor cells in patients with cyclosporine-dependent aplastic anemia carrying HLA-DR15. Leukemia 2022; 36:1666-1675. [PMID: 35474098 DOI: 10.1038/s41375-022-01549-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/03/2022] [Accepted: 03/14/2022] [Indexed: 11/08/2022]
Abstract
To determine whether antigen presentation by HLA-DR on hematopoietic stem progenitor cells (HSPCs) is involved in the development of acquired aplastic anemia (AA), we studied the HLA-DR expression on CD45dimCD34+CD38+ cells in the peripheral blood of 61 AA patients including 23 patients possessing HLA-class I allele-lacking (HLA-class I[-]) leukocytes. HLA-DR-lacking (DR[-]) cells accounted for 13.0-57.1% of the total HSPCs in seven (11.5%) patients with HLA-DR15 who did not possess HLA-class I(-) leukocytes. The incubation of sorted DR(-) HSPCs in the presence of IFN-γ for 72 h resulted in the full restoration of the DR expression. A comparison of the transcriptome profile between DR(-) and DR(+) HSPCs revealed the lower expression of immune response-related genes including co-stimulatory molecules (e.g., CD48, CD74, and CD86) in DR(-) cells, which was not evident in HLA-class I(-) HSPCs. DR(-) cells were exclusively detected in GPI(+) HSPCs in four patients whose HSPCs could be analyzed separately for GPI(+) and GPI(-) HSPCs. These findings suggest that CD4+ T cells specific to antigens presented by HLA-DR15 on HSPCs may contribute to the development of AA as well as the immune escape of GPI(-) HSPCs in a distinct way from CD8+ T cells recognizing HLA-class I-restricted antigens.
Collapse
Affiliation(s)
- Noriaki Tsuji
- Department of Hematology, Faculty of Medicine, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Kohei Hosokawa
- Department of Hematology, Faculty of Medicine, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Ryota Urushihara
- Department of Hematology, Faculty of Medicine, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Mikoto Tanabe
- Department of Hematology, Faculty of Medicine, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yoshitaka Zaimoku
- Department of Hematology, Faculty of Medicine, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Takamasa Katagiri
- Department of Clinical Laboratory Sciences, Kanazawa University Graduate School, Kanazawa, Japan
| | - Tatsuhiko Ozawa
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Hiroyuki Takamatsu
- Department of Hematology, Faculty of Medicine, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Ken Ishiyama
- Department of Hematology, Faculty of Medicine, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Hirohito Yamazaki
- Division of Transfusion Medicine, Kanazawa University Hospital, Kanazawa, Japan
| | - Hiroyuki Kishi
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
| | - Shinji Nakao
- Department of Hematology, Faculty of Medicine, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
5
|
Davern M, Donlon NE, Power R, Hayes C, King R, Dunne MR, Reynolds JV. The tumour immune microenvironment in oesophageal cancer. Br J Cancer 2021; 125:479-494. [PMID: 33903730 PMCID: PMC8368180 DOI: 10.1038/s41416-021-01331-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 01/16/2021] [Accepted: 02/17/2021] [Indexed: 02/02/2023] Open
Abstract
Oesophageal cancer (OC) is an inflammation-associated malignancy linked to gastro-oesophageal reflux disease, obesity and tobacco use. Knowledge of the microenvironment of oesophageal tumours is relevant to our understanding of the development of OC and its biology, and has major implications for understanding the response to standard therapies and immunotherapies, as well as for uncovering novel targets. In this context, we discuss what is known about the TME in OC from tumour initiation to development and progression, and how this is relevant to therapy sensitivity and resistance in the two major types of OC. We provide an immunological characterisation of the OC TME and discuss its prognostic implications with specific comparison with the Immunoscore and immune-hot, -cold, altered-immunosuppressed and -altered-excluded models. Targeted therapeutics for the TME under pre-clinical and clinical investigation in OCs are also summarised. A deeper understanding of the TME will enable the development of combination approaches to concurrently target the tumour cells and TME delivering precision medicine to OC patients.
Collapse
Affiliation(s)
- Maria Davern
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St James's Cancer Institute, St James's Hospital, Dublin, Ireland
| | - Noel E Donlon
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St James's Cancer Institute, St James's Hospital, Dublin, Ireland
| | - Robert Power
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St James's Cancer Institute, St James's Hospital, Dublin, Ireland
| | - Conall Hayes
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St James's Cancer Institute, St James's Hospital, Dublin, Ireland
| | - Ross King
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St James's Cancer Institute, St James's Hospital, Dublin, Ireland
| | - Margaret R Dunne
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St James's Cancer Institute, St James's Hospital, Dublin, Ireland
| | - John V Reynolds
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland.
- Trinity St James's Cancer Institute, St James's Hospital, Dublin, Ireland.
| |
Collapse
|
6
|
Impact of Immunotherapy on CD4 T Cell Phenotypes and Function in Cancer. Vaccines (Basel) 2021; 9:vaccines9050454. [PMID: 34064410 PMCID: PMC8147771 DOI: 10.3390/vaccines9050454] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 12/29/2022] Open
Abstract
Immunotherapy has become a standard treatment in many cancers and it is based on three main therapeutic axes: immune checkpoint blockade (ICB), vaccination and adoptive cell transfer (ACT). If originally these therapies mainly focused on exploiting CD8 T cells given their role in the direct elimination of tumor cells, increasing evidence highlights the crucial role CD4 T cells play in the antitumor immune response. Indeed, these cells can profoundly modulate the tumor microenvironment (TME) by secreting different types of cytokine or by directly eliminating cancer cells. In this review, we describe how different CD4 T cell subsets can contribute to tumor immune responses during immunotherapy and the novel high-throughput immune monitoring tools that are expected to facilitate the study of CD4 T cells, at antigen-specific and single cell level, thus accelerating bench-to-bed translational research in cancer.
Collapse
|
7
|
Balhorn R, Balhorn MC, Balakrishnan K, Rebhun RB. The small molecule antibody mimic SH7139 targets a family of HLA-DRs expressed by B-cell lymphomas and other solid cancers. J Drug Target 2020; 28:1124-1136. [PMID: 32588667 DOI: 10.1080/1061186x.2020.1787418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Selective high-affinity ligands (SHALs) belong to a novel class of small-molecule cancer therapeutics that function as targeted prodrugs. SH7139, the most advanced of the SHAL drugs designed to bind to a unique β-subunit structural epitope located on HLA-DR10, has exhibited exceptional preclinical efficacy and safety profiles. A comparison of SH7139 and SH7129, a biotin derivative of the drug developed for use as a diagnostic, showed the incorporation of a biotin tag did not alter the SHALs ability to target or kill HLA-DR10 expressing Raji cells. The use of SH7129 in an immuno-histochemical type assay to stain peripheral blood mononuclear cells (PBMCs) obtained from individuals expressing specific HLA-DRB1 alleles has also revealed that in addition to HLA-DR10, seven other more commonly expressed HLA-DRs are targeted by the drug. Computational dockings of the SHAL's recognition ligands to a number of HLA-DR structures explain, in part, why the targeting domains of SH7129 and SH7139 bind to some HLA-DRs but not others. The results also substantiate the selectivity of SH7129 and suggest it may prove useful as a companion diagnostic for pre-screening biopsy samples to identify those patients whose tumours should respond to SH7139 therapy.
Collapse
Affiliation(s)
| | | | - Karuppiah Balakrishnan
- Department of Immunology, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Robert B Rebhun
- The Comparative Cancer Center, University of California, Davis, Davis, CA, USA
| |
Collapse
|
8
|
Dunne MR, Phelan JJ, Michielsen AJ, Maguire AA, Dunne C, Martin P, Noonan S, Tosetto M, Geraghty R, Fennelly D, Sheahan K, Ryan EJ, O'Sullivan J. Characterising the prognostic potential of HLA-DR during colorectal cancer development. Cancer Immunol Immunother 2020; 69:1577-1588. [PMID: 32306077 PMCID: PMC7347515 DOI: 10.1007/s00262-020-02571-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/06/2020] [Indexed: 12/25/2022]
Abstract
HLA-DR, an MHC class II molecule that mediates antigen presentation, is a favourable prognostic indicator in colorectal cancer (CRC). However, the dynamics and location of HLA-DR expression during CRC development are unclear. We aimed to define HLA-DR expression by immunohistochemistry in colorectal epithelium and stromal tissue at different stages of cancer development, assessing non-neoplastic colorectal adenocarcinoma-adjacent tissue, adenomas and carcinoma tissues, and to associate HLA-DR levels with clinical outcomes. Patients with higher than median HLA-DR expression survived at least twice as long as patients with lower expression. This association was significant for HLA-DR staining in the colorectal carcinoma epithelium (n = 152, p = 0.011, HR 1.9, 95% CI 1.15-3.15) and adjacent non-neoplastic epithelium (n = 152, p < 0.001, HR 2.7, 95% CI 1.59-4.66), but not stroma. In stage II cases, however, the prognostic value of HLA-DR expression was significant only in adjacent non-neoplastic tissues, for both epithelium (n = 63, p = 0.015, HR 3.6, 95% CI 1.279-10.25) and stroma (n = 63, p = 0.018, HR 5.07, 95% CI 1.32-19.49). HLA-DR was lower in carcinoma tissue compared to matched adenomas (n = 35), in epithelium (p < 0.01) and stroma (p < 0.001). HLA-DR was further reduced in late-stage carcinoma (n = 101) compared to early stage (n = 105), in epithelium (p < 0.001) and stroma (p < 0.01). HLA-DR expression was lower (p < 0.05) in the adjacent non-neoplastic epithelium of patients with cancer recurrence. We demonstrate a progressive loss of HLA-DR in epithelial and stromal tissue compartments during CRC development and show prognostic ability in carcinoma-adjacent non-neoplastic tissues, highlighting the importance of this molecule in the anti-cancer immune response. These findings may have wider implications for immunotherapeutic interventions.
Collapse
Affiliation(s)
- Margaret R Dunne
- Department of Surgery, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, St. James's Hospital, Dublin 8, Ireland
| | - James J Phelan
- Department of Surgery, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, St. James's Hospital, Dublin 8, Ireland
| | - Adriana J Michielsen
- Department of Surgery, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, St. James's Hospital, Dublin 8, Ireland
| | - Aoife A Maguire
- Department of Histopathology, Trinity College, St. James's Hospital, Dublin 8, Ireland
| | - Cara Dunne
- Department of Surgery, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, St. James's Hospital, Dublin 8, Ireland
| | - Petra Martin
- Department of Surgery, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, St. James's Hospital, Dublin 8, Ireland
| | - Sinead Noonan
- Department of Surgery, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, St. James's Hospital, Dublin 8, Ireland
| | - Miriam Tosetto
- Centre for Colorectal Disease, Education and Research Centre, St. Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - Robert Geraghty
- Centre for Colorectal Disease, Education and Research Centre, St. Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - David Fennelly
- Centre for Colorectal Disease, Education and Research Centre, St. Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - Kieran Sheahan
- Centre for Colorectal Disease, Education and Research Centre, St. Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - Elizabeth J Ryan
- Centre for Colorectal Disease, Education and Research Centre, St. Vincent's University Hospital, Elm Park, Dublin 4, Ireland
- Health Research Institute, Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Jacintha O'Sullivan
- Department of Surgery, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, St. James's Hospital, Dublin 8, Ireland.
| |
Collapse
|
9
|
Kocak BT, Saribas S, Demiryas S, Yilmaz E, Uysal O, Kepil N, Demirci M, Dınc HO, Akkus S, Gülergün R, Gareayaghi N, Dağdeviren HE, Ozbey D, Dağ HH, Tokman HB, Tasci I, Kocazeybek B. Association between polymorphisms in HLA-A, HLA-B, HLA-DR, and DQ genes from gastric cancer and duodenal ulcer patients and cagL among cagA-positive Helicobacter pylori strains: The first study in a Turkish population. INFECTION GENETICS AND EVOLUTION 2020; 82:104288. [PMID: 32179147 DOI: 10.1016/j.meegid.2020.104288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/08/2020] [Accepted: 03/12/2020] [Indexed: 02/08/2023]
Abstract
Colonization of the human gastric mucosa by H. pylori may cause peptic and duodenal ulcers (DUs), gastric lymphomas, and gastric cancers. The cagL gene is a component of cag T4SS and is involved in cagA translocation into host. An association between the risk of gastric cancer and the type of HLA class II (DR and/or DQ) was suggested in different populations. The aim of this study was to investigate, the clinical association of the cagL gene with host HLA alleles in H. pylori strains that were isolated from patients with gastric cancer, DU, and non-ulcer dyspepsia (NUD) and to determine the HLA allele that confers susceptibility or resistance for the risk of gastric cancer and DU development in Turkish patients. A total of 94 patients (44 gastric cancer and 50 DU patients; 58 male, 36 female; mean age, 49.6 years), and 86 individuals (50 NUD patients and 36 persons with normal gastrointestinal system [NGIS]; 30 male, 56 female; mean age, 47.3 years) were included as the patient and the control groups, respectively. CagA and cagL were determined by PCR method. DNA from peripheral blood samples was obtained by EZ-DNA extraction kit. For HLA SSO typing, LIFECODES SSO Typing kits (HLA-A, HLA-B HLA-C, HLA-DRB1 and HLA-DQA1/B1 kits) were used. The CagL/CagA positivity distribution in the groups were as follows: 42 (95.4%) gastric cancer, 46 (92%) DU and, 34 (68%) NUD and no NGIS cases. The HLA-DQA1*01 (OR: 3.82) allele was significantly different, suggesting that these individuals with H. pylori strains harbouring the CagL/CagA positivity are susceptible to the risk of gastric cancer and DU, and the HLA-DQA1*05 (OR, 0.318) allele was suggested as a protective allele for the risk of gastric cancer and DU using univariate analyses. HLA-DQA1*01 (OR, 2.21), HLA-DQB1*06 (OR, 2.67), sex (male, OR, 2.27), and CagL/CagA/(<2) EPIYA C repeats (OR, 5.72) were detected independent risk factors that increased the risk of gastric cancer and DU using multivariate analyses. However, the HLA-DRB1*04 (OR, 0.28) allele was shown to be a protective allele, which decreased the risk of gastric cancer and DU. Gastric pathologies result from an interaction between bacterial virulence factors, host epigenetic and environmental factors, and H. pylori strain heterogeneity, such as genotypic variation among strains and variations in H. pylori populations within an individual host.
Collapse
Affiliation(s)
- Banu Tufan Kocak
- T.C. Health Ministry Erenkoy Mental Health, Neurology Training and Research Hospital, Istanbul, Turkey
| | - Suat Saribas
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department of Medical Microbiology, Istanbul, Turkey
| | - Suleyman Demiryas
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department of General Surgery, Istanbul, Turkey
| | - Erkan Yilmaz
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department of Organ Transplantation, HLA Laboratory, Istanbul, Turkey
| | - Omer Uysal
- Medical School of Bezmialem, Vakif University, Deparment of Biostatistics, Istanbul, Turkey
| | - Nuray Kepil
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department of Pathology, Istanbul, Turkey
| | - Mehmet Demirci
- Beykent University Medical Faculty, Department of Medical Microbiology, Istanbul, Turkey
| | - Harika Oyku Dınc
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department of Medical Microbiology, Istanbul, Turkey
| | - Seher Akkus
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department of Medical Microbiology, Istanbul, Turkey
| | - Reyhan Gülergün
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department of Medical Microbiology, Istanbul, Turkey
| | - Nesrin Gareayaghi
- Istanbul Sisli Hamidiye Etfal Training and Research Hospital, Blood Center, University of Health Sciences, Istanbul, Turkey
| | - Hüseyin Emre Dağdeviren
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department of Medical Microbiology, Istanbul, Turkey
| | - Dogukan Ozbey
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department of Medical Microbiology, Istanbul, Turkey
| | - Hamit Harun Dağ
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department of Medical Microbiology, Istanbul, Turkey
| | - Hrisi Bahar Tokman
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department of Medical Microbiology, Istanbul, Turkey
| | - Ihsan Tasci
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department of General Surgery, Istanbul, Turkey
| | - Bekir Kocazeybek
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department of Medical Microbiology, Istanbul, Turkey.
| |
Collapse
|
10
|
|
11
|
Expressions of HLA Class II Genes in Cutaneous Melanoma Were Associated with Clinical Outcome: Bioinformatics Approaches and Systematic Analysis of Public Microarray and RNA-Seq Datasets. Diagnostics (Basel) 2019; 9:diagnostics9020059. [PMID: 31212865 PMCID: PMC6628136 DOI: 10.3390/diagnostics9020059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 12/24/2022] Open
Abstract
Major histocompatibility complex (MHC) class II molecules, encoded by human leukocyte antigen (HLA) class II genes, play important roles in antigen presentation and initiation of immune responses. However, the correlation between HLA class II gene expression level and patient survival and disease progression in cutaneous melanoma is still under investigation. In the present study, we analyzed microarray and RNA-Seq data of cutaneous melanoma from The Cancer Genome Atlas (TCGA) using different bioinformatics tools. Survival analysis revealed higher expression level of HLA class II genes in cutaneous melanoma, especially HLA-DP and -DR, was significantly associated with better overall survival. Furthermore, the expressions of HLA class II genes were most closely associated with survival in cutaneous melanoma as compared with other cancer types. The expression of HLA class II co-expressed genes, which were found to associate with antigen processing, immune response, and inflammatory response, was also positively associated with overall survival in cutaneous melanoma. Therefore, the results indicated that increased HLA class II expression may contribute to enhanced anti-tumor immunity and related inflammatory response via presenting tumor antigens to the immune system. The expression pattern of HLA class II genes may serve as a prognostic biomarker and therapeutic targets in cutaneous melanoma.
Collapse
|
12
|
Wang D, Aguilar B, Starr R, Alizadeh D, Brito A, Sarkissian A, Ostberg JR, Forman SJ, Brown CE. Glioblastoma-targeted CD4+ CAR T cells mediate superior antitumor activity. JCI Insight 2018; 3:99048. [PMID: 29769444 PMCID: PMC6012522 DOI: 10.1172/jci.insight.99048] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/12/2018] [Indexed: 12/28/2022] Open
Abstract
Chimeric antigen receptor-modified (CAR-modified) T cells have shown promising therapeutic effects for hematological malignancies, yet limited and inconsistent efficacy against solid tumors. The refinement of CAR therapy requires an understanding of the optimal characteristics of the cellular products, including the appropriate composition of CD4+ and CD8+ subsets. Here, we investigated the differential antitumor effect of CD4+ and CD8+ CAR T cells targeting glioblastoma-associated (GBM-associated) antigen IL-13 receptor α2 (IL13Rα2). Upon stimulation with IL13Rα2+ GBM cells, the CD8+ CAR T cells exhibited robust short-term effector function but became rapidly exhausted. By comparison, the CD4+ CAR T cells persisted after tumor challenge and sustained their effector potency. Mixing with CD4+ CAR T cells failed to ameliorate the effector dysfunction of CD8+ CAR T cells, while surprisingly, CD4+ CAR T cell effector potency was impaired when coapplied with CD8+ T cells. In orthotopic GBM models, CD4+ outperformed CD8+ CAR T cells, especially for long-term antitumor response. Further, maintenance of the CD4+ subset was positively correlated with the recursive killing ability of CAR T cell products derived from GBM patients. These findings identify CD4+ CAR T cells as a highly potent and clinically important T cell subset for effective CAR therapy.
Collapse
Affiliation(s)
- Dongrui Wang
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, and
- Irell and Manella Graduate School of Biological Sciences, City of Hope (COH) Beckman Research Institute and Medical Center, Duarte, California, USA
| | - Brenda Aguilar
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, and
| | - Renate Starr
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, and
| | - Darya Alizadeh
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, and
| | - Alfonso Brito
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, and
| | - Aniee Sarkissian
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, and
| | - Julie R. Ostberg
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, and
| | - Stephen J. Forman
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, and
| | - Christine E. Brown
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, and
| |
Collapse
|
13
|
Cardillo TM, Govindan SV, Zalath MB, Rossi DL, Wang Y, Chang CH, Goldenberg DM. IMMU-140, a Novel SN-38 Antibody-Drug Conjugate Targeting HLA-DR, Mediates Dual Cytotoxic Effects in Hematologic Cancers and Malignant Melanoma. Mol Cancer Ther 2017; 17:150-160. [PMID: 29133623 DOI: 10.1158/1535-7163.mct-17-0354] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/13/2017] [Accepted: 10/24/2017] [Indexed: 11/16/2022]
Abstract
HLA-DR is a member of the MHC class II antigen family expressed on hematologic and solid tumors. Antibodies directed against HLA-DR have demonstrated some clinical success, but toxicities limited development. IMMU-140 is an anti-HLA-DR antibody-drug conjugate composed of the active metabolite of irinotecan, SN-38, conjugated to a humanized anti-HLA-DR IgG4 antibody (IMMU-114); the IgG4 naked antibody is devoid of immune functions. Our aim was to determine if SN-38, the metabolite of a drug not commonly used in hematopoietic cancers, would be effective and safe when targeted to HLA-DR-expressing tumors. IMMU-140 had dual-therapeutic mechanisms, as evidenced by its retention of nonoverlapping anti-HLA-DR nonclassical apoptotic signaling and classical apoptosis mediated by its SN-38 payload. In seven human disease models [acute lymphocytic leukemia (ALL), chronic lymphocytic leukemia (CLL), multiple myeloma (MM), acute myeloid leukemia (AML), diffuse large B-cell lymphoma (DLBCL), Hodgkin lymphoma (HL), and melanoma], IMMU-140 provided significant therapeutic efficacy compared with controls, in vitro, in 3D spheroid models, and in vivo Except for MM and HL, IMMU-140 imparted significantly improved antitumor effects compared with parental IMMU-114. Even in intractable AML and ALL, where IMMU-114 only had modest antitumor effects, IMMU-140 therapy mediated >80% improvement in survival. Therapy was well tolerated, as demonstrated by no marked loss in body weight. Combined with doxorubicin, IMMU-140 produced significantly greater antitumor effects in HL than with monotherapy and without any added toxicity. The dual-therapeutic action of IMMU-140 resulted in promising therapeutic activity in a range of hematopoietic tumors and melanoma, and therefore warrants clinical development. Mol Cancer Ther; 17(1); 150-60. ©2017 AACR.
Collapse
Affiliation(s)
| | | | | | | | - Yang Wang
- Immunomedics, Inc., Morris Plains, New Jersey
| | | | | |
Collapse
|
14
|
Imai D, Yoshizumi T, Okano S, Uchiyama H, Ikegami T, Harimoto N, Itoh S, Soejima Y, Aishima S, Oda Y, Maehara Y. The prognostic impact of programmed cell death ligand 1 and human leukocyte antigen class I in pancreatic cancer. Cancer Med 2017; 6:1614-1626. [PMID: 28602029 PMCID: PMC5504334 DOI: 10.1002/cam4.1087] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/02/2017] [Accepted: 04/04/2017] [Indexed: 12/20/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is associated with an immunosuppressive tumor‐microenvironment (TME) that supports the growth of tumors and mediates tumors enabling evasion of the immune system. Expression of programmed cell death ligand 1 (PD‐L1) and loss of human leukocyte antigen (HLA) class I on tumor cells are methods by which tumors escape immunosurveillance. We examined immune cell infiltration, the expression of PD‐L1 and HLA class I by PDA cells, and the correlation between these immunological factors and clinical prognosis. PDA samples from 36 patients were analyzed for HLA class I, HLA‐DR, PD‐L1, PD‐1, CD4, CD8, CD56, CD68, and FoxP3 expression by immunohistochemistry. The correlations between the expression of HLA class I, HLA‐DR, PD‐L1 or PD‐1 and the pattern of tumor infiltrating immune cells or the patients’ prognosis were assessed. PD‐L1 expression correlated with tumor infiltration by CD68+ and FoxP3+ cells. Low HLA class I expression was an only risk factor for poor survival. PD‐L1 negative and HLA class I high‐expressing PDA was significantly associated with higher numbers of infiltrating CD8+ T cells in the TME, and a better prognosis. Evaluation of both PD‐L1 and HLA class I expression by PDA may be a good predictor of prognosis for patients. HLA class I expression by tumor cells should be evaluated when selecting PDA patients who may be eligible for treatment with PD‐1/PD‐L1 immune checkpoint blockade therapies.
Collapse
Affiliation(s)
- Daisuke Imai
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinji Okano
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of General surgery, Digestive Disease and Surgery institute, Cleveland Clinic, Cleveland, USA
| | - Hideaki Uchiyama
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toru Ikegami
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Norifumi Harimoto
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinji Itoh
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuji Soejima
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinichi Aishima
- Department of Pathology and Microbiology, Saga Medical School, Faculty of Medicine, Saga University, Saga, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Pathological sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiko Maehara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
15
|
HLA-DR expression in tumor epithelium is an independent prognostic indicator in esophageal adenocarcinoma patients. Cancer Immunol Immunother 2017; 66:841-850. [PMID: 28315927 PMCID: PMC5489642 DOI: 10.1007/s00262-017-1983-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/04/2017] [Indexed: 01/10/2023]
Abstract
Esophageal adenocarcinoma (EAC) is an aggressive cancer with poor prognosis, and incidence is increasing rapidly in the Western world. Measurement of immune markers has been shown to have prognostic significance in a growing number of cancers, but whether this is true for EAC has yet to be evaluated. This study aimed to characterize HLA-DR expression in the esophagus across the inflammation to cancer progression sequence and to assess the prognostic significance of HLA-DR expression in EAC. Tissue microarrays (TMA) were constructed from esophageal tissue taken from patients at different stages in the cancer progression sequence; normal, esophagitis, Barrett’s esophagus (BE), low- and high-grade dysplasia (LGD, HGD) and EAC. HLA-DR expression in tissue epithelium and stroma was assessed by immunohistochemistry. HLA-DR expression increased early in the inflammation to cancer progression sequence; with higher expression detected in esophagitis and BE compared to normal tissue. Patients with low (<50%) HLA-DR expression in the EAC tumor epithelium had significantly worse survival outcomes, compared to those with high expression, in both the tumor core (hazard ratio, HR = 2.178, p = 0.024, n = 70) and leading edge (HR = 2.86, p = 0.013, n = 41). Multivariate analysis demonstrated that low HLA-DR expression in leading edge tumor epithelium was an independent predictor of poor survival, associated with a 2.8-fold increase in disease-associated death (p = 0.023). This study shows that HLA-DR is an independent prognostic marker in EAC tumor epithelium. This may have implications for patient stratification strategies as well as EAC tumor immunology.
Collapse
|
16
|
Seliger B, Kloor M, Ferrone S. HLA class II antigen-processing pathway in tumors: Molecular defects and clinical relevance. Oncoimmunology 2017; 6:e1171447. [PMID: 28344859 DOI: 10.1080/2162402x.2016.1171447] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 01/21/2023] Open
Abstract
The human leukocyte antigen (HLA) class II antigen-processing machinery (APM) presents to cognate CD4+ T-cells antigenic peptides mainly generated from exogeneous proteins in the endocytic compartment. These CD4+ T cells exert helper function, but may also act as effector cells, thereby recognizing HLA class II antigen-expressing tumor cells. Thus, HLA class II antigen expression by tumor cells influences the tumor antigen (TA)-specific immune responses and, depending on the cancer type, the clinical course of the disease. Many types of human cancers express HLA class II antigens, although with marked differences in their frequency. Some types of cancer lack HLA class II antigen expression, which could be due to structural defects or deregulation affecting different components of the complex HLA class II APM and/or from lack of cytokine(s) in the tumor microenvironment. In this review, we have summarized the information about HLA class II antigen distribution in normal tissues, the structural organization of the HLA class II APM, their expression and regulation in malignant cells, the defects, which have been identified in malignant cells, and their functional and clinical relevance.
Collapse
Affiliation(s)
- Barbara Seliger
- Martin Luther-University Halle-Wittenberg, Institute of Medical Immunology , Halle, Germany
| | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Clinical Cooperation Unit Applied Tumor Biology, DKFZ (German Cancer Research Center) , Heidelberg, Germany
| | - Soldano Ferrone
- Departments of Surgery and Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School , Boston, MA, USA
| |
Collapse
|
17
|
Donia M, Andersen R, Kjeldsen JW, Fagone P, Munir S, Nicoletti F, Andersen MH, Thor Straten P, Svane IM. Aberrant Expression of MHC Class II in Melanoma Attracts Inflammatory Tumor-Specific CD4+ T- Cells, Which Dampen CD8+ T-cell Antitumor Reactivity. Cancer Res 2015; 75:3747-59. [PMID: 26183926 DOI: 10.1158/0008-5472.can-14-2956] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 06/10/2015] [Indexed: 11/16/2022]
Abstract
In the absence of a local inflammatory response, expression of MHC class II molecules is restricted mainly to hematopoietic cells and thymus epithelium. However, certain tumors, such as melanoma, may acquire aberrant constitutive expression of MHC class II. In a set of primary melanoma cell populations and correspondingly expanded autologous tumor-infiltrating lymphocytes (TIL), we show how MHC class II expression on melanoma cells associates with strong MHC class II-restricted CD4(+) T-cell responses that are specific for tumors. Notably, we found that tumor-specific CD4(+) T-cell responses were dominated by TNF production. TNF reduced CD8(+) T-cell activation in IFNγ-rich environments resembling a tumor site. Conversely, direct CD4(+) T-cell responses had no influence on either the proliferation or viability of melanoma cells. Taken together, our results illustrate a novel immune escape mechanism that can be activated by aberrant expression of MHC class II molecules, which by attracting tumor-specific CD4(+) T cells elicit a local inflammatory response dominated by TNF that, in turn, inhibits cytotoxic CD8(+) T-cell responses
Collapse
Affiliation(s)
- Marco Donia
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Herlev, Denmark. Department of Oncology, Herlev Hospital, University of Copenhagen, Herlev, Denmark. Department of Biomedical Sciences, University of Catania, Catania, Italy.
| | - Rikke Andersen
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Herlev, Denmark. Department of Oncology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Julie W Kjeldsen
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Paolo Fagone
- Department of Biomedical Sciences, University of Catania, Catania, Italy
| | - Shamaila Munir
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | | | - Mads Hald Andersen
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Per Thor Straten
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Inge Marie Svane
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Herlev, Denmark. Department of Oncology, Herlev Hospital, University of Copenhagen, Herlev, Denmark.
| |
Collapse
|
18
|
Ferrone S, Campoli M. A fresh look at an old story: revisiting HLA class II antigen expression by melanoma cells. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/17469872.1.6.805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Nicolay HJM, Sigalotti L, Fonsatti E, Covre A, Parisi G, Fratta E, Coral S, Maio M. Epigenetically regulated tumor-associated antigens in melanoma. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/edm.09.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
20
|
Merlo A, Turrini R, Bobisse S, Zamarchi R, Alaggio R, Dolcetti R, Mautner J, Zanovello P, Amadori A, Rosato A. Virus-specific cytotoxic CD4+ T cells for the treatment of EBV-related tumors. THE JOURNAL OF IMMUNOLOGY 2010; 184:5895-902. [PMID: 20385879 DOI: 10.4049/jimmunol.0902850] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although adoptive immunotherapy with CD8(+) CTL is providing clinically relevant results against EBV-driven malignancies, the effector role of CD4(+) T cells has been poorly investigated. We addressed this issue in a lymphoblastoid cell line-induced mouse model of posttransplant lymphoproliferative disease (PTLD) by comparing the therapeutic efficacy of EBV-specific CD4(+) and CD8(+) T cell lines upon adoptive transfer. CD4(+) T cells disclosed a long-lasting and stronger proliferative potential than CD8(+) T cells, had a similar activation and differentiation marker profile, efficiently killed their targets in a MHC class II-restricted manner, and displayed a lytic machinery comparable to that of cognate CD8(+) T cells. A detailed analysis of Ag specificity revealed that CD4(+) T cells potentially target EBV early lytic cycle proteins. Nonetheless, when assessed for the relative therapeutic impact after in vivo transfer, CD4(+) T cells showed a reduced activity compared with the CD8(+) CTL counterpart. This feature was apparently due to a strong and selective downmodulation of MHC class II expression on the tumor cells surface, a phenomenon that could be reverted by the demethylating agent 5-aza-2'-deoxycytidine, thus leading to restoration of lymphoblastoid cell line recognition and killing by CD4(+) T cells, as well as to a more pronounced therapeutic activity. Conversely, immunohistochemical analysis disclosed that HLA-II expression is fully retained in human PTLD samples. Our data indicate that EBV-specific cytotoxic CD4(+) T cells are therapeutic in mice bearing PTLD-like tumors, even in the absence of CD8(+) T cells. These findings pave the way to use cultures of pure CD4(+) T cells in immunotherapeutic approaches for EBV-related malignancies.
Collapse
Affiliation(s)
- Anna Merlo
- Department of Oncology and Surgical Sciences, University of Padova, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Degenhardt Y, Huang J, Greshock J, Horiates G, Nathanson K, Yang X, Herlyn M, Weber B. Distinct MHC gene expression patterns during progression of melanoma. Genes Chromosomes Cancer 2010; 49:144-54. [PMID: 19862823 DOI: 10.1002/gcc.20728] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abnormal expression of major histocompatibility complex (MHC) molecules in melanoma has been reported previously. However, the MHC molecule expression patterns in different growth phases of melanoma and the underlying mechanisms are not well understood. Here, we demonstrate that in vertical growth phase (VGP) melanomas, MHC genes are subject to increased rates of DNA copy number gains, accompanied by increased expression, in comparison to normal melanocytes. In contrast, MHC expression in metastatic melanomas drastically decreased compared to VGP melanomas, despite still prevalent DNA copy number gains. Subsequent investigations found that the master transactivator of MHC genes, CIITA, was also significantly downregulated in metastatic melanomas when compared to VGP melanomas. This could be one of the mechanisms accounting for the discrepancy between DNA copy number and expression level in metastatic melanomas, a potentially separate mechanism of gene regulation. These results infer a dynamic role of MHC function in melanoma progression. We propose potential mechanisms for the overexpression of MHC molecules in earlier stages of melanoma as well as for its downregulation in metastatic melanomas.
Collapse
Affiliation(s)
- Yan Degenhardt
- Cancer Metabolism DPU, Oncology, GlaxoSmithKline, King of Prussia, PA 19406, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Rasmussen N, Ditzel HJ. Scanning the Cell Surface Proteome of Cancer Cells and Identification of Metastasis-Associated Proteins Using a Subtractive Immunization Strategy. J Proteome Res 2009; 8:5048-59. [DOI: 10.1021/pr9004635] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Nicolaj Rasmussen
- Medical Biotechnology Center, Institute of Medical Biology, University of Southern Denmark, J. B. Winsloewsvej 25, DK-5000 Odense C, Denmark, Department of Oncology, Odense University Hospital, DK-5000 Odense C, Denmark
| | - Henrik J. Ditzel
- Medical Biotechnology Center, Institute of Medical Biology, University of Southern Denmark, J. B. Winsloewsvej 25, DK-5000 Odense C, Denmark, Department of Oncology, Odense University Hospital, DK-5000 Odense C, Denmark
| |
Collapse
|
23
|
Mendez R, Aptsiauri N, Del Campo A, Maleno I, Cabrera T, Ruiz-Cabello F, Garrido F, Garcia-Lora A. HLA and melanoma: multiple alterations in HLA class I and II expression in human melanoma cell lines from ESTDAB cell bank. Cancer Immunol Immunother 2009; 58:1507-15. [PMID: 19340423 PMCID: PMC11030131 DOI: 10.1007/s00262-009-0701-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 03/14/2009] [Indexed: 10/20/2022]
Abstract
Altered HLA class I and class II cell surface expression has been reported in many types of malignancy and represents one of the major mechanism by which tumour cells escape from T lymphocytes. In this report, we review the results obtained from the study of constitutive and IFN-gamma-induced expression of HLA class I and II molecules in 91 human melanoma cell lines from the European Searchable Tumour Cell Line Database, and compare them with published data on HLA expression in other types of cancer. Various types of alterations in HLA class I cell surface expression were found in a high percentage (67%) of the studied cell lines. These alterations range from total to selective HLA class I loss and are associated with beta2-microglobulin gene mutations, transcriptional downregulation of HLA class I genes and antigen processing machinery components, or with the loss of heterozygosity in chromosome 6. The most frequently observed phenotype is selective downregulation of HLA-B locus, reversible after treatment with IFN-gamma. The expression of constitutive- or IFN-gamma induced-surface expression of at least one HLA class II locus is positive in 71.5% of the analysed cell lines. Four different HLA class II expression phenotypes were defined, and a positive correlation between the expression of class I and II molecules is discussed. More detailed information on the HLA expression patterns and others immunological characteristics of these melanoma cell lines can be found on the following website http://www.ebi.ac.uk/ipd/estdab .
Collapse
Affiliation(s)
- Rosa Mendez
- Departamento de Análisis Clínicos, Hospital Universitario Virgen de las Nieves, Avd. Fuerzas Armadas 2, 18014 Granada, Spain
| | - Natalia Aptsiauri
- Departamento de Análisis Clínicos, Hospital Universitario Virgen de las Nieves, Avd. Fuerzas Armadas 2, 18014 Granada, Spain
| | - Ana Del Campo
- Departamento de Análisis Clínicos, Hospital Universitario Virgen de las Nieves, Avd. Fuerzas Armadas 2, 18014 Granada, Spain
| | - Isabel Maleno
- Departamento de Análisis Clínicos, Hospital Universitario Virgen de las Nieves, Avd. Fuerzas Armadas 2, 18014 Granada, Spain
| | - Teresa Cabrera
- Departamento de Análisis Clínicos, Hospital Universitario Virgen de las Nieves, Avd. Fuerzas Armadas 2, 18014 Granada, Spain
- Departamento de Bioquímica, Biologia Molecular e Inmunología III, Universidad de Granada, Granada, Spain
| | - Francisco Ruiz-Cabello
- Departamento de Análisis Clínicos, Hospital Universitario Virgen de las Nieves, Avd. Fuerzas Armadas 2, 18014 Granada, Spain
- Departamento de Bioquímica, Biologia Molecular e Inmunología III, Universidad de Granada, Granada, Spain
| | - Federico Garrido
- Departamento de Análisis Clínicos, Hospital Universitario Virgen de las Nieves, Avd. Fuerzas Armadas 2, 18014 Granada, Spain
- Departamento de Bioquímica, Biologia Molecular e Inmunología III, Universidad de Granada, Granada, Spain
| | - Angel Garcia-Lora
- Departamento de Análisis Clínicos, Hospital Universitario Virgen de las Nieves, Avd. Fuerzas Armadas 2, 18014 Granada, Spain
| |
Collapse
|
24
|
Leth-Larsen R, Lund R, Hansen HV, Laenkholm AV, Tarin D, Jensen ON, Ditzel HJ. Metastasis-related plasma membrane proteins of human breast cancer cells identified by comparative quantitative mass spectrometry. Mol Cell Proteomics 2009; 8:1436-49. [PMID: 19321434 DOI: 10.1074/mcp.m800061-mcp200] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The spread of cancer cells from a primary tumor to form metastasis at distant sites is a complex multistep process. The cancer cell proteins and plasma membrane proteins in particular involved in this process are poorly defined, and a study of the very early events of the metastatic process using clinical samples or in vitro assays is not feasible. We have used a unique model system consisting of two isogenic human breast cancer cell lines that are equally tumorigenic in mice; but although one gives rise to metastasis, the other disseminates single cells that remain dormant at distant organs. Membrane purification and comparative quantitative LC-MS/MS proteomics identified 13 membrane proteins that were expressed at higher levels and three that were underexpressed in the metastatic compared with the non-metastatic cell line from a total of 1919 identified protein entries. Among the proteins were ecto-5'-nucleotidase (CD73), NDRG1, integrin beta1, CD44, CD74, and major histocompatibility complex class II proteins. The altered expression levels of proteins identified by LC-MS/MS were validated using flow cytometry, Western blotting, and immunocyto- and immunohistochemistry. Analysis of clinical breast cancer biopsies demonstrated a significant correlation between high ecto-5'-nucleotidase and integrin beta1 expression and poor outcome, measured as tumor spread or distant recurrence within a 10-year follow-up. Further the tissue analysis suggested that NDRG1, HLA-DRalpha, HLA-DRbeta, and CD74 were associated with the ER(-)/PR(-) phenotype represented by the two cell lines. The study demonstrates a quantitative and comparative proteomics strategy to identify clinically relevant key molecules in the early events of metastasis, some of which may prove to be potential targets for cancer therapy.
Collapse
Affiliation(s)
- Rikke Leth-Larsen
- Medical Biotechnology Center, Institute of Medical Biology, University of Southern Denmark, Winsloewparken 25.3, 5000 Odense C, Denmark
| | | | | | | | | | | | | |
Collapse
|
25
|
Cycon KA, Clements JL, Holtz R, Fuji H, Murphy SP. The immunogenicity of L1210 lymphoma clones correlates with their ability to function as antigen-presenting cells. Immunology 2009; 128:e641-51. [PMID: 19740325 DOI: 10.1111/j.1365-2567.2009.03052.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Major histocompatibility complex class II (MHCII) antigen expression is directly correlated with immunogenicity, and inversely correlated with tumorigenicity, in clones of the L1210 murine B lymphoma. Moreover, loss of MHCII expression on human diffuse large B-cell lymphoma is associated with dramatic decreases in patient survival. Thus, the role that MHCII antigens play in the progression of B-cell lymphomas is clinically important. In this study, we investigated the basis for the immunogenicity of MHCII(+) L1210 clones. Immunogenic, but not tumorigenic L1210 clones stimulated the proliferation of naïve T cells and their interleukin (IL)-2 production, which indicates that the immunogenic clones can function as antigen-presenting cells (APCs). However, subclonal variants of the immunogenic L1210 clones, which form tumours slowly in mice, could not activate T cells. The costimulatory molecules B7-1, B7-2 and CD40 were expressed on the immunogenic L1210 clones, but not the tumorigenic clones. Importantly, the tumour-forming subclonal variants expressed MHCII and B7-1, but lacked B7-2 and CD40. These results suggest that MHCII and B7-1 expression on L1210 cells is insufficient to activate naïve T cells, and, furthermore, loss of B7-2 and/or CD40 expression contributes to the decreased immunogenicity of L1210 subclones. Blocking B7-1 or B7-2 function on immunogenic L1210 cells reduced their capacity to activate naïve T cells. Furthermore, incubation of immunogenic L1210 cells with CD40 antibodies significantly enhanced APC function. Therefore, the immunogenicity of L1210 cells directly correlates (i) with their ability to stimulate naïve T cells, and (ii) with the concomitant expression of MHCII, B7-1, B7-2, and CD40.
Collapse
Affiliation(s)
- Kelly A Cycon
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | | | | | | |
Collapse
|
26
|
Mittendorf EA, Holmes JP, Murray JL, von Hofe E, Peoples GE. CD4+T cells in antitumor immunity: utility of an Ii-Key HER2/neu hybrid peptide vaccine (AE37). Expert Opin Biol Ther 2008; 9:71-8. [DOI: 10.1517/14712590802614538] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
27
|
Campoli M, Ferrone S. HLA antigen changes in malignant cells: epigenetic mechanisms and biologic significance. Oncogene 2008; 27:5869-85. [PMID: 18836468 DOI: 10.1038/onc.2008.273] [Citation(s) in RCA: 313] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Changes in classical and nonclassical HLA class I as well as HLA class II antigens have been identified in malignant lesions. These changes, which are described in this review are believed to play a major role in the clinical course of the disease since both HLA class I and class II antigens are critical to the interaction between tumor cells and components of both innate and adaptive immune system. Abnormalities in HLA antigen expression in malignant cells, which range in frequency from 0-90%, are caused by distinct mechanisms. They include defects in beta(2)-microglobulin (beta(2)m) synthesis, loss of the gene(s) encoding HLA antigen heavy chain(s), mutations, which inhibit HLA antigen heavy chain transcription or translation, defects in the regulatory mechanisms, which control HLA antigen expression and/or abnormalities in one or more of the antigen processing, machinery (APM) components. More recently, epigenetic events associated with tumor development and progression have been found to underlie changes in HLA antigen, APM component, costimulatory molecule and tumor antigen (TA) expression in malignant cells. The types of epigenetic modifications that may occur in normal and malignant cells as well as their role in changes in HLA antigen expression by malignant cells have been reviewed. The epigenetic events associated with alterations in HLA antigen expression may be clinically relevant as, in some cases, they have been shown to impair the recognition of tumor cells by components of the adaptive immune system. The functional relevance and potential clinical significance of these epigenetic alterations have been addressed. Finally, unlike genetic alterations, epigenetic modifications can, in some cases, be reversed with pharmacologic agents that induce DNA hypomethylation or inhibit histone deacetylation. Therefore, strategies to overcome epigenetic modifications underlying changes in HLA antigen expression in malignant cells have been discussed.
Collapse
Affiliation(s)
- M Campoli
- Department of Dermatology, University of Colorado Health Science Center, Denver, CO, USA
| | | |
Collapse
|
28
|
Sousa JF, Espreafico EM. Suppression subtractive hybridization profiles of radial growth phase and metastatic melanoma cell lines reveal novel potential targets. BMC Cancer 2008; 8:19. [PMID: 18211678 PMCID: PMC2267200 DOI: 10.1186/1471-2407-8-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Accepted: 01/22/2008] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Melanoma progression occurs through three major stages: radial growth phase (RGP), confined to the epidermis; vertical growth phase (VGP), when the tumor has invaded into the dermis; and metastasis. In this work, we used suppression subtractive hybridization (SSH) to investigate the molecular signature of melanoma progression, by comparing a group of metastatic cell lines with an RGP-like cell line showing characteristics of early neoplastic lesions including expression of the metastasis suppressor KISS1, lack of alphavbeta3-integrin and low levels of RHOC. METHODS Two subtracted cDNA collections were obtained, one (RGP library) by subtracting the RGP cell line (WM1552C) cDNA from a cDNA pool from four metastatic cell lines (WM9, WM852, 1205Lu and WM1617), and the other (Met library) by the reverse subtraction. Clones were sequenced and annotated, and expression validation was done by Northern blot and RT-PCR. Gene Ontology annotation and searches in large-scale melanoma expression studies were done for the genes identified. RESULTS We identified 367 clones from the RGP library and 386 from the Met library, of which 351 and 368, respectively, match human mRNA sequences, representing 288 and 217 annotated genes. We confirmed the differential expression of all genes selected for validation. In the Met library, we found an enrichment of genes in the growth factors/receptor, adhesion and motility categories whereas in the RGP library, enriched categories were nucleotide biosynthesis, DNA packing/repair, and macromolecular/vesicular trafficking. Interestingly, 19% of the genes from the RGP library map to chromosome 1 against 4% of the ones from Met library. CONCLUSION This study identifies two populations of genes differentially expressed between melanoma cell lines from two tumor stages and suggests that these sets of genes represent profiles of less aggressive versus metastatic melanomas. A search for expression profiles of melanoma in available expression study databases allowed us to point to a great potential of involvement in tumor progression for several of the genes identified here. A few sequences obtained here may also contribute to extend annotated mRNAs or to the identification of novel transcripts.
Collapse
Affiliation(s)
- Josane F Sousa
- Department of Cellular and Molecular Biology and Pathogenic Bioagents of Faculty of Medicine of Ribeirão Preto - University of São Paulo, Ribeirão Preto, SP, Brazil.
| | | |
Collapse
|
29
|
Jo YS, Lee JC, Li S, Choi YS, Bai YS, Kim YJ, Lee IS, Rha SY, Ro HK, Kim JM, Shong M. Significance of the expression of major histocompatibility complex class II antigen, HLA-DR and -DQ, with recurrence of papillary thyroid cancer. Int J Cancer 2007; 122:785-90. [DOI: 10.1002/ijc.23167] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
30
|
Felsani A, Mileo AM, Maresca V, Picardo M, Paggi MG. New technologies used in the study of human melanoma. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 261:247-86. [PMID: 17560284 DOI: 10.1016/s0074-7696(07)61006-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The amount of information on tumor biology has expanded enormously, essentially due to the completion of the human genome sequencing and to the application of new technologies that represent an exciting breakthrough in molecular analysis. Often these data spring from experimental procedures, such as a serial analysis of gene expression (SAGE) and DNA microarrays, which cannot be defined as hypothesis-driven: it may appear to be a "brute force" approach through which no information can be directly generated concerning the specific functions of selected genes in a definite context. However, interesting results are fruitfully generated, and thus it is important to consider the enormous potential these new technologies possess and to learn how to apply this novel form of knowledge in the emerging field of molecular medicine. This review, after a limited outline regarding several classic aspects of human cutaneous melanoma biology, genetics, and clinical approaches, will focus on the proficient use of up-to-date technologies in the study of the neoplastic disease and on their capability to provide effective support to conventional approaches in melanoma diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Armando Felsani
- CNR, Istituto di Neurobiologia e Medicina Molecolare, 00143 Rome, Italy
| | | | | | | | | |
Collapse
|
31
|
Sheridan C, Sadaria M, Bhat-Nakshatri P, Goulet R, Edenberg HJ, McCarthy BP, Chang CH, Srour EF, Nakshatri H. Negative regulation of MHC class II gene expression by CXCR4. Exp Hematol 2006; 34:1085-92. [PMID: 16863915 DOI: 10.1016/j.exphem.2006.03.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Indexed: 11/22/2022]
Abstract
OBJECTIVE CXCR4 is overexpressed in 23 types of cancers of both hematopoietic and nonhematopoietic origin. Based on the known role of CXCR4 and its ligand CXCL12 in homing of hematopoietic cells, CXCR4 is likely to play a role in metastasis. We have initiated a study aimed at dissecting additional functions of CXCR4 in cancer cells, particularly in relation to the immune system. MATERIALS AND METHODS RNA from CXCR4+ and CXCR4- subpopulations of MDA-MB-231 breast cancer cells was subjected to microarray analysis. Cell surface expression of CXCR4 and MHC class II proteins were determined by flow cytometry. Real-time PCR was used for measuring mRNA levels of MHC class II and CIITA, the master regulator of MHC class II gene expression. RESULTS 1988 genes were differentially expressed (p < 0.001) between CXCR4+ and CXCR4- cells. The expression of class II genes HLA-DPalpha1, HLA-DQbeta1, HLA-DRalpha, HLA-DRbeta1, HLA-DRbeta3, and CD74 was lower by 2.6-fold to eightfold in CXCR4+ cells compared to CXCR4- cells. Basal and IFN-gamma-inducible HLA-DR mRNA and protein levels were lower in CXCR4+ cells than in CXCR4- cells. HLA-DR mRNA expression in both cell types was reduced by CXCL12; the ability of CXCL12 to reduce HLA-DR was lower in cells expressing short interfering RNA against CXCR4. PKA inhibitor H89 and the SRC kinase inhibitor PP2 increased HLA-DR expression in CXCR4+ cells. The basal but not IFN-gamma-inducible expression of CIITA was 2.5-fold higher in CXCR4- cells compared to CXCR4+ cells. CD34+/CD38- hematopoietic cells from the human bone marrow contain a distinct CXCR4+/HLA-DR- subpopulation of cells. CONCLUSION CXCR4 may influence the immune system under physiologic and pathologic conditions through negative regulation of MHC class II expression, possibly through PKA and SRC kinase.
Collapse
Affiliation(s)
- Carol Sheridan
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ramirez-Montagut T, Chow A, Hirschhorn-Cymerman D, Terwey TH, Kochman AA, Lu S, Miles RC, Sakaguchi S, Houghton AN, van den Brink MRM. Glucocorticoid-induced TNF receptor family related gene activation overcomes tolerance/ignorance to melanoma differentiation antigens and enhances antitumor immunity. THE JOURNAL OF IMMUNOLOGY 2006; 176:6434-42. [PMID: 16709800 DOI: 10.4049/jimmunol.176.11.6434] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Glucocorticoid-induced TNF receptor family related protein (GITR) is present on many different cell types. Previous studies have shown that in vivo administration of an anti-GITR agonist mAb (DTA-1) inhibits regulatory T cells (Treg)-dependent suppression and enhances T cell responses. In this study, we show that administration of DTA-1 induces >85% tumor rejection in mice challenged with B16 melanoma. Rejection requires CD4+, CD8+, and NK1.1+ cells and is dependent on IFN-gamma and Fas ligand and independent of perforin. Depletion of Treg via anti-CD25 treatment does not induce B16 rejection, whereas 100% of the mice depleted of CD25+ cells and treated with DTA-1 reject tumors, indicating a predominant role of GITR on effector T cell costimulation rather than on Treg modulation. T cells isolated from DTA-1-treated mice challenged with B16 are specific against B16 and several melanoma differentiation Ags. These mice develop memory against B16, and a small proportion of them develop mild hypopigmentation. Consistent with previous studies showing that GITR stimulation increases Treg proliferation in vitro, we found in our model that GITR stimulation expanded the absolute number of FoxP3+ cells in vivo. Thus, we conclude that overall, GITR stimulation overcomes self-tolerance/ignorance and enhances T cell-mediated antitumor activity with minimal autoimmunity.
Collapse
MESH Headings
- Adjuvants, Immunologic/genetics
- Adjuvants, Immunologic/metabolism
- Adjuvants, Immunologic/physiology
- Adoptive Transfer
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/therapeutic use
- Antigens, Differentiation/immunology
- Antigens, Neoplasm
- Cell Line, Tumor
- Disease Progression
- Dose-Response Relationship, Immunologic
- Female
- Gene Expression Regulation, Neoplastic/immunology
- Glucocorticoid-Induced TNFR-Related Protein
- Graft Rejection
- Immune Tolerance/genetics
- Killer Cells, Natural/immunology
- Lymphocyte Depletion
- Melanoma, Experimental/genetics
- Melanoma, Experimental/immunology
- Melanoma, Experimental/prevention & control
- Melanoma-Specific Antigens
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Neoplasm Proteins/immunology
- Neoplasm Transplantation
- Receptors, Nerve Growth Factor/agonists
- Receptors, Nerve Growth Factor/genetics
- Receptors, Nerve Growth Factor/immunology
- Receptors, Nerve Growth Factor/metabolism
- Receptors, Tumor Necrosis Factor/agonists
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/immunology
- Receptors, Tumor Necrosis Factor/metabolism
- T-Lymphocyte Subsets/immunology
- Transcriptional Activation
Collapse
Affiliation(s)
- Teresa Ramirez-Montagut
- Department of Medicine and Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wang K, Nishimoto KP, Mehta RS, Nelson EL. An alternative flow cytometry strategy for peripheral blood dendritic cell enumeration in the setting of repetitive GM-CSF dosing. J Transl Med 2006; 4:18. [PMID: 16635268 PMCID: PMC1463012 DOI: 10.1186/1479-5876-4-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2006] [Accepted: 04/24/2006] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Enumeration of circulating peripheral blood dendritic cells (DCs) is complicated by the absence of a unique cell surface marker expressed on all DC subsets and by the use of various biological adjuvants to modulate the DC compartment, including granulocyte macrophage colony stimulating factor (GM-CSF). Common methods employ a cocktail of antibodies, typically including anti-CD14, to define a lineage negative, MHC class II positive, putative DC population. Reported flow cytometry protocols include highly variable gating strategies and DC identification criteria. Increasing appreciation of DC pleiomorphism, GM-CSF biology, and recognition of CD14 expression in some DC subsets led us to consider an alternative lineage cocktail to improve identification of the circulating DC pool. METHODS Standard whole blood staining with appropriate fluorochrome conjugated antibodies to MHC class II and either standard CD14 containing, or an alternate CD66acde containing, lineage cocktail was performed on samples obtained from normal donors and breast cancer patients before and after administration of dose-dense, cytotoxic chemotherapy with daily GM-CSF hematopoetic growth factor support. Putative DCs were enumerated by standard flow cytometry. Data set differences were evaluated using two tailed Mann-Whitney or Wilcoxon signed rank tests. Cellular morphology was examined in cell-sorted populations from post GM-CSF samples. RESULTS Use of either antibody cocktail defined comparably sized lineage negative, MHC class II positive populations in normal donors and at baseline in cancer patients. However, selection of lineage negative subsets with increasing MHC class II expression levels yielded larger putative DC populations identified with the alternate cocktail. Both cocktails yielded highly reproducible data. Use of the alternate cocktail: 1) yielded a putative DC population, post GM-CSF that was more homogenous and consistent with DCs, 2) resulted in less data variation across gating strategies, and 3) resulted in more uniform and concordant longitudinal data, consistent with established GM-CSF biological activity. CONCLUSION An alternative lineage negative cocktail substituting anti-CD66 antibody for anti-CD14 is a viable option for enumerating the circulating DC population, potentially more accurately defining the circulating DC pool by including CD14 positive immature DCs, and thus, may give more reliable data, particularly in the setting of sustained GM-CSF administration.
Collapse
Affiliation(s)
- Kehui Wang
- Department of Medicine, Division of Hematology/Oncology, School of Medicine, University of California, Irvine, USA
| | - Kevin P Nishimoto
- Department of Molecular Biology & Biochemistry, School of Biological Sciences, University of California, Irvine, USA
| | - Rita S Mehta
- Department of Medicine, Division of Hematology/Oncology, School of Medicine, University of California, Irvine, USA
| | - Edward L Nelson
- Department of Medicine, Division of Hematology/Oncology, School of Medicine, University of California, Irvine, USA
- Department of Molecular Biology & Biochemistry, School of Biological Sciences, University of California, Irvine, USA
- Center for Immunology, University of California, Irvine, USA
| |
Collapse
|
34
|
Reith W, LeibundGut-Landmann S, Waldburger JM. Regulation of MHC class II gene expression by the class II transactivator. Nat Rev Immunol 2005; 5:793-806. [PMID: 16200082 DOI: 10.1038/nri1708] [Citation(s) in RCA: 344] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
MHC class II molecules are pivotal for the adaptive immune system, because they guide the development and activation of CD4+ T helper cells. Fulfilling these functions requires that the genes encoding MHC class II molecules are transcribed according to a strict cell-type-specific and quantitatively modulated pattern. This complex gene-expression profile is controlled almost exclusively by a single master regulatory factor, which is known as the class II transactivator. As we discuss here, differential activation of the three independent promoters that drive expression of the gene encoding the class II transactivator ultimately determines the exquisitely regulated pattern of MHC class II gene expression.
Collapse
Affiliation(s)
- Walter Reith
- Department of Pathology and Immunology, University of Geneva Medical School, Centre Médical Universitaire, 1 Rue Michel-Servet, CH-1211, Geneva, Switzerland.
| | | | | |
Collapse
|
35
|
Knutson KL, Disis ML. Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunol Immunother 2005; 54:721-8. [PMID: 16010587 PMCID: PMC11032889 DOI: 10.1007/s00262-004-0653-2] [Citation(s) in RCA: 493] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Accepted: 11/11/2004] [Indexed: 10/25/2022]
Abstract
Historically, cancer-directed immune-based therapies have focused on eliciting a cytotoxic T cell (CTL) response, primarily due to the fact that CTL can directly kill tumors. In addition, many putative tumor antigens are intracellular proteins, and CTL respond to peptides presented in the context of MHC class I which are most often derived from intracellular proteins. Recently, increasing importance is being given to the stimulation of a CD4+ T helper cell (Th) response in cancer immunotherapy. Th cells are central to the development of an immune response by activating antigen-specific effector cells and recruiting cells of the innate immune system such as macrophages and mast cells. Two predominant Th cell subtypes exist, Th1 and Th2. Th1 cells, characterized by secretion of IFN-gamma and TNF-alpha, are primarily responsible for activating and regulating the development and persistence of CTL. In addition, Th1 cells activate antigen-presenting cells (APC) and induce limited production of the type of antibodies that can enhance the uptake of infected cells or tumor cells into APC. Th2 cells favor a predominantly humoral response. Particularly important during Th differentiation is the cytokine environment at the site of antigen deposition or in the local lymph node. Th1 commitment relies on the local production of IL-12, and Th2 development is promoted by IL-4 in the absence of IL-12. Specifically modulating the Th1 cell response against a tumor antigen may lead to effective immune-based therapies. Th1 cells are already widely implicated in the tissue-specific destruction that occurs during the pathogenesis of autoimmune diseases, such as diabetes mellitus and multiple sclerosis. Th1 cells directly kill tumor cells via release of cytokines that activate death receptors on the tumor cell surface. We now know that cross-priming of the tumor-specific response by potent APC is a major mechanism of the developing endogenous immune response; therefore, even intracellular proteins can be presented in the context of MHC class II. Indeed, recent studies demonstrate the importance of cross-priming in eliciting CTL. Many vaccine strategies aim to stimulate the Th response specific for a tumor antigen. Early clinical trials have shown that focus on the Th effector arm of the immune system can result in significant levels of both antigen-specific Th cells and CTL, the generation of long lasting immunity, and a Th1 phenotype resulting in the development of epitope spreading.
Collapse
Affiliation(s)
- K L Knutson
- Department of Immunology, Mayo Clinic College of Medicine, 342C Guggenheim Bldg., 200 First St. SW, Rochester, MN 55906, USA.
| | | |
Collapse
|
36
|
Matoba K, Iizuka N, Gondo T, Ishihara T, Yamada-Okabe H, Tamesa T, Takemoto N, Hashimoto K, Sakamoto K, Miyamoto T, Uchimura S, Hamamoto Y, Oka M. Tumor HLA-DR expression linked to early intrahepatic recurrence of hepatocellular carcinoma. Int J Cancer 2005; 115:231-40. [PMID: 15688398 DOI: 10.1002/ijc.20860] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The outcome of patients with hepatocellular carcinoma (HCC) remains poor because of the high frequency of intrahepatic recurrence (IHR), particularly early IHR within 1 year of hepatectomy. To search for genes involved in early IHR, we performed DNA microarray analysis in a training set of 33 HCCs and selected 46 genes linked to early IHR from approximately 6,000 genes by means of a supervised learning method. Gene selection was validated by a false discovery rate of 0.37%. The 46 genes included many immune response-related genes, which were all downregulated in HCCs with early IHR. Four of these genes (HLA-DRA, HLA-DRB1, HLA-DG and HLA-DQA), encoding MHC class II antigens, were coordinately downregulated in HCCs with early IHR compared to levels in HCCs with nonrecurrence. A cluster analysis reproduced expression patterns of the 4 MHC class II genes in 27 blinded HCC samples. To localize the major site of production of HLA-DR protein in the tumor, we used 50 frozen specimens from 50 HCCs. Immunofluorescence staining showed that HLA-DR protein levels in tumor cells, but not in stromal cells, were associated with the transcription levels of HLA-DRA determined by both DNA microarray analysis and real-time quantitative reverse transcription-PCR. Univariate analysis showed that tumor HLA-DR protein expression, pTNM stage and venous invasion were associated with early IHR. Multivariate analysis showed that tumor HLA-DR protein expression was one of the independent risk factors for early IHR, suggesting HLA-DR protein potential as a biomarker and a molecular target for therapeutic intervention.
Collapse
MESH Headings
- Aged
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- HLA-DR Antigens/genetics
- HLA-DR Antigens/metabolism
- Hepatic Artery/pathology
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/metabolism
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Male
- Middle Aged
- Neoplasm Invasiveness/pathology
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Staging
- Oligonucleotide Array Sequence Analysis
- Prognosis
- Reverse Transcriptase Polymerase Chain Reaction
- Risk Factors
Collapse
Affiliation(s)
- Katsuhiro Matoba
- Department of Surgery II, Yamaguchi University School of Medicine, Ube, Yamaguchi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Holling TM, Van der Stoep N, Van den Elsen PJ. Epigenetic control of CIITA expression in leukemic T cells. Biochem Pharmacol 2004; 68:1209-13. [PMID: 15313418 DOI: 10.1016/j.bcp.2004.03.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Accepted: 03/26/2004] [Indexed: 10/26/2022]
Affiliation(s)
- Tjadine M Holling
- Division of Molecular Biology, Department of Immunohematology and Bloodtransfusion, Leiden University Medical Center, Building 1, E3-Q, Albinusdreef 2, 2333 ZA, The Netherlands
| | | | | |
Collapse
|
38
|
Iizuka N, Oka M. CIITA methylation and decreased levels of HLA-DR in tumour progression. Br J Cancer 2004; 91:813; author reply 814-5. [PMID: 15280925 PMCID: PMC2364787 DOI: 10.1038/sj.bjc.6602045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- N Iizuka
- Departments of Surgery II, Yamaguchi University School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
- The Department of Bioregulatory Function, Yamaguchi University School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan. E-mail:
| | - M Oka
- Departments of Surgery II, Yamaguchi University School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| |
Collapse
|
39
|
Krishnakumar S, Sundaram A, Abhyankar D, Krishnamurthy V, Shanmugam MP, Gopal L, Sharma T, Biswas J. Major histocompatibility antigens and antigen-processing molecules in retinoblastoma. Cancer 2004; 100:1059-69. [PMID: 14983503 DOI: 10.1002/cncr.20062] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Malignant transformation of cells is frequently associated with abnormalities in human leukocyte antigen (HLA) expression. These abnormalities may play a role in the clinical course of the disease, because HLAs mediate interactions of tumor cells with cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells. Retinoblastoma is the most common intraocular malignant tumor in childhood and is characterized by direct spread to the optic nerve and orbit as well as hematogeneous and lymphatic spread. Little is known about the role of HLA expression in the progression of this malignant disease. METHODS HLA Class I antigen, beta2-microglobulin (beta2-m), HLA Class II antigens, and the antigen-processing molecules (APMs) of the HLA Class I pathway, including proteasomal subunits (low-molecular mass polypeptide 2 [LMP-2] and LMP-10), the transporter-associated protein (TAP-1) subunit, the binding protein tapasin, and the chaperone molecule calnexin, were studied in 30 archival retinoblastoma specimens by immunohistochemistry. Immunoanalysis was performed based on the International Histocompatibility Working Group Project Description. RESULTS HLA Class I antigen, beta2-m, HLA Class II antigen, and APMs were positive in 12 tumors with no invasion and were decreased in 13 tumors with choroidal and optic nerve invasion. The difference in HLA and APM expression between the 2 groups was statistically significant (P < 0.001). CONCLUSIONS Decreased expression of HLA was observed in aggressive tumors and in poorly differentiated tumors. The current findings support a role for both CTLs and NK cell-mediated control of tumor growth in the clinical course of retinoblastoma.
Collapse
|
40
|
Altomonte M, Visintin A, Tecce R, Leonardi A, Calabro L, Fonsatti E, Pucillo C, Maio M. Targeting of HLA-DR molecules transduces agonistic functional signals in cutaneous melanoma. J Cell Physiol 2004; 200:272-6. [PMID: 15174097 DOI: 10.1002/jcp.20015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The role of human leukocyte antigens (HLA) class II molecules in transducing intracellular signals in immune cells is well established. Solid tumors of different histotype can also express HLA class II antigens; however, their intracellular signaling ability is essentially unknown. Due to the frequent expression of HLA class II molecules in primary and metastatic lesions, cutaneous melanoma was utilized to investigate whether the engagement of HLA-DR molecules transduces functional intracellular signal(s). Triggering of HLA-DR molecules by the anti-HLA-DR monoclonal antibody (mAb) L243 induced a significant (P < 0.05) and dose-dependent growth-inhibition of metastatic melanoma cells Mel 120, as well as their homotypic aggregation. Furthermore, an increase in tyrosine phosphorylation of multiple cellular proteins with a molecular weight ranging from 66 to 130 kD, including p125 focal adhesion kinase, was observed. Lastly, the engagement of HLA-DR molecules by mAb L243 inhibited activator protein-1-DNA binding. Thus, HLA-DR molecules expressed on melanoma cells can transduce functional intracellular signals. This finding is consistent with evidences obtained in hematological malignancies, and suggests the potential usefulness of HLA-DR molecules to set-up new approaches of targeted therapy in metastatic melanoma.
Collapse
Affiliation(s)
- Maresa Altomonte
- Cancer Bioimmunotherapy Unit, Department of Medical Oncology, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano, Italy.
| | | | | | | | | | | | | | | |
Collapse
|