1
|
Namiot ED, Zembatov GM, Tregub PP. Insights into brain tumor diagnosis: exploring in situ hybridization techniques. Front Neurol 2024; 15:1393572. [PMID: 39022728 PMCID: PMC11252041 DOI: 10.3389/fneur.2024.1393572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/31/2024] [Indexed: 07/20/2024] Open
Abstract
Objectives Diagnosing brain tumors is critical due to their complex nature. This review explores the potential of in situ hybridization for diagnosing brain neoplasms, examining their attributes and applications in neurology and oncology. Methods The review surveys literature and cross-references findings with the OMIM database, examining 513 records. It pinpoints mutations suitable for in situ hybridization and identifies common chromosomal and gene anomalies in brain tumors. Emphasis is placed on mutations' clinical implications, including prognosis and drug sensitivity. Results Amplifications in EGFR, MDM2, and MDM4, along with Y chromosome loss, chromosome 7 polysomy, and deletions of PTEN, CDKN2/p16, TP53, and DMBT1, correlate with poor prognosis in glioma patients. Protective genetic changes in glioma include increased expression of ADGRB3/1, IL12B, DYRKA1, VEGFC, LRRC4, and BMP4. Elevated MMP24 expression worsens prognosis in glioma, oligodendroglioma, and meningioma patients. Meningioma exhibits common chromosomal anomalies like loss of chromosomes 1, 9, 17, and 22, with specific genes implicated in their development. Main occurrences in medulloblastoma include the formation of isochromosome 17q and SHH signaling pathway disruption. Increased expression of BARHL1 is associated with prolonged survival. Adenomas mutations were reviewed with a focus on adenoma-carcinoma transition and different subtypes, with MMP9 identified as the main metalloprotease implicated in tumor progression. Discussion Molecular-genetic diagnostics for common brain tumors involve diverse genetic anomalies. In situ hybridization shows promise for diagnosing and prognosticating tumors. Detecting tumor-specific alterations is vital for prognosis and treatment. However, many mutations require other methods, hindering in situ hybridization from becoming the primary diagnostic method.
Collapse
Affiliation(s)
- E. D. Namiot
- Department of Pathophysiology, First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - G. M. Zembatov
- Department of Pathophysiology, First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - P. P. Tregub
- Department of Pathophysiology, First Moscow State Medical University (Sechenov University), Moscow, Russia
- Brain Research Department, Federal State Scientific Center of Neurology, Moscow, Russia
- Scientific and Educational Resource Center, Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| |
Collapse
|
2
|
Kim SJ, Lee SE, Kim YI, Nam-Goong IS, Jung HW, Kim ES. Papillary thyroid cancer with Hashimoto’s thyroiditis attenuates the tumour aggressiveness through the up-regulation of E-cadherin and TGF-β expression. Clin Exp Med 2022:10.1007/s10238-022-00857-6. [DOI: 10.1007/s10238-022-00857-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
Abstract
AbstractHuman papillary thyroid cancer (PTC) is often associated with Hashimoto’s thyroiditis (HT), and their coexistence improves the prognosis of PTC. Aim of the study. The objective of our study is to investigate the expression of cadherins and TGF-β which are regulators in the tumour aggressiveness with metastatic spread in PTC patients and its relationship with HT. The expression of E-cadherin and N-cadherin was measured in thyroid tissues of healthy volunteers and PTC patients with HT (PTC/HT) or without. The E-cadherin expression was also determined in thyroid cancer cells (TPC1, SNU373, SNU790, 8505C, CAL62, and FTC133). Cell migration was measured by wound healing assay. The expression of N-cadherin, ICAM1, and TGF-β was measured in thyroid tissues and plasma. The E-cadherin expression was significantly increased in PTC/HT patients compared with PTC alone. Meanwhile, the N-cadherin expression was significantly decreased in PTC/HT patients. The E-cadherin expression was only observed in FTC cells, and the overexpression of E-cadherin inhibited cancer cell migration. The TGF-β expression was significantly increased in PTC/HT patients, and the plasma levels were higher in PTC/HT patients than in PTC alone. The expression of N-cadherin and ICAM-1 was significantly decreased in PTC/HT patients. Our results indicate that the expression of E-cadherin and TGF-β was higher in PTC/HT patients than in PTC alone. This suggests that the presence of PTC with HT may attenuate the tumour aggressiveness and metastasis through the up-regulation of E-cadherin and TGF-β expression.
Collapse
|
3
|
Agretti P, De Marco G, Ferrarini E, Di Cosmo C, Montanelli L, Bagattini B, Chiovato L, Tonacchera M. Gene expression profile in functioning and non-functioning nodules of autonomous multinodular goiter from an area of iodine deficiency: unexpected common characteristics between the two entities. J Endocrinol Invest 2022; 45:399-411. [PMID: 34405392 PMCID: PMC8783917 DOI: 10.1007/s40618-021-01660-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 08/03/2021] [Indexed: 12/02/2022]
Abstract
PURPOSE Toxic multinodular goiter is a heterogeneous disease associated with hyperthyroidism frequently detected in areas with deficient iodine intake, and functioning and non-functioning nodules, characterized by increased proliferation but opposite functional activity, may coexist in the same gland. To understand the distinct molecular pathology of each entity present in the same gland, the gene expression profile was evaluated by using the Affymetrix technology. METHODS Total RNA was extracted from nodular and healthy tissues of two patients and double-strand cDNA was synthesized. Biotinylated cRNA was obtained and, after chemical fragmentation, was hybridized on U133A and B arrays. Each array was stained and the acquired images were analyzed to obtain the expression levels of the transcripts. Both functioning and non-functioning nodules were compared versus healthy tissue of the corresponding patient. RESULTS About 16% of genes were modulated in functioning nodules, while in non-functioning nodules only 9% of genes were modulated with respect to the healthy tissue. In functioning nodules of both patients and up-regulation of cyclin D1 and cyclin-dependent kinase inhibitor 1 was observed, suggesting the presence of a possible feedback control of proliferation. Complement components C1s, C7 and C3 were down-regulated in both types of nodules, suggesting a silencing of the innate immune response. Cellular fibronectin precursor was up-regulated in both functioning nodules suggesting a possible increase of endothelial cells. Finally, Frizzled-1 was down-regulated only in functioning nodules, suggesting a role of Wnt signaling pathway in the proliferation and differentiation of these tumors. None of the thyroid-specific gene was deregulated in microarray analysis. CONCLUSION In conclusion, the main finding from our data is a similar modulation for both kinds of nodules in genes possibly implicated in thyroid growth.
Collapse
Affiliation(s)
- P Agretti
- Endocrinology Unit 1, University Hospital of Pisa, Via Paradisa 2, 56124, Pisa, Italy
| | - G De Marco
- Department of Clinical and Experimental Medicine, Section of Endocrinology, University of Pisa, Via Paradisa 2, 56124, Pisa, Italy
| | - E Ferrarini
- Department of Clinical and Experimental Medicine, Section of Endocrinology, University of Pisa, Via Paradisa 2, 56124, Pisa, Italy
| | - C Di Cosmo
- Department of Clinical and Experimental Medicine, Section of Endocrinology, University of Pisa, Via Paradisa 2, 56124, Pisa, Italy
| | - L Montanelli
- Endocrinology Unit 1, University Hospital of Pisa, Via Paradisa 2, 56124, Pisa, Italy
| | - B Bagattini
- Department of Clinical and Experimental Medicine, Section of Endocrinology, University of Pisa, Via Paradisa 2, 56124, Pisa, Italy
| | - L Chiovato
- Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, IRCCS Maugeri, 27100, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Pavia, Italy
| | - M Tonacchera
- Endocrinology Unit 1, University Hospital of Pisa, Via Paradisa 2, 56124, Pisa, Italy.
- Department of Clinical and Experimental Medicine, Section of Endocrinology, University of Pisa, Via Paradisa 2, 56124, Pisa, Italy.
| |
Collapse
|
4
|
Zhang J, Yan D, He L, Zhang Q, Wen S, Liu P, Zhou H, Peng Y. Expression of Caveolin-1 Is Associated With Thyroid Function in Patients With Human Papillary Thyroid Carcinoma. Dose Response 2020; 18:1559325820919330. [PMID: 32313526 PMCID: PMC7160781 DOI: 10.1177/1559325820919330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/12/2020] [Accepted: 03/20/2020] [Indexed: 11/22/2022] Open
Abstract
Objective: The aim of this study was to evaluate the levels of caveolin-1 in thyroid
follicular epithelial cells of papillary thyroid cancer, follicular thyroid
cancer, and nonmalignant thyroid nodule benign follicular adenoma, as well
as to explore the relationship between the levels of caveolin-1 and thyroid
function. Methods: Thirty cases of papillary thyroid cancer, 10 cases of follicular thyroid
cancer, 32 cases of nonmalignant thyroid nodule benign follicular adenoma,
and 30 controls were enrolled in this study. Caveolin-1 expression in tissue
specimens obtained from these cases was evaluated by immunohistochemistry
and Western blotting. Results: Caveolin-1 expression in thyroid epithelial cells of patients with papillary
thyroid cancer, particularly female patients, was significantly higher than
that in patients with follicular thyroid cancer and nonmalignant thyroid
nodule benign follicular adenoma (P < .005). Serum
thyroid-stimulating hormone (TSH) levels in the caveolin-1-positive
expression group were lower than that in the caveolin-1-negative expression
group, and the lowest expression of caveolin-1 was detected in tissues of
patients with Graves’ disease. The serum TSH level was associated with
caveolin-1 expression in thyroid epithelial cells. Conclusion: Caveolin-1 may participate in regulating thyroid function and is a potential
biomarker of follicular thyroid cancer.
Collapse
Affiliation(s)
- Jingyi Zhang
- Department of Endocrinology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China.,Department of Immunology, Nanjing Medical University, Nanjing, China.,The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Dongxia Yan
- Department of Pathology, Ma'anshan People's Hospital, Ma'anshan, China
| | - Lianping He
- College of Experience Industry, Anhui Polytechnic University, Wuhu, Anhui, China
| | - Qing Zhang
- Department of Pathology, Ma'anshan People's Hospital, Ma'anshan, China
| | - Shuang Wen
- Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Peiyu Liu
- Department of Pharmacology, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Hong Zhou
- Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Yongde Peng
- Department of Endocrinology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| |
Collapse
|
5
|
Antonova O, Rukova B, Mladenov B, Rangelov S, Hammoudeh Z, Nesheva D, Staneva R, Spasova V, Grigorov E, Hadjidekova S, Slavov C, Toncheva D. Expression profiling of muscle invasive and non-invasive bladder tumors for biomarkers identification related to drug resistance, sensitivity and tumor progression. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1778528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Olga Antonova
- Department of Medical Genetics, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Blaga Rukova
- Department of Medical Genetics, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Boris Mladenov
- Department of Urology, UMBALSM “N. I. Pirogov,” Sofia, Bulgaria
| | - Simeon Rangelov
- Department of Urology, University Hospital “Tsaritsa Yoanna,” Sofia, Bulgaria
| | - Zora Hammoudeh
- Department of Medical Genetics, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Desislava Nesheva
- Department of Medical Genetics, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Rada Staneva
- Department of Medical Genetics, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Viktoria Spasova
- Department of Medical Genetics, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Evgeni Grigorov
- Department of Pharmaceutical Sciences and Pharmaceutical Management, Faculty of Pharmacy, Medical University of Varna “Prof. Dr. Paraskev Stoyanov,” Varna, Bulgaria
| | - Savina Hadjidekova
- Department of Medical Genetics, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Chavdar Slavov
- Department of Urology, University Hospital “Tsaritsa Yoanna,” Sofia, Bulgaria
| | - Draga Toncheva
- Department of Medical Genetics, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
6
|
Gül N, Temel B, Ustek D, Sirma-Ekmekçi S, Kapran Y, Tunca F, Giles-Şenyürek Y, Özbek U, Alagöl F. Association of Pro-apoptotic Bad Gene Expression Changes with Benign Thyroid Nodules. ACTA ACUST UNITED AC 2018; 32:555-559. [PMID: 29695560 DOI: 10.21873/invivo.11275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/14/2018] [Accepted: 03/19/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM This study aimed to investigate the role of the mitochondrial apoptotic pathway in benign thyroid nodules. MATERIALS AND METHODS Paired samples of nodular and normal tissues were collected from 26 patients with nodular goiters undergoing thyroidectomy. Variable expression of Bcl-2, Bax and Bad genes were evaluated by quantitative PCR. RESULTS Expression level of Bad gene in nodules was found to be significantly decreased compared to normal tissues (p=0.049). A positive correlation was observed between nodule size and Bad expression levels (correlation coefficient=0.563, p=0.004); and this correlation was stronger in hot nodules (n=18, correlation coefficient=0.689, p=0.003). No significant difference was observed between nodular and normal tissue expressions of Bax and Bcl-2. CONCLUSION These results suggest that Bad expression correlates with the size of benign thyroid nodules and also its relatively lower expression in nodules, warrant further investigation.
Collapse
Affiliation(s)
- Nurdan Gül
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Berna Temel
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Duran Ustek
- Department of Genetics, Institute for Experimental Medical Research, Istanbul University, Istanbul, Turkey
| | - Sema Sirma-Ekmekçi
- Department of Genetics, Institute for Experimental Medical Research, Istanbul University, Istanbul, Turkey
| | - Yersu Kapran
- Department of Pathology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Fatih Tunca
- Department of Surgery, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Yasemin Giles-Şenyürek
- Department of Surgery, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Uğur Özbek
- Department of Genetics, Institute for Experimental Medical Research, Istanbul University, Istanbul, Turkey
| | - Faruk Alagöl
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
7
|
Chidiac M, Fayyad-Kazan M, Daher J, Poelvoorde P, Bar I, Maenhaut C, Delrée P, Badran B, Vanhamme L. ApolipoproteinL1 is expressed in papillary thyroid carcinomas. Pathol Res Pract 2016; 212:631-5. [DOI: 10.1016/j.prp.2016.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 03/23/2016] [Accepted: 04/13/2016] [Indexed: 12/19/2022]
|
8
|
Floor SL, Trésallet C, Hébrant A, Desbuleux A, Libert F, Hoang C, Capello M, Andry G, van Staveren WCG, Maenhaut C. microRNA expression in autonomous thyroid adenomas: Correlation with mRNA regulation. Mol Cell Endocrinol 2015; 411:1-10. [PMID: 25916957 DOI: 10.1016/j.mce.2015.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 03/20/2015] [Accepted: 04/01/2015] [Indexed: 01/04/2023]
Abstract
The objective of the study was to identify the deregulated miRNA in autonomous adenoma and to correlate the data with mRNA regulation. Seven autonomous adenoma with adjacent healthy thyroid tissues were investigated. Twelve miRNAs were downregulated and one was upregulated in the tumors. Combining bioinformatic mRNA target prediction and microarray data on mRNA regulations allowed to identify mRNA targets of our deregulated miRNAs. A large enrichment in mRNA encoding proteins involved in extracellular matrix organization and different phosphodiesterases were identified among these putative targets. The direct interaction between miR-101-3p and miR-144-3p and PDE4D mRNA was experimentally validated. The global miRNA profiles were not greatly modified, confirming the definition of these tumors as minimal deviation tumors. These results support a role for miRNA in the regulation of extracellular matrix proteins and tissue remodeling occurring during tumor development, and in the important negative feedback of the cAMP pathway, which limits the consequences of its constitutive activation in these tumors.
Collapse
Affiliation(s)
- Sébastien L Floor
- Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium
| | | | - Aline Hébrant
- Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium
| | - Alice Desbuleux
- Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium
| | - Frédérick Libert
- Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium
| | - Catherine Hoang
- Pitié-Salpêtrière Hospital, Université Pierre et Marie Curie, Paris, France
| | - Matteo Capello
- Hopital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Guy Andry
- Institut J. Bordet, 121 Bld de Waterloo, 1000 Brussels, Belgium
| | - Wilma C G van Staveren
- Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium
| | - Carine Maenhaut
- Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium; Welbio, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgique.
| |
Collapse
|
9
|
Abstract
Thyroid cancer cells were believed to be generated by multi-step carcinogenesis, in which cancer cells are derived from thyrocytes, via multiple incidences of damage to their genome, especially in oncogenes or anti-oncogenes that accelerate proliferation or foster malignant phenotypes, such as the ability to invade the surrounding tissue or metastasize to distant organs, until a new hypothesis, fetal cell carcinogenesis, was presented. In fetal cell carcinogenesis, thyroid tumor cells are assumed to be derived from three types of fetal thyroid cell which only exist in fetuses or young children, namely, thyroid stem cells (TSCs), thyroblasts and prothyrocytes, by proliferation without differentiation. Genomic alternations, such as RET/PTC and PAX8-PPARγ1 rearrangements and a mutation in the BRAF gene, play an oncogenic role by preventing thyroid fetal cells from differentiating. Fetal cell carcinogenesis effectively explains recent molecular and clinical evidence regarding thyroid cancer, including thyroid cancer initiating cells (TCICs), and it underscores the importance of identifying a stem cells and clarifying the molecular mechanism of organ development in cancer research. It introduces three important concepts, the reverse approach, stem cell crisis and mature and immature cancers. Further, it implies that analysis of a small population of cells in a cancer tissue will be a key technique in establishing future laboratory tests. In the contrary, mass analysis such as gene expression profiling, whole genomic scan, and proteomics analysis may have definite limitations since they can only provide information based on many cells.
Collapse
Affiliation(s)
- Toru Takano
- Department of Laboratory Medicine, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| |
Collapse
|
10
|
Matsumoto C, Ito M, Yamada H, Yamakawa N, Yoshida H, Date A, Watanabe M, Hidaka Y, Iwatani Y, Miyauchi A, Takano T. Genes that characterize T3-predominant Graves' thyroid tissues. Eur J Endocrinol 2013; 168:137-44. [PMID: 23109646 DOI: 10.1530/eje-12-0507] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE 3,5,3'-Triiodothyronine (T(3))-predominant Graves' disease is characterized by the increasing volume of thyroid goiter resulting in poor prognosis. Although type 1 and type 2 iodothyronine deiodinases (DIO1 and DIO2 respectively) are known to be overexpressed in the thyroid tissues of T(3)-predominant Graves' disease, the pathogenesis of this disease is still unclear. The aim of our study is to identify genes that characterize T(3)-predominant Graves' disease tissue in order to clarify the molecular mechanism of this disease. DESIGN AND METHODS mRNAs from two thyroid tissues of both typical T(3)-predominant and common-type Graves' disease were analyzed with DNA microarrays with probes for 28 869 genes. Genes identified to be differentially expressed between the two groups were further analyzed in the second and third screenings using 70 Graves' thyroid tissues by real-time quantitative RT-PCR. RESULTS Twenty-three candidate genes were selected as being differentially expressed in the first screening with microarrays. Among these, seven genes, leucine-rich repeat neuronal 1 (LRRN1), bone morphogenetic protein 8a (BMP8A), N-cadherin (CDH2), phosphodiesterase 1A (PDE1A), creatine kinase mitochondrial 2 (CKMT2), integrin beta-3 (ITGB3), and protein tyrosine phosphatase non-receptor type 4 (PTPN4), were confirmed to be differentially expressed in DIO1 or DIO2 over- and underexpressing Graves' tissues. CONCLUSIONS These genes are related to the characteristics of T(3)-predominant Graves' disease, such as high titer level of serum anti-TSH receptor antibody, high free T(3) to free thyroxine ratio, and a large goiter size. They might play a role in the pathogenesis of T(3)-predominant Graves' disease.
Collapse
Affiliation(s)
- Chisa Matsumoto
- Department of Laboratory Medicine, Osaka University Graduate School of Medicine, D2, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Roudnicky F, Poyet C, Wild P, Krampitz S, Negrini F, Huggenberger R, Rogler A, Stöhr R, Hartmann A, Provenzano M, Otto VI, Detmar M. Endocan is upregulated on tumor vessels in invasive bladder cancer where it mediates VEGF-A-induced angiogenesis. Cancer Res 2012; 73:1097-106. [PMID: 23243026 DOI: 10.1158/0008-5472.can-12-1855] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Tumor-associated blood vessels differ from normal vessels and proteins present only on tumor vessels may serve as biomarkers or targets for antiangiogenic therapy in cancer. Comparing the transcriptional profiles of blood vascular endothelium from human invasive bladder cancer with normal bladder tissue, we found that the endothelial cell-specific molecule endocan (ESM1) was highly elevated on tumor vessels. Endocan was associated with filopodia of angiogenic endothelial tip cells in invasive bladder cancer. Notably, endocan expression on tumor vessels correlated strongly with staging and invasiveness, predicting a shorter recurrence-free survival time in noninvasive bladder cancers. Both endocan and VEGF-A levels were higher in plasma of patients with invasive bladder cancer than healthy individuals. Mechanistic investigations in cultured blood vascular endothelial cells or transgenic mice revealed that endocan expression was stimulated by VEGF-A through the phosphorylation and activation of VEGFR-2, which was required to promote cell migration and tube formation by VEGF-A. Taken together, our findings suggest that disrupting endocan interaction with VEGFR-2 or VEGF-A could offer a novel rational strategy to inhibit tumor angiogenesis. Furthermore, they suggest that endocan might serve as a useful biomarker to monitor disease progression and the efficacy of VEGF-A-targeting therapies in patients with bladder cancer.
Collapse
Affiliation(s)
- Filip Roudnicky
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Fontaine JF, Mirebeau-Prunier D, Raharijaona M, Franc B, Triau S, Rodien P, Goëau-Brissonniére O, Karayan-Tapon L, Mello M, Houlgatte R, Malthiery Y, Savagner F. Increasing the number of thyroid lesions classes in microarray analysis improves the relevance of diagnostic markers. PLoS One 2009; 4:e7632. [PMID: 19893615 PMCID: PMC2764086 DOI: 10.1371/journal.pone.0007632] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 10/05/2009] [Indexed: 11/19/2022] Open
Abstract
Background Genetic markers for thyroid cancers identified by microarray analysis have offered limited predictive accuracy so far because of the few classes of thyroid lesions usually taken into account. To improve diagnostic relevance, we have simultaneously analyzed microarray data from six public datasets covering a total of 347 thyroid tissue samples representing 12 histological classes of follicular lesions and normal thyroid tissue. Our own dataset, containing about half the thyroid tissue samples, included all categories of thyroid lesions. Methodology/Principal Findings Classifier predictions were strongly affected by similarities between classes and by the number of classes in the training sets. In each dataset, sample prediction was improved by separating the samples into three groups according to class similarities. The cross-validation of differential genes revealed four clusters with functional enrichments. The analysis of six of these genes (APOD, APOE, CLGN, CRABP1, SDHA and TIMP1) in 49 new samples showed consistent gene and protein profiles with the class similarities observed. Focusing on four subclasses of follicular tumor, we explored the diagnostic potential of 12 selected markers (CASP10, CDH16, CLGN, CRABP1, HMGB2, ALPL2, ADAMTS2, CABIN1, ALDH1A3, USP13, NR2F2, KRTHB5) by real-time quantitative RT-PCR on 32 other new samples. The gene expression profiles of follicular tumors were examined with reference to the mutational status of the Pax8-PPARγ, TSHR, GNAS and NRAS genes. Conclusion/Significance We show that diagnostic tools defined on the basis of microarray data are more relevant when a large number of samples and tissue classes are used. Taking into account the relationships between the thyroid tumor pathologies, together with the main biological functions and pathways involved, improved the diagnostic accuracy of the samples. Our approach was particularly relevant for the classification of microfollicular adenomas.
Collapse
Affiliation(s)
- Jean-Fred Fontaine
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- INSERM, UMR 694, Angers, France
- Université d'Angers, Angers, France
| | - Delphine Mirebeau-Prunier
- INSERM, UMR 694, Angers, France
- Université d'Angers, Angers, France
- CHU Angers, Laboratoire de Biochimie, Angers, France
| | - Mahatsangy Raharijaona
- INSERM, UMR 915, l'institut du Thorax, Nantes, France
- Université de Nantes, Nantes, France
| | - Brigitte Franc
- Hôpital A Paré, Laboratoire d'Anatomie Pathologique, Boulogne, France
| | - Stephane Triau
- CHU Angers, Laboratoire de Pathologie Cellulaire et Tissulaire, Angers, France
| | - Patrice Rodien
- INSERM, UMR 694, Angers, France
- Université d'Angers, Angers, France
- CHU Angers, Département Endocrinologie-Diabétologie-Nutrition, Angers, France
| | | | | | | | - Rémi Houlgatte
- INSERM, UMR 915, l'institut du Thorax, Nantes, France
- Université de Nantes, Nantes, France
| | - Yves Malthiery
- INSERM, UMR 694, Angers, France
- Université d'Angers, Angers, France
- CHU Angers, Laboratoire de Biochimie, Angers, France
| | - Frédérique Savagner
- INSERM, UMR 694, Angers, France
- Université d'Angers, Angers, France
- CHU Angers, Laboratoire de Biochimie, Angers, France
- INSERM, UMR 915, l'institut du Thorax, Nantes, France
- * E-mail:
| |
Collapse
|
13
|
Han KH, Son KS, Hong JE, Kim SJ. Promoter hypermethylation and Up-regulation of thyroid-stimulating-hormone-alpha (TSH-α) in thyroid cancer. Genes Genomics 2009. [DOI: 10.1007/bf03191252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Senou M, Costa MJ, Massart C, Thimmesch M, Khalifa C, Poncin S, Boucquey M, Gérard AC, Audinot JN, Dessy C, Ruf J, Feron O, Devuyst O, Guiot Y, Dumont JE, Van Sande J, Many MC. Role of caveolin-1 in thyroid phenotype, cell homeostasis, and hormone synthesis: in vivo study of caveolin-1 knockout mice. Am J Physiol Endocrinol Metab 2009; 297:E438-51. [PMID: 19435853 DOI: 10.1152/ajpendo.90784.2008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In human thyroid, caveolin-1 is localized at the apex of thyrocytes, but its role there remains unknown. Using immunohistochemistry, (127)I imaging, transmission electron microscopy, immunogold electron microscopy, and quantification of H(2)O(2), we found that in caveolin-1 knockout mice thyroid cell homeostasis was disrupted, with evidence of oxidative stress, cell damage, and apoptosis. An even more striking phenotype was the absence of thyroglobulin and iodine in one-half of the follicular lumina and their presence in the cytosol, suggesting that the iodide organification and binding to thyroglobulin were intracellular rather than at the apical membrane/extracellular colloid interface. The latter abnormality may be secondary to the observed mislocalization of the thyroid hormone synthesis machinery (dual oxidases, thyroperoxidase) in the cytosol. Nevertheless, the overall uptake of radioiodide, its organification, and secretion as thyroid hormones were comparable to those of wild-type mice, suggesting adequate compensation by the normal TSH retrocontrol. Accordingly, the levels of free thyroxine and TSH were normal. Only the levels of free triiodothyronine showed a slight decrease in caveolin-1 knockout mice. However, when TSH levels were increased through low-iodine chow and sodium perchlorate, the induced goiter was more prominent in caveolin-1 knockout mice. We conclude that caveolin-1 plays a role in proper thyroid hormone synthesis as well as in cell number homeostasis. Our study demonstrates for the first time a physiological function of caveolin-1 in the thyroid gland. Because the expression and subcellular localization of caveolin-1 were similar between normal human and murine thyroids, our findings in caveolin-1 knockout mice may have direct relevance to the human counterpart.
Collapse
Affiliation(s)
- Maximin Senou
- Unité de Morphologie Expérimentale, Université Catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Hébrant A, Van Sande J, Roger PP, Patey M, Klein M, Bournaud C, Savagner F, Leclère J, Dumont JE, van Staveren WCG, Maenhaut C. Thyroid gene expression in familial nonautoimmune hyperthyroidism shows common characteristics with hyperfunctioning autonomous adenomas. J Clin Endocrinol Metab 2009; 94:2602-9. [PMID: 19383781 DOI: 10.1210/jc.2008-2191] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT Dominant activating mutations of the TSH receptor are the cause of familial nonautoimmune hyperthyroidism (FNAH) (inherited mutations affecting the whole gland since embryogenesis) and the majority of hyperfunctioning autonomous adenomas (AAs) (somatic mutations affecting only one cell later in the adulthood). OBJECTIVE The objective of the study was defining the functional and molecular phenotypes of FNAH and comparing them with the ones of AA. DESIGN Functional phenotypes were determined in vitro and molecular phenotypes by hybridization on microarray slides. PATIENTS Nine patients with FNAH were investigated, six for functional in vitro study of the tissue and five for gene expression. RESULTS Iodide metabolism, H(2)O(2), cAMP, and inositol phosphate generation in FNAH slices stimulated or not with TSH were normal. The mitogenic response of cultured FNAH thyrocytes to TSH was normal but more sensitive to the hormone. Gene expression profiles of FNAH and AAs showed that among 474 genes significantly regulated in FNAH, 93% were similarly regulated in AAs. Besides, 783 genes were regulated only in AAs. Bioinformatic analysis pointed out common down-regulations of genes involved in immune response, cell/cell and cell/matrix adhesions, and apoptosis. Pathways up-regulated only in AAs mainly involve diverse biosyntheses. These results are consonant with the larger growth of AAs than FNAH tissues. CONCLUSIONS Whether hereditary or somatic after birth, activating mutations of the TSH receptor have the same qualitative consequences on the thyroid cell phenotype, but somatic mutations in AAs have a much stronger effect than FNAH mutations. Both are variants of one disease: genetic hyperthyroidism.
Collapse
Affiliation(s)
- Aline Hébrant
- Institute of Interdisciplinary Research, School of Medicine, Free University of Brussels, campus Erasme, 808 Route de Lennik, 1070 Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Eszlinger M, Jaeschke H, Paschke R. Insights from molecular pathways: potential pharmacologic targets of benign thyroid nodules. Curr Opin Endocrinol Diabetes Obes 2007; 14:393-7. [PMID: 17940470 DOI: 10.1097/med.0b013e3282ef5f96] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To describe molecular pathways that might be of relevance for a potential pharmacologic therapy of benign thyroid nodules. RECENT FINDINGS Constitutively activating thyrotropin receptor mutations have been found in about 60% of hot nodules. Its predominant role for signaling in hot nodules has been confirmed by in-vitro mutagenesis studies, thyrotropin receptor modeling and microarray studies. In contrast, the basic molecular cause of cold thyroid nodules is so far largely unknown. Defective sodium/iodide symporter trafficking, accumulation of T4-deficient, insufficiently iodinated thyroglobulin, increased oxidative stress and differential expression of several Gqalpha-protein kinase C pathway-associated genes have, however, recently been identified in cold thyroid nodules. SUMMARY As disturbed thyrotropin receptor signaling plays a central role in hot thyroid nodules, the identification of effective low-molecular-weight thyrotropin receptor ligands, such as thyrotropin receptor agonists, inverse agonists and antagonists has a pharmacologic potential in the diagnosis and treatment of thyroid cancer, Graves' disease and hot thyroid nodules, respectively. Further studies have to clarify the pharmacologic potential of the enhancement of antioxidative mechanisms and the inhibition of Gqalpha-protein kinase C signaling in cold thyroid nodules.
Collapse
|
17
|
Delys L, Detours V, Franc B, Thomas G, Bogdanova T, Tronko M, Libert F, Dumont JE, Maenhaut C. Gene expression and the biological phenotype of papillary thyroid carcinomas. Oncogene 2007; 26:7894-903. [PMID: 17621275 DOI: 10.1038/sj.onc.1210588] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The purpose of this paper is to correlate the molecular phenotype of papillary thyroid carcinoma (PTC) to their biological pathology. We hybridized 26 PTC on microarrays and showed that nearly 44% of the transcriptome was regulated in these tumors. We then combined our data set with two published PTC microarray studies to produce a platform- and study-independent list of PTC-associated genes. We further confirmed the mRNA regulation of 15 genes from this list by quantitative reverse transcription-PCR. Analysis of this list with statistical tools led to several conclusions: (1) there is a change in cell population with an increased expression of genes involved in the immune response, reflecting lymphocyte infiltration in the tumor compared to the normal tissue. (2) The c-jun N-terminal kinase pathway is activated by overexpression of its components. (3) The activation of ERKK1/2 by genetic alterations is supplemented by activation of the epidermal growth factor but not of the insulin-like growth factor signaling pathway. (4) There is a downregulation of immediate early genes. (5) We observed an overexpression of many proteases in accordance with tumor remodeling, and suggested a probable role of S100 proteins and annexin A2 in this process. (6) Numerous overexpressed genes favor the hypothesis of a collective migration mode of tumor cells.
Collapse
Affiliation(s)
- L Delys
- Institute of Interdisciplinary Research, School of Medicine, Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hébrant A, van Staveren WCG, Delys L, Solís DW, Bogdanova T, Andry G, Roger P, Dumont JE, Libert F, Maenhaut C. Long-term EGF/serum-treated human thyrocytes mimic papillary thyroid carcinomas with regard to gene expression. Exp Cell Res 2007; 313:3276-84. [PMID: 17689531 DOI: 10.1016/j.yexcr.2007.06.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 06/18/2007] [Accepted: 06/19/2007] [Indexed: 01/08/2023]
Abstract
Constitutive activation of the RAS/RAF/MAPK pathway has been found in different tumor types including papillary thyroid carcinomas (PTCs). To get more insight into genes primarily regulated in the human tumor cells, an in vitro model was developed in which primary cultures of human thyrocytes were treated for different times with epidermal growth factor and serum (EGF/serum), which stimulate the MAPK cascade. Gene expression profiles were obtained by microarrays and compared to the expression profiles of PTCs. An evolution from short-term to long-term EGF/serum-treated cells was found, i.e., a program change showing a distinction between gene expression profiles of short-term and long-term EGF/serum-treated cells. The late pattern of EGF/serum stimulated cells converges to the pattern of PTCs. Comparison of these two types of cells with cAMP activated cells, from thyroid-stimulating hormone-treated thyrocytes and autonomous adenomas, showed distinct gene expression profiles for the two pathways. For the two models, an overlap was found in a number of genes which were early induced in vitro but down-regulated later in vitro and in the in vivo tumors. Thus, long-term stimulated human primary cultures demonstrate a clear relation with the tumor in vivo and could therefore be used as models for the disease.
Collapse
Affiliation(s)
- Aline Hébrant
- Institute of Interdisciplinary Research (IRIBHM), School of Medicine, Université Libre de Bruxelles, Campus Erasme, 808 Route de Lennik, 1070 Brussels, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Eszlinger M, Krohn K, Kukulska A, Jarzab B, Paschke R. Perspectives and limitations of microarray-based gene expression profiling of thyroid tumors. Endocr Rev 2007; 28:322-38. [PMID: 17353294 DOI: 10.1210/er.2006-0047] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Microarray technology has become a powerful tool to analyze the gene expression of tens of thousands of genes simultaneously. Microarray-based gene expression profiles are available for malignant thyroid tumors (i.e., follicular thyroid carcinoma, and papillary thyroid carcinoma), and for benign thyroid tumors (such as autonomously functioning thyroid nodules and cold thyroid nodules). In general, the two main foci of microarray investigations are improved understanding of the pathophysiology/molecular etiology of thyroid neoplasia and the detection of genetic markers that could improve the differential diagnosis of thyroid tumors. Their results revealed new features, not known from one-gene studies. Simultaneously, the increasing number of microarray analyses of different thyroid pathologies raises the demand to efficiently compare the data. However, the use of different microarray platforms complicates cross-analysis. In addition, there are other important differences between these studies: 1) some studies use intraindividual comparisons, whereas other studies perform interindividual comparisons; 2) the reference tissue is defined as strictly nonnodular healthy tissue or also contains benign lesions such as goiter, follicular adenoma, and hyperplastic nodules in some studies; and 3) the widely used Affymetrix GeneChip platform comprises several GeneChip generations that are only partially compatible. Moreover, the different studies are characterized by strong differences in data analysis methods, which vary from simple empiric filters to sophisticated statistic algorithms. Therefore, this review summarizes and compares the different published reports in the context of their study design. It also illustrates perspectives and solutions for data set integration and meta-analysis, as well as the possibilities to combine array analysis with other genetic approaches.
Collapse
Affiliation(s)
- Markus Eszlinger
- III. Medical Department, University of Leipzig, Ph.-Rosenthal-Str. 27, D-04103 Leipzig, Germany
| | | | | | | | | |
Collapse
|
20
|
Costa MJ, Senou M, Van Rode F, Ruf J, Capello M, Dequanter D, Lothaire P, Dessy C, Dumont JE, Many MC, Van Sande J. Reciprocal negative regulation between thyrotropin/3',5'-cyclic adenosine monophosphate-mediated proliferation and caveolin-1 expression in human and murine thyrocytes. Mol Endocrinol 2007; 21:921-32. [PMID: 17202321 DOI: 10.1210/me.2006-0328] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The expression of caveolins is down-regulated in tissue samples of human thyroid autonomous adenomas and in the animal model of this disease. Because several cell types present in thyroid express caveolins, it remained unclear if this down-regulation occurs in thyrocytes and which are the mechanism and role of this down-regulation in the tumor context. Here we show that prolonged stimulation of isolated human thyrocytes by TSH/cAMP/cAMP-dependent protein kinase inhibits caveolins' expression. The expression of caveolins is not down-regulated by activators of other signaling pathways relevant to thyroid growth/function. Therefore, the down-regulation of caveolins' expression in autonomous adenomas is a direct consequence of the chronic activation of the TSH/cAMP pathway in thyrocytes. The down-regulation of caveolin-1 occurs at the mRNA level, with a consequent protein decrease. TSH/cAMP induces a transcription-dependent, translation-independent destabilization of the caveolin-1 mRNA. This effect is correlated to the known proliferative role of that cascade in thyrocytes. In vivo, thyrocytes of caveolin-1 knockout mice display enhanced proliferation. This demonstrates, for the first time, the in vivo significance of the specific caveolin-1 down-regulation by one mitogenic cascade and its relation to a human disease.
Collapse
Affiliation(s)
- Maria José Costa
- Institut de Recherche Interdisciplinaire, Campus Erasme, Université Libre de Bruxelles, 808 Route de Lennik, Building C, 1070 Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Dayem M, Navarro V, Marsault R, Darcourt J, Lindenthal S, Pourcher T. From the molecular characterization of iodide transporters to the prevention of radioactive iodide exposure. Biochimie 2006; 88:1793-806. [PMID: 16905238 DOI: 10.1016/j.biochi.2006.07.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Accepted: 07/19/2006] [Indexed: 12/23/2022]
Abstract
In the event of a nuclear reactor accident, the major public health risk will likely result from the release and dispersion of volatile radio-iodines. Upon body exposure and food ingestion, these radio-iodines are concentrated in the thyroid, resulting in substantial thyroidal irradiation and accordingly causing thyroid cancers. Stable potassium iodide (KI) effectively blocks thyroid iodine uptake and is thus used in iodide prophylaxis for reactor accidents. The efficiency of KI is directly related to the physiological inhibition of the thyroid function in the presence of high plasma iodide concentrations. This regulation is called the Wolff-Chaikoff effect. However, to be fully effective, KI should be administered shortly before or immediately after radioiodine exposure. If KI is provided only several hours after exposure, it will elicit the opposite effect e.g. lead to an increase in the thyroid irradiation dose. To date, clear evaluation of the benefit and the potential toxicity of KI administration remain difficult, and additional data are needed. We outline in this review the molecular characterization of KI-induced regulation of the thyroid function. Significant advances in the knowledge of the iodide transport mechanisms and thyroid physiology have been made. Recently developed molecular tools should help clarify iodide metabolism and the Wolff-Chaikoff effect. The major goals are clarifying the factors which increase thyroid cancer risk after a reactor accident and improving the KI administration protocol. These will ultimately lead to the development of novel strategies to decrease thyroid irradiation after radio-iodine exposure.
Collapse
Affiliation(s)
- M Dayem
- Unité TIRO (Transporter in Imaging and Radiotherapy in Oncology), Commissariat à l'énergie atomique DSV-DIEP-SBTN, School of Medicine, University of Nice Sophia Antipolis, 28, avenue de Valombrose, 06107 Nice cedex, France
| | | | | | | | | | | |
Collapse
|
22
|
van Staveren WCG, Solís DW, Delys L, Venet D, Cappello M, Andry G, Dumont JE, Libert F, Detours V, Maenhaut C. Gene expression in human thyrocytes and autonomous adenomas reveals suppression of negative feedbacks in tumorigenesis. Proc Natl Acad Sci U S A 2005; 103:413-8. [PMID: 16381821 PMCID: PMC1326163 DOI: 10.1073/pnas.0507354102] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cAMP signaling pathway regulates growth of many cell types, including somatotrophs, thyrocytes, melanocytes, ovarian follicular granulosa cells, adrenocortical cells, and keratinocytes. Mutations of partners from the cAMP signaling cascade are involved in tumor formation. Thyroid-stimulating hormone (TSH) receptor and Gsalpha activating mutations have been detected in thyroid autonomous adenomas, Gsalpha mutations in growth hormone-secreting pituitary adenomas, and PKAR1A mutations in Carney complex, a multiple neoplasia syndrome. To gain more insight into the role of cAMP signaling in tumor formation, human primary cultures of thyrocytes were treated for different times (1.5, 3, 16, 24, and 48 h) with TSH to characterize modulations in gene expression using cDNA microarrays. This kinetic study showed a clear difference in expression, early (1.5 and 3 h) and late (16-48 h) after the onset of TSH stimulation. This result suggests a progressive sequential process leading to a change of cell program. The gene expression profile of the long-term stimulated cultures resembled the autonomous adenomas, but not papillary carcinomas. The molecular phenotype of the adenomas thus confirms the role of long-term stimulation of the TSH-cAMP cascade in the pathology. TSH induced a striking up-regulation of different negative feedback modulators of the cAMP cascade, presumably insuring the one-shot effect of the stimulus. Some were down- or nonregulated in adenomas, suggesting a loss of negative feedback control in the tumors. These results suggest that in tumorigenesis, activation of proliferation pathways may be complemented by suppression of multiple corresponding negative feedbacks, i.e., specific tumor suppressors.
Collapse
|