1
|
Looijenga LH, Van der Kwast TH, Grignon D, Egevad L, Kristiansen G, Kao CS, Idrees MT. Report From the International Society of Urological Pathology (ISUP) Consultation Conference on Molecular Pathology of Urogenital Cancers: IV: Current and Future Utilization of Molecular-Genetic Tests for Testicular Germ Cell Tumors. Am J Surg Pathol 2020; 44:e66-e79. [PMID: 32205480 PMCID: PMC7289140 DOI: 10.1097/pas.0000000000001465] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The International Society of Urological Pathology (ISUP) organized a Consultation Conference in March 2019 dealing with applications of molecular pathology in Urogenital Pathology, including testicular tumors (with a focus on germ cell tumors [GCTs]), preceded by a survey among its members to get insight into current practices in testicular germ cell tumor (TGCT) diagnostics and adoption of the ISUP immunohistochemical guidelines published in 2014. On the basis of the premeeting survey, the most commonly used immunomarker panel includes OCT3/4, placental alkaline phosphate, D2-40, SALL4, CD117, and CD30 for GCTs and the documentation of germ cell neoplasia in situ (GCNIS). Molecular testing, specifically 12p copy gain, is informative to distinguish non-GCNIS versus GCNIS related GCTs, and establishing germ cell origin of tumors both in the context of primary and metastatic lesions. Other molecular methodologies currently available but not widely utilized for TGCTs include genome-wide and targeted approaches for specific genetic anomalies, P53 mutations, genomic MDM2 amplification, and detection of the p53 inactivating miR-371a-3p. The latter also holds promise as a serum marker for malignant TGCTs. This manuscript provides an update on the classification of TGCTs, and describes the current and future role of molecular-genetic testing. The following recommendations are made: (1) Presence of GCNIS should be documented in all cases along with extent of spermatogenesis; (2) Immunohistochemical staining is optional in the following scenarios: identification of GCNIS, distinguishing embryonal carcinoma from seminoma, confirming presence of yolk sac tumor and/or choriocarcinoma, and differentiating spermatocytic tumor from potential mimics; (3) Detection of gain of the short arm of chromosome 12 is diagnostic to differentiate between non-GCNIS versus GCNIS related GCTs and supportive to the germ cell origin of both primary and metastatic tumors.
Collapse
Affiliation(s)
| | | | | | - Lars Egevad
- Department of Oncology and Pathology, Karolinska Institutet Sweden, Solna, Sweden
| | - Glen Kristiansen
- Department of Pathology, University Hospital Bonn, Bonn, Germany
| | - Chia-Sui Kao
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | | |
Collapse
|
2
|
Integrated Molecular Characterization of Testicular Germ Cell Tumors. Cell Rep 2019; 23:3392-3406. [PMID: 29898407 PMCID: PMC6075738 DOI: 10.1016/j.celrep.2018.05.039] [Citation(s) in RCA: 287] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 03/09/2018] [Accepted: 05/14/2018] [Indexed: 12/11/2022] Open
Abstract
We studied 137 primary testicular germ cell tumors (TGCTs) using high-dimensional assays of genomic, epigenomic, transcriptomic, and proteomic features. These tumors exhibited high aneuploidy and a paucity of somatic mutations. Somatic mutation of only three genes achieved significance-KIT, KRAS, and NRAS-exclusively in samples with seminoma components. Integrated analyses identified distinct molecular patterns that characterized the major recognized histologic subtypes of TGCT: seminoma, embryonal carcinoma, yolk sac tumor, and teratoma. Striking differences in global DNA methylation and microRNA expression between histology subtypes highlight a likely role of epigenomic processes in determining histologic fates in TGCTs. We also identified a subset of pure seminomas defined by KIT mutations, increased immune infiltration, globally demethylated DNA, and decreased KRAS copy number. We report potential biomarkers for risk stratification, such as miRNA specifically expressed in teratoma, and others with molecular diagnostic potential, such as CpH (CpA/CpC/CpT) methylation identifying embryonal carcinomas.
Collapse
|
3
|
Predicting Gonadal Germ Cell Cancer in People with Disorders of Sex Development; Insights from Developmental Biology. Int J Mol Sci 2019; 20:ijms20205017. [PMID: 31658757 PMCID: PMC6834166 DOI: 10.3390/ijms20205017] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/03/2019] [Accepted: 10/05/2019] [Indexed: 01/03/2023] Open
Abstract
The risk of gonadal germ cell cancer (GGCC) is increased in selective subgroups, amongst others, defined patients with disorders of sex development (DSD). The increased risk is due to the presence of part of the Y chromosome, i.e., GonadoBlastoma on Y chromosome GBY region, as well as anatomical localization and degree of testicularization and maturation of the gonad. The latter specifically relates to the germ cells present being at risk when blocked in an embryonic stage of development. GGCC originates from either germ cell neoplasia in situ (testicular environment) or gonadoblastoma (ovarian-like environment). These precursors are characterized by presence of the markers OCT3/4 (POU5F1), SOX17, NANOG, as well as TSPY, and cKIT and its ligand KITLG. One of the aims is to stratify individuals with an increased risk based on other parameters than histological investigation of a gonadal biopsy. These might include evaluation of defined susceptibility alleles, as identified by Genome Wide Association Studies, and detailed evaluation of the molecular mechanism underlying the DSD in the individual patient, combined with DNA, mRNA, and microRNA profiling of liquid biopsies. This review will discuss the current opportunities as well as limitations of available knowledge in the context of predicting the risk of GGCC in individual patients.
Collapse
|
4
|
Selfe J, Shipley JM. IGF signalling in germ cells and testicular germ cell tumours: roles and therapeutic approaches. Andrology 2019; 7:536-544. [PMID: 31179642 PMCID: PMC6771568 DOI: 10.1111/andr.12658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/01/2019] [Accepted: 05/05/2019] [Indexed: 02/06/2023]
Abstract
The insulin-like growth factor (IGF) axis plays key roles in normal tissue growth and development as well as in the progression of several tumour types and their subsequent growth and progression to a metastatic phenotype. This review explores the role of IGF system in normal germ cell development and function in addition to examining the evidence for deregulation of IGF signalling in cancer, with particular relevance to evidence supporting a role in testicular germ cell tumours (TGCTs). Despite the clear preclinical rationale for targeting the IGF axis in cancer, there has been a lack of progress in identifying which patients may benefit from such therapy. Future employment of agents targeting the IGF pathway is expected to concentrate on their use in combination with other treatments to prevent resistance and exploit their potential as chemo- and radiosensitizers.
Collapse
Affiliation(s)
- J Selfe
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - J M Shipley
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK
| |
Collapse
|
5
|
García-Díez I, Hernández-Muñoz I, Hernández-Ruiz E, Nonell L, Puigdecanet E, Bódalo-Torruella M, Andrades E, Pujol RM, Toll A. Transcriptome and cytogenetic profiling analysis of matched in situ/invasive cutaneous squamous cell carcinomas from immunocompetent patients. Genes Chromosomes Cancer 2019; 58:164-174. [DOI: 10.1002/gcc.22712] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 11/01/2018] [Accepted: 11/22/2018] [Indexed: 12/17/2022] Open
Affiliation(s)
- Irene García-Díez
- Department of Dermatology; Hospital del Mar, Universitat Autònoma de Barcelona (UAB); Barcelona Spain
- Group of Inflammatory and Neoplastic Dermatological Diseases, IMIM (Hospital del Mar Medical Research Institute); Barcelona Spain
| | - Inmaculada Hernández-Muñoz
- Group of Inflammatory and Neoplastic Dermatological Diseases, IMIM (Hospital del Mar Medical Research Institute); Barcelona Spain
| | - Eugenia Hernández-Ruiz
- Department of Dermatology; Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB); Barcelona Spain
| | - Lara Nonell
- Microarray Analysis Service, IMIM (Hospital del Mar Medical Research Institute); Barcelona Spain
| | - Eulàlia Puigdecanet
- Microarray Analysis Service, IMIM (Hospital del Mar Medical Research Institute); Barcelona Spain
| | - Marta Bódalo-Torruella
- Microarray Analysis Service, IMIM (Hospital del Mar Medical Research Institute); Barcelona Spain
| | - Evelyn Andrades
- Group of Inflammatory and Neoplastic Dermatological Diseases, IMIM (Hospital del Mar Medical Research Institute); Barcelona Spain
| | - Ramon M. Pujol
- Department of Dermatology; Hospital del Mar, Universitat Autònoma de Barcelona (UAB); Barcelona Spain
- Group of Inflammatory and Neoplastic Dermatological Diseases, IMIM (Hospital del Mar Medical Research Institute); Barcelona Spain
| | - Agustí Toll
- Department of Dermatology; Hospital del Mar, Universitat Autònoma de Barcelona (UAB); Barcelona Spain
- Group of Inflammatory and Neoplastic Dermatological Diseases, IMIM (Hospital del Mar Medical Research Institute); Barcelona Spain
| |
Collapse
|
6
|
Selfe J, Goddard NC, McIntyre A, Taylor KR, Renshaw J, Popov SD, Thway K, Summersgill B, Huddart RA, Gilbert DC, Shipley JM. IGF1R signalling in testicular germ cell tumour cells impacts on cell survival and acquired cisplatin resistance. J Pathol 2018; 244:242-253. [PMID: 29160922 PMCID: PMC5817239 DOI: 10.1002/path.5008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 11/07/2017] [Accepted: 11/14/2017] [Indexed: 12/03/2022]
Abstract
Testicular germ cell tumours (TGCTs) are the most frequent malignancy and cause of death from solid tumours in the 20‐ to 40‐year age group. Although most cases show sensitivity to cis‐platinum‐based chemotherapy, this is associated with long‐term toxicities and chemo‐resistance. Roles for receptor tyrosine kinases other than KIT are largely unknown in TGCT. We therefore conducted a phosphoproteomic screen and identified the insulin growth factor receptor‐1 (IGF1R) as both highly expressed and activated in TGCT cell lines representing the nonseminomatous subtype. IGF1R was also frequently expressed in tumour samples from patients with nonseminomas. Functional analysis of cell line models showed that long‐term shRNA‐mediated IGF1R silencing leads to apoptosis and complete ablation of nonseminoma cells with active IGF1R signalling. Cell lines with high levels of IGF1R activity also showed reduced AKT signalling in response to decreased IGF1R expression as well as sensitivity to the small‐molecule IGF1R inhibitor NVP‐AEW541. These results were in contrast to those in the seminoma cell line TCAM2 that lacked IGF1R signalling via AKT and was one of the two cell lines least sensitive to the IGF1R inhibitor. The dependence on IGF1R activity in the majority of nonseminomas parallels the known role of IGF signalling in the proliferation, migration, and survival of primordial germ cells, the putative cell of origin for TGCT. Upregulation of IGF1R expression and signalling was also found to contribute to acquired cisplatin resistance in an in vitro nonseminoma model, providing a rationale for targeting IGF1R in cisplatin‐resistant disease. © 2017 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Joanna Selfe
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, London, UK
| | - Neil C Goddard
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, London, UK
| | - Alan McIntyre
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, London, UK
| | - Kathryn R Taylor
- Glioma Team, Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, London, UK
| | - Jane Renshaw
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, London, UK
| | - Sergey D Popov
- Glioma Team, Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, London, UK
| | - Khin Thway
- Sarcoma Unit, Department of Histopathology, The Royal Marsden NHS Foundation Trust, London, UK
| | - Brenda Summersgill
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, London, UK
| | - Robert A Huddart
- Department of Clinical Oncology, The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - Duncan C Gilbert
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, London, UK.,Sussex Cancer Centre, Royal Sussex County Hospital, Brighton, UK
| | - Janet M Shipley
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, London, UK
| |
Collapse
|
7
|
ZHANG YONG, SU YANLIN, LI LESAI, YANG ZHI, CHEN SI, XIONG JIE, FU XIAOHUA, PENG XIAONING. Mouse dead end 1-β interacts with c-Jun and stimulates activator protein 1 transactivation. Mol Med Rep 2015; 11:1701-7. [PMID: 25405725 PMCID: PMC4270339 DOI: 10.3892/mmr.2014.2950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 05/16/2014] [Indexed: 01/16/2023] Open
Abstract
Dead end 1 (DND1), important for maintaining the viability of primordial germ cells, is the first protein containing an RNA recognition motif that has been directly implicated as a heritable cause of spontaneous tumorigenesis. In the present study, c-Jun was identified through yeast two-hybrid screening of a 10.5-day old mouse embryo cDNA library as one of the proteins which interact with DND1-β. The interaction between DND1-β and c-Jun was demonstrated to occur by glutathione S‑transferase pull‑down and co-immunoprecipitation. Using confocal microscopy, DND1-β was found to be specifically expressed in GC-1 spermatogonia cells, mainly in the nuclei. When transfected into GC-1 cells, DND1-β and c-Jun were demonstrated to be co-localized principally in the nuclei. Furthermore, in a dual luciferase reporter assay, the transcriptional activity of activator protein 1 was demonstrated to be significantly increased by co-transfection with DND1-β and c-Jun plasmids in GC-1 cells. The identification and confirmation of an additional protein interacting with DND1-β facilitates the investigation of the functions and molecular mechanisms of DND1.
Collapse
Affiliation(s)
- YONG ZHANG
- Department of Internal Medicine, College of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - YAN-LIN SU
- Department of Internal Medicine, College of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - LE-SAI LI
- Department of Gynecologic Oncology, Cancer Hospital of Xiangya School of Medicine of Central South University, Changsha, Hunan 410013, P.R. China
| | - ZHI YANG
- Department of Internal Medicine, College of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - SI CHEN
- Department of Internal Medicine, College of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - JIE XIONG
- Department of Internal Medicine, College of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - XIAO-HUA FU
- Department of Internal Medicine, College of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - XIAO-NING PENG
- Department of Internal Medicine, College of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
8
|
Huddart R. New insight into the aetiology of testicular germ cell tumours. Eur Urol 2014; 67:702-3. [PMID: 25497430 DOI: 10.1016/j.eururo.2014.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 11/15/2014] [Indexed: 11/25/2022]
Affiliation(s)
- Robert Huddart
- Department of Radiotherapy, The Institute of Cancer Reasearch and The Royal Marsden Hospital, Sutton, UK.
| |
Collapse
|
9
|
Silveira SM, da Cunha IW, Marchi FA, Busso AF, Lopes A, Rogatto SR. Genomic screening of testicular germ cell tumors from monozygotic twins. Orphanet J Rare Dis 2014; 9:181. [PMID: 25424124 PMCID: PMC4254261 DOI: 10.1186/s13023-014-0181-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 11/04/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Testicular germ cell tumors (TGCTs) account for 1-2% of all tumors in young and middle aged men. A 75-fold increase in TCGT development has been reported for monozygotic (MZ) twins. Therefore, the occurrence of simultaneous tumors in MZ twins emphasizes the importance of genetic factors that influence the risk of developing these tumors. Genomic screening was performed for one family containing MZ twins with testicular germ cell tumors, in order to define alterations associated with risk of tumor development. METHODS Copy number alterations were evaluated using array-CGH (4x44K, Agilent Technologies) in one seminoma and one embryonal carcinoma (EC) from MZ twins. In addition, genomic alterations from the tumors and peripheral blood cells of the twins were compared to the parental genomes via their peripheral blood cells. RESULTS Embryonal carcinoma (Twin-1 t) presented a lower frequency of genomic alterations compared to the seminoma (Twin-2 t). One minimal common region of loss was observed in 9p13.1-p12 in the comparison between DNA from blood samples for Twin-1 and Twin-2. In this region is mapped the CNTNAP3 gene which was confirmed as involved in losses by qPCR. Comparative analysis of novel CNVs between the Twin-1 t and Twin-2 t showed five minimal common regions involving gain at chromosomes 12 (12p12.3-p11.1 and 12p13.33-p12.3), while losses were observed at 10p15.3-p15.2, 13q21.1-q21.2 and 15q11.1-q11.2. In addition, one exclusive rare copy number alteration was detected in Twin-1 t and Twin-2 t, and 19 novel alterations were identified in the Twin-2 t. CONCLUSION Distinct genomic profiles for MZ twins with phenotypically different TGCT were described. Of particular interest, 12p gains were detected exclusively in tumor samples. In peripheral blood samples, loss of 9p13.1-p12 was the unique novel CNV shared by the twins, confirming the involvement of CNTNAP3 gene in TGCTs development. Although similar CNV profiles were shared by both the peripheral blood and tumor samples of the twins, tumor-specific CNV loci were identified for seminoma and non-seminomatous tumors. These findings suggest the presence of de novo germline structural alterations and TGCT predisposition.
Collapse
Affiliation(s)
| | | | - Fabio Albuquerque Marchi
- Institute of Mathematics and Statistics, Inter-Institutional Program on Bioinformatics, USP, São Paulo, Brazil.
| | | | - Ademar Lopes
- Nucleus of Sarcoma, Department of Pelvic Surgery, A.C. Camargo Cancer Center, São Paulo, Brazil.
| | - Silvia Regina Rogatto
- Neogene Laboratory, CIPE, A. C. Camargo Cancer Center, São Paulo, Brazil. .,Department of Urology, Faculty of Medicine, UNESP, Botucatu, São Paulo, Brazil.
| |
Collapse
|
10
|
Combined analysis of copy number alterations by single-nucleotide polymorphism array and MYC status in non-metastatic breast cancer patients: comparison according to the circulating tumor cell status. Tumour Biol 2014; 36:711-8. [PMID: 25286758 DOI: 10.1007/s13277-014-2668-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 09/22/2014] [Indexed: 10/24/2022] Open
Abstract
Recent technological advances have made it possible to detect circulating tumor cells (CTCs) as a prognostic marker in operable breast cancer patients. Whether the presence of CTCs in cancer patients correlates with molecular alterations in the primary tumor has not been widely explored. We identified 14 primary breast cancer specimens with known CTC status, in order to evaluate the presence of differential genetic aberrations by using SNP array assay. There was a global increase of altered genome, CNA, and copy-neutral loss of heterozygosity (cn-LOH) observed in the CTC-positive (CTC(+)) versus CTC-negative (CTC(-)) cases. As the preliminary results showed a higher proportion of copy number alteration (CNA) at 8q24 (MYC loci) and the available evidence supporting the role of MYC in the processes cancer metastases is conflicting, MYC status was determined in tissue microarray sections in a larger series of patients (n = 49) with known CTC status using FISH. MYC was altered in 62% (16/26) CTC(+) patients and in 43% (6/14) CTC(-) patients (p = 0.25). Based on the observation in our study, future studies involving a larger number of patients should be performed in order to definitively define if this correlation exists.
Collapse
|
11
|
Mutually exclusive mutations of KIT and RAS are associated with KIT mRNA expression and chromosomal instability in primary intracranial pure germinomas. Acta Neuropathol 2014; 127:911-25. [PMID: 24452629 DOI: 10.1007/s00401-014-1247-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/14/2014] [Indexed: 01/13/2023]
Abstract
Intracranial germ cell tumors (iGCTs) are the second most common brain tumors among children under 15 in Japan. The pathogenesis of iGCTs is largely unexplored. Although a subset of iGCTs is known to have KIT mutation, its impact on the biology and patients' survival has not been established. In this study, we investigated genes involved in the KIT signaling pathway. 65 iGCTs (30 pure germinomas, 14 teratomas, 18 mixed GCTs, 2 yolk sac tumors, 1 choriocarcinoma) were screened for mutation of KIT, KRAS, NRAS, HRAS, BRAF, PDGFRA, and IDH1 by direct sequencing. KIT expression was examined by immunohistochemistry and quantitative PCR. Chromosomal status was analyzed by array-comparative genomic hybridization (aCGH). Somatic mutations were detected only in KIT and RAS, which were frequently observed in pure germinomas (60.0 %), but rare in non-germinomatous GCTs (NGGCTs) (8.6 %). All KIT/RAS mutations were mutually exclusive. Regardless of the mutation status or mRNA expression, the KIT protein was expressed in all germinomas, while only in 54.3 % of NGGCTs. Amplification of KIT was found in one pure germinoma by aCGH. In pure germinomas, high expression of KIT mRNA was associated with the presence of KIT/RAS alterations and severe chromosomal instability. Our results indicate that alterations of the KIT signaling pathway play an important role in the development of germinomas. Pure germinomas may develop through two distinct pathogeneses: one with KIT/RAS alterations, elevated KIT mRNA expression and severe chromosomal instability, and the other through yet an unidentified mechanism without any of the above abnormalities.
Collapse
|
12
|
Testicular cancer: germ-cell tumors (GCTs). Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
13
|
Fonseca-Sanchéz MA, Pérez-Plasencia C, Fernández-Retana J, Arechaga-Ocampo E, Marchat LA, Rodríguez-Cuevas S, Bautista-Piña V, Arellano-Anaya ZE, Flores-Pérez A, Diaz-Chávez J, López-Camarillo C. microRNA-18b is upregulated in breast cancer and modulates genes involved in cell migration. Oncol Rep 2013; 30:2399-410. [PMID: 23970382 DOI: 10.3892/or.2013.2691] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/02/2013] [Indexed: 11/06/2022] Open
Abstract
microRNAs are small non-coding RNAs of ~22 nucleotides that function at post-transcriptional level as negative regulators of gene expression. Aberrant expression of microRNAs could promote uncontrolled proliferation, migration and invasion of human cancer cells. In this study, we analyzed the expression of microRNA-18b (miR-18b) in breast cancer cell lines and in a set of clinical specimens. Our results showed that miR-18b was upregulated in four out of five breast cancer cell lines and also in breast tumors. In order to identify potential gene targets, we carried out transcriptional profiling of MDA-MB-231 breast cancer cells that ectopically expressed miR-18b. Our results showed that 263 genes were significantly modulated in miR-18b-deficient cells (fold change >1.5; P≤0.05). We found that knock-down of miR-18b induced the upregulation of 55 olfactory receptor (OR) genes and nine genes (NLRP7, KLK3, OLFM3, POSTN, MAGED4B, KIR3DL3, CRX, SEMG1 and CEACAM5) with key roles in cell migration and metastasis. Consistently, we found that ectopic inhibition of miR-18b suppressed the migration of two breast cancer cell models in vitro. In conclusion, we have uncovered genes directly or indirectly modulated by miR-18b which may represent potential therapeutic targets in breast cancer. Our data also pointed out a role of miR-18b in migration of breast cancer cells.
Collapse
Affiliation(s)
- Miguel A Fonseca-Sanchéz
- Oncogenomics and Cancer Proteomics Laboratory, Genomics Sciences Program, Autonomous University of Mexico City, Mexico City, Mexico
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Gilbert D, Rapley E, Shipley J. Testicular germ cell tumours: predisposition genes and the male germ cell niche. Nat Rev Cancer 2011; 11:278-88. [PMID: 21412254 DOI: 10.1038/nrc3021] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Testicular germ cell tumours (TGCTs) of adults and adolescents are putatively derived from primordial germ cells or gonocytes. Recently reported genome-wide association studies implicate six gene loci that predispose to TGCT development. Remarkably, the functions of proteins encoded by genes within these regions bridge our understanding between the pathways involved in primordial germ cell physiology, male germ cell development and the molecular pathology of TGCTs. Furthermore, this improved understanding of the mechanisms underlying TGCT development and dissemination has clinical relevance for the management of patients with these tumours.
Collapse
Affiliation(s)
- Duncan Gilbert
- Sussex Cancer Centre, Royal Sussex County Hospital, Eastern Road, Brighton BN2 5BE, East Sussex, UK
| | | | | |
Collapse
|
16
|
Missiaglia E, Selfe J, Hamdi M, Williamson D, Schaaf G, Fang C, Koster J, Summersgill B, Messahel B, Versteeg R, Pritchard-Jones K, Kool M, Shipley J. Genomic imbalances in rhabdomyosarcoma cell lines affect expression of genes frequently altered in primary tumors: an approach to identify candidate genes involved in tumor development. Genes Chromosomes Cancer 2009; 48:455-67. [PMID: 19235922 DOI: 10.1002/gcc.20655] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Rhabdomyosarcomas (RMS) are the most common pediatric soft tissue sarcomas. They resemble developing skeletal muscle and are histologically divided into two main subtypes; alveolar and embryonal RMS. Characteristic genomic aberrations, including the PAX3- and PAX7-FOXO1 fusion genes in alveolar cases, have led to increased understanding of their molecular biology. Here, we determined the effect of genomic copy number on gene expression levels through array comparative genomic hybridization (CGH) analysis of 13 RMS cell lines, confirmed by multiplex ligation-dependent probe amplification copy number analyses, combined with their corresponding expression profiles. Genes altered at the transcriptional level by genomic imbalances were identified and the effect on expression was proportional to the level of genomic imbalance. Extrapolating to a public expression profiling dataset for 132 primary RMS identified features common to the cell lines and primary samples and associations with subtypes and fusion gene status. Genes identified such as CDK4 and MYCN are known to be amplified, overexpressed, and involved in RMS tumorigenesis. Of the many genes identified, those with likely functional relevance included CENPF, DTL, MYC, EYA2, and FGFR1. Copy number and expression of FGFR1 was validated in additional primary material and found amplified in 6 out of 196 cases and overexpressed relative to skeletal muscle and myoblasts, with significantly higher expression levels in the embryonal compared with alveolar subtypes. This illustrates the ability to identify genes of potential significance in tumor development through combining genomic and transcriptomic profiles from representative cell lines with publicly available expression profiling data from primary tumors.
Collapse
Affiliation(s)
- Edoardo Missiaglia
- Molecular Cytogenetics Team, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Sirintrapun SJ, Parwani AV. Molecular Pathology of the Genitourinary Tract: Molecular Pathology of Kidney and Testes. Surg Pathol Clin 2009; 2:199-223. [PMID: 26838102 DOI: 10.1016/j.path.2008.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
With the advent of newer molecular technologies, our knowledge of cellular mechanisms with tumors of the kidney and testis has grown exponentially. Molecular technologies have led to better understanding of interplay between the von Hippel-Lindau gene and angiogenic cytokines in renal cancer and isochromosome 12p in testicular neoplasms. The result has been development of antiangiogenic-targeted therapy within recent years that has become the mainstay treatment for metastatic renal cell cancer. In the near future, classification and diagnosis of renal and testicular tumors through morphologic analysis will be supplemented by molecular information correlating to prognosis and targeted therapy. This article outlines tumor molecular pathology of the kidney and testis encompassing current genomic, epigenomic, and proteonomic findings.
Collapse
Affiliation(s)
- S Joseph Sirintrapun
- Pathology Informatics, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
| | - Anil V Parwani
- Department of Pathology, University of Pittsburgh Medical Center Shadyside Hospital, Room WG 07, 5230 Centre Avenue, Pittsburgh, PA 15232, USA.
| |
Collapse
|
18
|
Hussain SA, Ma YT, Palmer DH, Hutton P, Cullen MH. Biology of testicular germ cell tumors. Expert Rev Anticancer Ther 2009; 8:1659-73. [PMID: 18925857 DOI: 10.1586/14737140.8.10.1659] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Germ cell tumors are derived from cells of the germ cell lineage and are the most common solid malignancies to affect young Caucasian men between the ages of 15 and 40 years. All testicular germ cell tumors develop from the same precursor lesion, intratubular germ cell neoplasia unclassified, which in turn is thought to arise from malignant transformation of a primordial germ cell or gonocyte. These tumors are characterized by extreme chemosensitivity and are considered a model for curative disease. In spite of this, a small subset of patients with metastatic disease fail to achieve a complete response with cisplatin-based chemotherapy or relapse from complete remission. Understanding the molecular biology may help the design of new therapies for those patients with a poor prognosis and could also improve the treatment of cancer in general. Current understanding of the role of genetic and epigenetic factors in the etiology of germ cell tumors and the biochemical mechanisms underlying chemotherapy sensitivity and resistance is discussed in detail in this review.
Collapse
Affiliation(s)
- Syed A Hussain
- Cancer Research UK Institute for Cancer Studies, University of Birmingham, University Hospital Birmingham NHS Foundation Trust, Edgbaston, Birmingham , UK.
| | | | | | | | | |
Collapse
|
19
|
McIntyre A, Gilbert D, Goddard N, Looijenga L, Shipley J. Genes, chromosomes and the development of testicular germ cell tumors of adolescents and adults. Genes Chromosomes Cancer 2008; 47:547-57. [PMID: 18381640 DOI: 10.1002/gcc.20562] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Testicular germ cell tumors (TGCTs) of adults and adolescents are thought to be derived from primordial germ cells or gonocytes. TGCTs develop postpuberty from precursor lesions known as intratubular germ cell neoplasia undifferentiated. The tumors can be divided into two groups based on their histology and clinical behavior; seminomas resemble primordial germ cells or gonocytes and nonseminomas resemble embryonic or extraembryonic tissues at various stages of differentiation. The most undifferentiated form of nonseminoma, embryonal carcinoma, resembles embryonic stem cells in terms of morphology and expression profiling, both mRNAs and microRNAs. Evidence supports both environmental factors and genetic predisposition underlying the development of TGCTs. Various models of development have been proposed and are discussed. In TGCTs, gain of material from the short arm of chromosome 12 is invariable: genes from this region include the proto-oncogene KRAS, which has activating mutations in approximately 10% of tumors or is frequently overexpressed. A number of different approaches to increase the understanding of the development and progression of TGCTs have highlighted the involvement of KIT, RAS/RAF/MAPK, STAT, and PI3K/AKT signaling. We review the role of these signaling pathways in this process and the potential influence of environmental factors in the development of TGCTs.
Collapse
Affiliation(s)
- Alan McIntyre
- Molecular Cytogenetics, Section of Molecular Carcinogenesis, The Institute of Cancer Research, Sutton, Surrey, SM2 5NG, UK
| | | | | | | | | |
Collapse
|
20
|
Application of stem cell markers in search for neoplastic germ cells in dysgenetic gonads, extragonadal tumours, and in semen of infertile men. Cancer Treat Rev 2008; 34:348-67. [PMID: 18289797 DOI: 10.1016/j.ctrv.2007.12.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2007] [Revised: 12/17/2007] [Accepted: 12/18/2007] [Indexed: 01/08/2023]
Abstract
Germ cell tumours (GCTs) are a complex entity. Current areas of attention include early detection and avoidance of unnecessary over-treatment. Novel findings regarding diagnosis of GCTs located in various anatomical sites are described, particularly testicular GCTs and their common progenitor, carcinoma in situ (CIS). Recognition of CIS enables intervention before tumour development, but nevertheless, testicular GCTs are sporadically diagnosed at the pre-invasive stage where minimal treatment is necessary. As presence of CIS is asymptomatic, a simple screening method is needed when CIS is suspected (i.e. in males investigated for infertility). To develop approaches for early detection CIS gene expression studies have been performed showing many similarities with embryonic stem cells with confirmation of established markers (i.e. PLAP, OCT-3/4, KIT) and identification of novel markers (i.e. AP-2 gamma, NANOG). We have reported a very promising new approach of AP-2 gamma (or OCT3/4) based immunocytological semen analysis (specificity 93.6%, sensitivity 54.5%). Comparative studies of gonadal/extragonadal GCTs have revealed resemblance pointing towards similar, but not identical, origins. Moreover, infertility and testicular cancer are connected in the 'Testicular Dysgenesis Syndrome' and 25% of contralateral testes from testicular GCT patients harbour dysgenetic features, including impaired spermatogenesis. Thus, recent data have provided potential diagnostic tools including CIS detection in semen, microarray-based tumour classification, additional serological GCT markers, and novel stem cell markers for immunohistochemical diagnosis of gonadal and extragonadal GCTs. Many CIS candidate genes are yet uninvestigated, and information from these could increase knowledge about CIS tumour initiation/progression and be used for optimisation of a non-invasive detection method.
Collapse
|
21
|
Abstract
Testicular germ cell tumours of adults and adolescents (TGCT) include seminomas (SE) and nonseminomas (NS), with spermatocytic seminomas (SSE) representing a distinct entity in older men. SE and NS have gain of 12p material in all cases, whereas SSE are associated with overrepresentation of chromosome 9. Here, we compare at the chromosomal level, copy number imbalances with global expression changes, identified by comparative expressed sequence hybridisation analyses, in seven SE, one combined tumour, seven NS and seven cell lines. Positive correlations were found consistent with copy number as a main driver of expression change, despite reported differences in methylation status in SE and NS. Analysis of chromosomal copy number and expression data could not distinguish between SE and NS, in-keeping with a similar genetic pathogenesis. However, increased expression from 4q22, 5q23.2 and 9p21 distinguished SSE from SE and NS and decreased copy number and expression from 2q36–q37 and 6q24 was a specific feature of NS-derived cell lines. Our analysis also highlights 19 regions with both copy number and expression imbalances in greater than 40% of cases. Mining available expression array data identified genes from these regions as candidates for involvement in TGCT development. Supplementary data is available at http://www.crukdmf.icr.ac.uk/array/array.html.
Collapse
|
22
|
Pang EYT, Bai AHC, To KF, Sy SMH, Wong NLY, Lai PBS, Squire JA, Wong N. Identification of PFTAIRE protein kinase 1, a novel cell division cycle-2 related gene, in the motile phenotype of hepatocellular carcinoma cells. Hepatology 2007; 46:436-45. [PMID: 17559150 DOI: 10.1002/hep.21691] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
UNLABELLED Metastasis is a major cause of cancer morbidity and mortality in individuals with hepatocellular carcinoma (HCC), yet little is known about the underlying molecular basis. Using genetic information derived from chromosome-based comparative genomic hybridization, we have reported previously on regional chromosome 7q21-q22 gains in close association with HCC progression. In this study, we undertook cDNA microarray-based comparative genomic hybridization, to examine the 7q21-q22 region for the involved gene(s) in HCC. High-resolution mapping analysis highlighted 7 candidates, namely PFTAIRE protein kinase 1 (PFTK1), ODAG, CDK6, CAS1, PEX1, SLC25A, and PEG10, within the region. Quantitative reverse transcription (RT)-PCR evaluation further indicated upregulation of a single candidate gene, PFTK1, that correlated significantly with both advanced metastatic HCCs (P = 0.032) and tumor microvascular invasion (P = 0.012). Given that little is known about the function(s) of PFTK1, which is a novel cell division cycle (Cdc)2-related gene, we examined its potential role in the motile phenotype of HCC cells by both ectopic expression and knockdown investigations. RNA-interference knockdown of PFTK1 in invasive Hep3B cells resulted in a significant reduction in cell invasion, chemotactic migration, and cell motility (P < 0.001). Conversely, ectopic expression of PFTK1 in noninvasive HKCI-C3 cells induced substantial cellular invasion and migration (P < or = 0.007). In neither cell line was there any effect on cell viability. Immunofluorescence showed marked filamentous actin polymerizations in PFTK1-expressing cells. CONCLUSION In this study, we have thus provided preliminary evidence that overexpression of PFTK1 may confer a motile phenotype in malignant hepatocytes that accounts for the association of upregulation of this gene in metastatic HCC.
Collapse
Affiliation(s)
- Etonia Y-T Pang
- Li Ka-Shing Institute of Health, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Goddard NC, McIntyre A, Summersgill B, Gilbert D, Kitazawa S, Shipley J. KIT and RAS signalling pathways in testicular germ cell tumours: new data and a review of the literature. ACTA ACUST UNITED AC 2007; 30:337-48; discussion 349. [PMID: 17573850 DOI: 10.1111/j.1365-2605.2007.00769.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Testicular germ cell tumours (TGCTs) are the leading cause of cancer deaths in young male Caucasians. Identifying changes in DNA copy number can pinpoint genes involved in tumour development. We defined the smallest overlapping regions of imbalance in TGCTs using array comparative genomic hybridization analysis. Novel regions, or regions which refined those previously reported, were identified. The expression profile of genes from 12p, which is invariably gained in TGCTs, and amplicons defined at 12p11.2-12.1 and 4q12, suggest KRAS and KIT involvement in TGCT and seminoma development, respectively. Amplification of these genes was not found in intratubular germ cell neoplasia adjacent to invasive disease showing these changes, suggesting their involvement in tumour progression. Activating mutations of RAS genes (KRAS or NRAS) and overexpression of KRAS were mutually exclusive events. These, correlations between the expression levels of KIT, KRAS and GRB7 (which encodes an adapter molecule known to interact with the KIT tyrosine kinase receptor) and other reported evidence reviewed here, are consistent with a role for activation of KIT and RAS signalling in TGCT development. In order to assess a role for KIT in seminomas, we modulated the level of KIT expression in TCam-2, a seminoma cell line. The likely seminomatous origin of this cell line was supported by demonstrating KIT and OCT3/4 overexpression and gain of 12p material. Reducing the expression of KIT in TCam-2 through RNA inhibition resulted in decreased cell viability. Further understanding of KIT and RAS signalling in TGCTs may lead to novel therapeutic approaches for these tumours.
Collapse
Affiliation(s)
- N C Goddard
- Molecular Cytogenetics, Section of Molecular Carcinogenesis, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | | | | | | | | | | |
Collapse
|
24
|
Houldsworth J, Korkola JE, Bosl GJ, Chaganti RSK. Biology and Genetics of Adult Male Germ Cell Tumors. J Clin Oncol 2006; 24:5512-8. [PMID: 17158536 DOI: 10.1200/jco.2006.08.4285] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adult male germ cell tumors (GCTs) arise by transformation of totipotent germ cells. They have the unique potential to activate molecular pathways, in part mimicking those occurring during gametogenesis and normal human development, as evidenced by the array of histopathologies observed in vivo. Recent expression profiling studies of GCTs along with advances in embryonic stem-cell research have contributed to our understanding of the underlying biology of the disease. Gain of the short arm of chromosome 12 detected in almost all adult GCTs appears to be multifunctional in germ cell tumorigenesis on the basis of the observed overexpression of genes mapped to this region involved in maintenance of pluripotency and oncogenesis. Expression signatures associated with the different histopathologies have yielded clues as to the functional mechanisms involved in GCT invasion, loss of pluripotency, and lineage differentiation. Genomic and epigenomic abnormalities that contribute to or cause these events have been identified by traditional genome analyses and continue to be revealed as genome-scanning technologies develop. Given the high sensitivity of most GCTs to cisplatin-based treatment, these tumors serve as an excellent model system for the identification of factors associated with drug resistance, including differentiation status and acquisition of genomic alterations. Overall, adult male GCTs provide a unique opportunity for the examination of functional links between transformation and pluripotency, genomic and epigenomic abnormalities and lineage differentiation, and the identification of genetic features associated with chemotherapy resistance.
Collapse
Affiliation(s)
- Jane Houldsworth
- Cell Biology Program and Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| | | | | | | |
Collapse
|
25
|
Kitazawa S, Takenaka A, Kondo T, Mizoguchi A, Kitazawa R. Protruding disordered loop of gC1qR is specifically exposed and related to antiapoptotic property in germ cell lineage. Histochem Cell Biol 2006; 126:665-77. [PMID: 16871385 DOI: 10.1007/s00418-006-0225-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2006] [Indexed: 10/24/2022]
Abstract
We established a monoclonal antibody (MAb), 5G9, with the use of a fixed seminoma tissue from an archival paraffin-embedded specimen, as an immunogen. Without antigen retrieval, positive 5G9-immunohistochemical staining was confined mostly to primordial germ cells, spermatogonia and various germ cell tumors. 5G9 recognized a mitochondrial 32-kD protein with an isoelectric point of pH 4.2, identified as a multifunctional ubiquitous protein, receptor for globular head of C1q (gC1qR), whose epitope was mapped in a disordered loop connecting the beta3 and the beta4 strands. Reflecting the ubiquitous distribution of gC1qR, with antigen retrieval, 5G9 was found reactive to a wide range of normal and tumor tissues. Since several co-precipitated and phosphorylated bands were observed in various human cell lines but not in germ cell tumor cell lines by in vitro phosphorylation assay, we speculate that the epitope of gC1qR is specifically unmasked in the germ cell lineage. By reducing gC1qR by siRNA, a significant increase was observed in the number of apoptotic cells in ITO-II and TCam-2 cell lines, but to a lesser extent in the Colo201 colon cancer cell line, showing an antiapoptotic property of gC1qR in the germ cells. Since protein-protein interaction is partially preserved by fixation, archival paraffin-embedded specimens can be a valuable source of immunogens for generating monoclonal antibodies (MAbs) that recognize tissue-specific protein conformation.
Collapse
Affiliation(s)
- Sohei Kitazawa
- Division of Molecular Pathology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | | | | | | | | |
Collapse
|
26
|
Abstract
Testicular germ-cell tumours (TGCTs) represent the model of a curable malignancy; sensitive tumour markers, accurate prognostic classification, logical series of management trials, and high cure rates in both seminomas and non-seminomas have enabled a framework of effective cancer therapy. Understanding the molecular biology of TGCT could help improve treatment of other cancers. The typical presentation in young adults means that issues of long-term toxicity become especially important in judging appropriate management. A focus of recent developments has been to tailor aggressiveness of treatment to the severity of the prognosis. Recent changes affect the most common subtypes and include the reduction of chemotherapy for patients who have metastastic non-seminomas and a good prognosis, and alternatives to adjuvant radiotherapy in stage I seminomas. We summarise advances in the understanding and management of TGCT during the past decade.
Collapse
Affiliation(s)
- Alan Horwich
- Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Surrey SM2 5PT, UK.
| | | | | |
Collapse
|
27
|
McIntyre A, Summersgill B, Spendlove HE, Huddart R, Houlston R, Shipley J. Activating mutations and/or expression levels of tyrosine kinase receptors GRB7, RAS, and BRAF in testicular germ cell tumors. Neoplasia 2006; 7:1047-52. [PMID: 16354586 PMCID: PMC1501174 DOI: 10.1593/neo.05514] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 09/01/2005] [Accepted: 09/13/2005] [Indexed: 02/02/2023] Open
Abstract
Amplification and/or overexpression of genes encoding tyrosine kinase receptors KIT and ERBB2 have been reported in testicular germ cell tumors (TGCTs). These receptors can bind the adaptor molecule GRB7 encoded by a gene adjacent to ERBB2 at 17q12, a region also frequently gained in TGCTs. GRB7 binding may be involved in the activation of RAS signaling and KRAS2 maps to 12p, which is constitutively gained in TGCT and lies within a minimum overlapping region of amplification at 12p11.2-12.1, a region we have previously defined. RAS proteins activate BRAF, and activating mutations of genes encoding these proteins have been described in various tumors. Here we determine the relationships between expression levels and activating mutations of these genes in a series of 65 primary TGCTs and 4 TCGT cell lines. High levels of expression and activating mutations in RAS were mutually exclusive events, and activating mutations in RAS were only identified in the seminoma subtype. Mutations in BRAF were not identified. Increased ERBB2 expression was associated with differentiated nonseminoma histology excised from lymph nodes postchemotherapy. Mutation, elevated expression, and correlations between expression levels of KRAS2, GRB7, and KIT are consistent with their involvement in the development of TGCTs.
Collapse
Affiliation(s)
- Alan McIntyre
- Molecular Cytogenetics, Section of Molecular Carcinogenesis, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Brenda Summersgill
- Molecular Cytogenetics, Section of Molecular Carcinogenesis, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Hayley E Spendlove
- Section of Cancer Genetics, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Robert Huddart
- Academic Department of Urology, The Royal Marsden National Health Service Trust and Institute of Cancer Research, Sutton, Surrey, UK
| | - Richard Houlston
- Section of Cancer Genetics, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Janet Shipley
- Molecular Cytogenetics, Section of Molecular Carcinogenesis, The Institute of Cancer Research, Sutton, Surrey, UK
| |
Collapse
|
28
|
Bergthorsson JT, Agnarsson BA, Gudbjartsson T, Magnusson K, Thoroddsen A, Palsson B, Bjornsson J, Stefansson K, Gulcher J, Einarsson GV, Amundadottir LT, Barkardottir RB. A genome-wide study of allelic imbalance in human testicular germ cell tumors using microsatellite markers. CANCER GENETICS AND CYTOGENETICS 2006; 164:1-9. [PMID: 16364756 DOI: 10.1016/j.cancergencyto.2005.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Revised: 06/10/2005] [Accepted: 06/13/2005] [Indexed: 11/19/2022]
Abstract
Testicular germ cell tumors (TGCT) arise by multistep carcinogenesis pathways involving selective losses and gains of chromosome material. To locate cancer genes underlying this selection, we performed a genome-wide study of allelic imbalance (AI) in 32 tumors, using 710 microsatellite markers. The highest prevalence of AI was found at 12p, in line with previous studies finding consistent gain of the region in TGCTs. High frequency of AI was also observed at chromosome arms 4p, 9q, 10p, 11q, 11p, 13q, 16q, 18p, and 22q. Within 39 candidate regions identified by mapping of smallest regions of overlap (SROs), the highest frequency of AI was at 12p11.21 approximately p11.22 (62%), 12p12.1 approximately p13.1 (53%), 12p13.1 approximately p13.2 (53%), 11q14.1 approximately q14.2 (53%), 11p13 approximately p14.3 (47%), 9q21.13 approximately q21.32 (47%), and 4p15.1 approximately p15.2 (44%). Two genes known to be involved in cancer reside in these regions, ETV6 at 12p13.2 (TEL oncogene) and WT1 at 11p13. We also found a significant association (P = 0.02) between AI at 10q21.1 approximately q22.2 and higher clinical stage. This study contributes to the ongoing search for genes involved in transformation of germ cells and provides a useful reference point to previous studies using cytogenetic techniques to map chromosome changes in TGCTs.
Collapse
|
29
|
Yanagihara M, Ishikawa S, Naito M, Nakajima J, Aburatani H, Hatakeyama M. Paired-like homeoprotein ESXR1 acts as a sequence-specific transcriptional repressor of the human K-ras gene. Oncogene 2005; 24:5878-87. [PMID: 15897875 DOI: 10.1038/sj.onc.1208736] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gain-of-function mutation of the K-ras gene is one of the most common genetic changes in human tumors. In tumors carrying K-ras mutation, the presence of oncogenic K-Ras is necessary for maintenance of the transformed phenotype. ESXR1 is a human paired-like homeodomain-containing protein expressed primarily in the testis. In cells, the 65-kDa full-length ESXR1 protein is proteolytically processed into an N-terminal 45-kDa fragment containing the homeodomain, which localizes exclusively within the nucleus, and a C-terminal 20-kDa fragment consisting of a proline-rich repeat region, which is located in the cytoplasm. In this work, we demonstrated that the N-terminal ESXR1 fragment specifically recognizes the TAATNNNATTA P3 consensus sequence for the paired-like homeodomain and functions as a sequence-specific transcriptional repressor. We also showed that the N-terminal ESXR1 fragment binds to the TAATGTTATTA sequence present within the first intron of the human K-ras gene and inhibits its expression at both mRNA and protein levels. Ectopic expression of the N-terminal ESXR1 fragment in human carcinoma cells that carry mutated K-ras reduces the level of K-Ras and thereby inhibits the tumor cell proliferation. Identification of ESXR1 as a transcriptional repressor of K-ras has an important implication for the development of cancer therapy that inhibits oncogenic K-Ras expression.
Collapse
Affiliation(s)
- Masatomo Yanagihara
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
30
|
McIntyre A, Summersgill B, Grygalewicz B, Gillis AJM, Stoop J, van Gurp RJHLM, Dennis N, Fisher C, Huddart R, Cooper C, Clark J, Oosterhuis JW, Looijenga LHJ, Shipley J. Amplification and Overexpression of the KIT Gene Is Associated with Progression in the Seminoma Subtype of Testicular Germ Cell Tumors of Adolescents and Adults. Cancer Res 2005; 65:8085-9. [PMID: 16166280 DOI: 10.1158/0008-5472.can-05-0471] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have previously identified amplification at 4q12 in testicular germ cell tumors of adolescents and adults centered around the KIT gene encoding a tyrosine kinase transmembrane receptor. Analysis of primary testicular germ cell tumors totaling 190 cases revealed 21% of the seminoma subtype with an increased copy number of KIT whereas this change was rarely found in the nonseminomas. In most cases, gain of KIT did not include the immediately flanking noncoding DNA or the flanking genes KDR and PDGFRA. Increased copy number of KIT was not found in the putative precursor lesion, carcinoma in situ (CIS), adjacent to tumor with this change. KIT overexpression was found independent of gain and KIT immunostaining was stronger in selected cases with gain of KIT compared to those without. Taken together with activating mutations of KIT in exon 17 identified in 13% of seminomas, this suggests that the KIT gene product plays a role in the progression of CIS towards seminoma, the further understanding of which may lead to novel less toxic therapeutic approaches.
Collapse
Affiliation(s)
- Alan McIntyre
- Molecular Cytogenetics, Section of Molecular Carcinogenesis, The Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
von Eyben FE, Jacobsen GK, Skotheim RI. Microinvasive germ cell tumor of the testis. Virchows Arch 2005; 447:610-25. [PMID: 15968545 DOI: 10.1007/s00428-005-1257-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Accepted: 03/07/2005] [Indexed: 10/25/2022]
Abstract
Microinvasive germ cell tumor (MGCT) consists of a limited number of malignant germ cells in the intertubular tissue of the testis. The cells have large nuclei, prominent nucleoli, abundant clear cytoplasm, and distinct cellular borders in hematoxylin and eosin staining. MGCT can be the first stage of malignancy in the development of testicular germ cell tumor (TGCT). Biopsies from men with maldescended testes have been reported to contain intratubular germ cell neoplasia, unclassified (IGCN) and MGCT in 1.8% of the examined cases (95% CI 0.5-4.6%). MGCT has also been found in testes of subfertile men and in the contralateral testis of patients with TGCT. MGCT is a frequent finding (19%) in the testicular tissue adjacent to an overt TGCT. Men with a high risk of TGCT may gain from screening for precursor lesions of TGCT with ultrasonography of the testes followed by a testicular biopsy if suspicious abnormalities are found: Treatment is high-voltage radiotherapy for intratubular germ cell neoplasia (IGCN), and orchidectomy for MGCT and germ cell tumor in situ, either intratubular seminoma or intratubular embryonal carcinoma. After local treatment, patients with precursor lesions can be followed with a surveillance program. The mRNA levels of invasion-related genes were evaluated based on a DNA microarray data set, and we found two gene abnormalities most relevant for the invasion of malignant germ cells: matrix metalloproteinase 9 (MMP9) and plasminogen activator, urokinase (PLAU) genes were up-regulated in a study comparing tissue samples of TGCT and IGCN.
Collapse
|
32
|
Abstract
The germ-cell tumours are a fascinating group of neoplasms because of their unusual biology and the spectacular therapeutic results that have been obtained in these tumours. Traditionally, this group of neoplasms is presented in an organ-oriented approach. However, recent clinical and experimental data convincingly demonstrate that these neoplasms are one disease with separate entities that can manifest themselves in different anatomical sites. We propose five entities, in which the developmental potential is determined by the maturation stage and imprinting status of the originating germ cell. Recent progress begins to explain the apparent unpredictable development of germ-cell tumours and offers a basis for understanding their exquisite sensitivity to therapy.
Collapse
Affiliation(s)
- J Wolter Oosterhuis
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Daniel den Hoed Cancer Center, Josephine Nefkens Institute, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands.
| | | |
Collapse
|
33
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2005. [PMCID: PMC2447508 DOI: 10.1002/cfg.422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|