1
|
Malcher A, Graczyk Z, Bauer H, Stokowy T, Berman A, Smolibowski M, Blaszczyk D, Jedrzejczak P, Yatsenko AN, Kurpisz M. ESX1 gene as a potential candidate responsible for male infertility in nonobstructive azoospermia. Sci Rep 2023; 13:16563. [PMID: 37783880 PMCID: PMC10545701 DOI: 10.1038/s41598-023-43854-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023] Open
Abstract
Infertility is a problem that affects approximately 15% of couples, and male infertility is responsible for 40-50% of these cases. The cause of male infertility is still poorly diagnosed and treated. One of the prominent causes of male infertility is disturbed spermatogenesis, which can lead to nonobstructive azoospermia (NOA). Whole-genome sequencing (WGS) allows us to identify novel rare variants in potentially NOA-associated genes, among others, in the ESX1 gene. The aim of this study was to activate the ESX1 gene using CRISPRa technology in human germ cells (testicular seminoma cells-TCam-2). Successful activation of the ESX1 gene in TCam-2 cells using the CRISPRa system was achieved, and the expression level of the ESX1 gene was significantly higher in modified TCam-2 cells than in WT cells or the negative control with nontargeted gRNA (p < 0.01). Using RNA-seq, a network of over 50 genes potentially regulated by the ESX1 gene was determined. Finally, 6 genes, NANOG, CXCR4, RPS6KA5, CCND1, PDE1C, and LINC00662, participating in cell proliferation and differentiation were verified in azoospermic patients with and without a mutation in the ESX1 gene as well as in men with normal spermatogenesis, where inverse correlations in the expression levels of the observed genes were noted.
Collapse
Affiliation(s)
- Agnieszka Malcher
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.
| | - Zuzanna Graczyk
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Hermann Bauer
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Andrea Berman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, USA
| | | | | | - Piotr Jedrzejczak
- Department of Cell Biology, Center of Obstetrics, Gynecology and Infertility Treatment, University of Medical Sciences, Poznan, Poland
| | - Alexander N Yatsenko
- Department of OB/GYN and Reproductive Sciences, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maciej Kurpisz
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.
| |
Collapse
|
2
|
Ajit K, Murphy BD, Banerjee A. Elucidating evolutionarily conserved mechanisms of diapause regulation using an in silico approach. FEBS Lett 2021; 595:1350-1374. [PMID: 33650678 DOI: 10.1002/1873-3468.14064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/02/2021] [Accepted: 02/19/2021] [Indexed: 11/11/2022]
Abstract
Embryonic diapause is an enigmatic phenomenon that appears in diverse species. Although regulatory mechanisms have been established, there is much to be discovered. Herein, we have made the first comprehensive attempt to elucidate diapause regulatory mechanisms using a computational approach. We found transcription factors unique to promoters of genes in diapause species. From pathway analysis and STRING PPI networks, the signaling pathways regulated by these unique transcription factors were identified. The pathways were then consolidated into a model to combine various known mechanisms of diapause regulation. This work also highlighted certain transcription factors that may act as 'master transcription factors' to regulate the phenomenon. Promoter analysis further suggested evidence for independent evolution for some of regulatory elements involved in diapause.
Collapse
Affiliation(s)
- Kamal Ajit
- Department of Biological Sciences, BITS Pilani KK Birla Goa Campus, Goa, India
| | - Bruce D Murphy
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médicine Vétérinaire, Université Montréal, St-Hyacinthe, QC, Canada
| | - Arnab Banerjee
- Department of Biological Sciences, BITS Pilani KK Birla Goa Campus, Goa, India
| |
Collapse
|
3
|
Ma Q, Du Y, Luo X, Ye J, Gui Y. Association of ESX1 gene variants with non-obstructive azoospermia in Chinese males. Sci Rep 2021; 11:4587. [PMID: 33633269 PMCID: PMC7907365 DOI: 10.1038/s41598-021-84182-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/11/2021] [Indexed: 12/21/2022] Open
Abstract
Genetic factors are one of the most important causes of non-obstructive azoospermia (NOA). ESX1 is an X-linked testis-biased expressed gene, and a potential biomarker for testicular sperm retrieval in NOA patients, yet few systematic studies have investigated its association with NOA. Here, we performed selected exonic sequencing in a large cohort of Chinese males, and four novel missense mutations (including one compound mutation), one novel synonymous mutation of ESX1 unique to NOA patients were identified. We analyzed the effects of ESX1 mutations on cyclin A degradation and cell cycle progression by immunoprecipitation assay and flow cytometry, and found that the compound mutant p.[P365R; L366V] ESX1 compromised the stabilizing effect of ESX1 on polyubiquitinated cyclin A, thereby causing the failure of M phase arrest in cells. Further studies showed that the deleterious effect of the compound mutations on ESX1 protein function was attributed to p.P365R but not p.L366V alteration. The novel ESX1 mutation p.P365R might confer high risk for NOA in Han Chinese population, probably via affecting cell cycle control.
Collapse
Affiliation(s)
- Qian Ma
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, People's Republic of China
| | - Ye Du
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, People's Republic of China
| | - Xiaomin Luo
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, People's Republic of China
| | - Jing Ye
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, People's Republic of China.
| | - Yaoting Gui
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, People's Republic of China.
| |
Collapse
|
4
|
Li Z, Chen H, Zhong F, Zhang W, Lee K, He JC. Expression of Glutamate Receptor Subtype 3 Is Epigenetically Regulated in Podocytes under Diabetic Conditions. KIDNEY DISEASES 2018; 5:34-42. [PMID: 30815463 DOI: 10.1159/000492933] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/15/2018] [Indexed: 12/31/2022]
Abstract
Background Recent studies suggest a role of epigenetics in the pathogenesis of diabetic kidney disease. However, epigenetic changes occurring specifically in kidney cells is poorly understood. Methods To examine the epigenetic regulation of genes in podocytes under diabetic conditions, we performed DNA methylation and transcriptomic profiling in podocytes exposed to high glucose conditions. Results Comparative analysis of genes with DNA methylation changes and correspondingly altered mRNA expression identified 337 hypomethylated genes with increased mRNA expression and only 2 hypermethyated genes (ESX1 and GRIA3) with decreased mRNA expression. Glutamate ionotropic receptor AMPA type subunit 3 (GRIA3) belongs to the ionotropic class of glutamate receptors that mediate fast excitatory synaptic transmission in the central nervous system. As podocytes have glutamate-containing vesicles and various glutamate receptors mediate important biological effects in podocytes, we further examined GRIA3 expression and its function in podocytes. Real-time PCR and western blots confirmed the suppression of GRIA3 expression in podocytes under high glucose conditions, which were abolished in the presence of a DNA methyltransferase inhibitor. Sites of DNA hypermethylation were also confirmed by bisulfite sequencing of the GRIA3 promoter region. GRIA3 mRNA and protein expression was suppressed in diabetic kidneys of human and mouse models, and knockdown of GRIA3 exacerbated high glucose-induced apoptosis in cultured podocytes. Conclusion These results indicate that decreased GRIA3 expression in podocytes in diabetic condition heightens podocyte apoptosis and loss.
Collapse
Affiliation(s)
- Zhengzhe Li
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Haibing Chen
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Fang Zhong
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Weijia Zhang
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kyung Lee
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John Cijiang He
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Renal Section, James J Peters Veterans Affair Medical Center, Bronx, New York, USA
| |
Collapse
|
5
|
Clinical relevance of KRAS in human cancers. J Biomed Biotechnol 2010; 2010:150960. [PMID: 20617134 PMCID: PMC2896632 DOI: 10.1155/2010/150960] [Citation(s) in RCA: 218] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 02/22/2010] [Accepted: 03/09/2010] [Indexed: 12/18/2022] Open
Abstract
The KRAS gene (Ki-ras2 Kirsten rat sarcoma viral oncogene homolog) is an oncogene that encodes a small GTPase transductor protein called KRAS. KRAS is involved in the regulation of cell division as a result of its ability to relay external signals to the cell nucleus. Activating mutations in the KRAS gene impair the ability of the KRAS protein to switch between active and inactive states, leading to cell transformation and increased resistance to chemotherapy and biological therapies targeting epidermal growth factor receptors. This review highlights some of the features of the KRAS gene and the KRAS protein and summarizes current knowledge of the mechanism of KRAS gene regulation. It also underlines the importance of activating mutations in the KRAS gene in relation to carcinogenesis and their importance as diagnostic biomarkers, providing clues regarding human cancer patients' prognosis and indicating potential therapeutic approaches.
Collapse
|
6
|
Nakajima J, Ishikawa S, Hamada JI, Yanagihara M, Koike T, Hatakeyama M. Anti-tumor activity of ESX1 on cancer cells harboring oncogenic K-ras mutation. Biochem Biophys Res Commun 2008; 370:189-94. [PMID: 18361917 DOI: 10.1016/j.bbrc.2008.03.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Accepted: 03/14/2008] [Indexed: 10/22/2022]
Abstract
Human ESX1 is a 65-kilodalton (kDa) paired-like homeoprotein that is proteolytically processed into N-terminal 45-kDa and C-terminal 20-kDa fragments. The N-terminal ESX1 fragment, which contains the homeodomain, localizes to the nucleus and represses mRNA transcription from the K-ras gene. When we inoculated human colorectal carcinoma HCT116 constitutive expressing N-terminal region of ESX1 (N-ESX1) into nude mice, transfectant cells uniformly showed decreased tumor-forming activity compared with that of the parental cells. Furthermore, pretreatment of HCT116 carcinoma cells with a fusion protein consisting of N-ESX1 and the protein-transduction domain derived from the human immunodeficiency virus type-1 TAT protein gave rise to a dramatic reduction in the tumorigenicity of HCT116 cells in nude mice. Our results provide first in vivo evidence for the molecular targeting therapeutic application of the K-ras repressor ESX1, especially TAT-mediated transduction of N-ESX1, in the treatment of human cancers having oncogenic K-ras mutations.
Collapse
Affiliation(s)
- Junta Nakajima
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Wang X, Zhang J. Rapid evolution of primate ESX1, an X-linked placenta- and testis-expressed homeobox gene. Hum Mol Genet 2007; 16:2053-60. [PMID: 17588961 DOI: 10.1093/hmg/ddm153] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Homeobox genes encode transcription factors that play important roles in various developmental processes and are usually evolutionarily conserved. Here we report a case of rapid evolution of a homeobox gene in humans and non-human primates. ESX1 is an X-linked homeobox gene primarily expressed in the placenta and testis, with physiological functions in placenta/fetus development and spermatogenesis. ESX1 is paternally imprinted in mice, but is not imprinted in humans. We provide evidence for a significantly higher non-synonymous substitution rate than synonymous rate in ESX1 between humans and chimps as well as among a total of 15 primate species. Population genetic data also show signals of recent selective sweeps within humans. Positive selection appears to be concentrated in the C-terminal non-homeodomain region, which has been implicated in regulating human male germ cell division by prohibiting the degradation of cyclins. In contrast, mouse Esx1 has a substantively different C-terminal region subject to strong purifying selection. These and other results suggest that even the fundamental process of spermatogenesis has been targeted by positive selection in primate and human evolution and that mouse may not be a suitable model for studying human reproduction.
Collapse
Affiliation(s)
- Xiaoxia Wang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|